
A Near-Optimal Strategy for a Heads-Up No-Limit Texas
Hold’em Poker Tournament

Peter Bro Miltersen
University of Aarhus

Åbogade 34, Århus, Denmark
bromille@daimi.au.dk

Troels Bjerre So/ rensen
University of Aarhus

Åbogade 34, Århus, Denmark
trold@daimi.au.dk

ABSTRACT
We analyze a heads-up no-limit Texas Hold’em poker tour-
nament with a fixed small blind of 300 chips, a fixed big
blind of 600 chips and a total amount of 8000 chips on the
table (until recently, these parameters defined the heads-
up endgame of sit-n-go tournaments on the popular Party-
Poker.com online poker site). Due to the size of this game,
a computation of an optimal (i.e. minimax) strategy for the
game is completely infeasible. However, combining an algo-
rithm due to Koller, Megiddo and von Stengel with concepts
of Everett and suggestions of Sklansky, we compute an opti-
mal jam/fold strategy, i.e. a strategy that would be optimal
if any bet made by the player playing by the strategy (but
not bets of his opponent) had to be his entire stack. Our
computations establish that the computed strategy is near-
optimal for the unrestricted tournament (i.e., with post-flop
play being allowed) in the rigorous sense that a player play-
ing by the computed strategy will win the tournament with
a probability within 1.4 percentage points of the probabil-
ity that an optimal strategy (allowing post-flop play) would
give.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems

General Terms
Algorithms, Theory

Keywords
Game playing, Game theory, Poker, Tournament

1. INTRODUCTION
In this paper, we describe the computation of a near-

optimal (in a rigorous sense) strategy for a heads-up no-limit
Texas Hold’em poker tournament with a fixed small blind of
SB=300 chips, a fixed big blind of BB=600 chips and a total
amount of 8000 chips on the table, and present and discuss

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

the computed strategy. These exact parameters were chosen
as they until recently1 defined the heads-up endgame of the
$5 through $30 buy-in sit-n-go tournaments on the popular
PartyPoker.com online poker site.

We briefly review the rules of such a tournament (and
of no-limit Texas Hold’em in general). The tournament is
played between two players, Player 1 and Player 2. When
the tournament starts, Player 1 receives s1 chips and Player
2 receives s2 chips where s1 + s2 = 8000. We want to keep
s1 and s2 as parameters as the heads-up tournament we
consider may be the endgame of a tournament with more
people, so the two players should be able to enter the game
with different stack sizes. The total number of chips on the
table will remain 8000 for the duration of the tournament.
The tournament consists of several hands of play. All chips
bet by the players during a hand are put into the pot, to be
won by whomever wins the hand. A hand is initiated by each
player receiving two cards, hidden from the other player. A
marker, known as the button, shows which of the players is
to act first. After each hand, the button moves to the other
player. Each hand starts with the players making two forced
bets, known as the small blind and the big blind respectively,
with the player with the button posting the small blind.
Adopting popular terminology, we will sometimes refer to
the player posting the small blind as “the small blind” and
the player posting the big blind as “the big blind” when this
can cause no confusion. Posting the blinds initiates the first
of four betting rounds. In a betting round, the players must
agree on how much to put into the pot to continue. The
player to act has one of four options:

• Fold and forfeit hand. The other player wins the pot.

• Call and match the number of chips bet so far.

• Raise and bet additional chips beyond what is needed
for a call.

• Move all-in and put all his chips (his stack) into the
pot. The player has this option even if his stack is
not big enough to make a call. In any case, the player
remains in the hand without taking further actions.
If he wins the hand, he can claim no more from the
other player than what he put into the pot himself.
Any unclaimed chips are returned to the other player
after the hand.

1PartyPoker.com changed its blind structure on February
16, 2006 (unfortunately before we were able to make a profit
from this research...)

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.0100

-0.0075

-0.0050

-0.0025

0.0000

0.0025

val(ΓBB
s1

)− s1
s1+s2

val(ΓSB
s1

)− s1
s1+s2

Figure 1: Difference between winning probability
and relative stack size as function of the stack size.

The betting round continues until both players decline to
make another raise. After this first betting round, three
community cards are placed face-up, visible to both play-
ers. This is known as the flop. A second betting round then
begins, started by the player not holding the button, but
with no forced action. Then two more community cards
are turned, with a third and fourth betting round after
each. If both players remain after the fourth betting round,
they each construct the best possible five card poker hand
(according to standard poker rules) by selecting five cards
among their two hidden cards and the five community cards.
The highest hand wins the pot, or in case of a tie, the pot
is split. If a player runs out of chips after play of a hand, he
has lost the tournament and the other player has won.

In the rest of the paper, the tournament just described will
be denoted by Γ. Before considering analyzing this game,
one should note that there is no guarantee that the game
will ever end; if both players keep folding any cards they are
dealt, they will be in the exact same situation every other
hand. Thus, the proper terminology and toolbox for ana-
lyzing Γ is Everett’s notion of recursive games [8]. In the
terminology of Everett, the game Γ should be viewed as de-
composed into a set of game elements, each describing hands
played with a particular distribution of chips and a particu-
lar position of the button. We use the standard convention
of zero-sum games of letting a numeric payoff denote the
gain of one distinguished player (Player 1) and hence the
loss of the other player (Player 2), so the payoff models the
losing player paying the winning a fixed amount. There
are two categories of outcomes of playing a game element:
First, the game element can terminate with a payoff of 1 be-
ing given to one of the players, a payoff of 0 to the other and
no further action taken. This occurs when either player has
run out of chips, and the tournament ends. The other pos-
sibility is for the game to continue at another game element
in the set, in which case there is no payoff directly associ-
ated with the outcome. This happens when a player wins
some, but not all of the chips of his opponent. Everett shows
that the game elements in a recursive game can be assigned
critical values that are analogous to the minimax values of
games guaranteed to terminate (some subtle differences are
described in Section 3). The critical value of a game element
describes the expected payoff that Player 1 is guaranteed by
playing optimally, so with the payoffs described above, the

0 1000 2000 3000 4000 5000 6000 7000 8000
0.00

0.25

0.50

0.75

1.00

Figure 2: Area between upper and lower bound on
the optimal winning probability of the player about
to post the small blind as a function of his stack size.

critical value of a game element is the probability of Player
1 winning the tournament, assuming optimal play. It is this
vector of critical values (and hence, a vector of optimal win-
ning probabilities) that we rigorously approximate in this
paper by computing and formulate aconcrete strategy for Γ.

Our results on the approximation of the critical vector is
summarized in Figure 1, showing the winning probability
val(ΓSB

s1) guaranteed by the computed strategy for Player
1 when he is about to post the small blind as well as his
guaranteed winning probability val(ΓBB

s1) when he is about
to post the big blind, as a function of his stack size s1. To
improve readability, we have subtracted the relative stack
size (s1/8000) from the computed winning probabilities.

In his seminal work on tournament poker, Sklansky [14,
page 104-106] gives a heuristic argument that the optimal
winning probabilities in a heads-up tournament are well-
approximated by these values and the graph confirms this.
That the estimate is not exact can be seen from the graphs.
For instance, when the player about to post the small blind
has a stack size of 2500, the computed strategy has a guar-
anteed winning probability strictly greater than 2500/8000,
and of course, the optimal strategy for Γ would have an even
bigger winning probability.

To estimate how much the strategy can be improved,
we observe how well Player 1 could do if Player 2 adopts
Player 1’s strategy, thus giving an upper bound on the pos-
sible improvement. As shown by the graphs, val(ΓSB

s1) and

val(ΓBB
8000−s1) sum up to more than 0.986 for any stack size

s1, leaving only room for a 0.014 improvement by any strat-
egy. This is further illustrated in Figure 2, where both lower
and upper bounds on the guaranteed winning probability of
the player about to post the small blinds are plotted, as a
function of his stack size. The upper bound is computed by
subtracting from 1 the guaranteed winning probability of
the computed strategy for the player about to post the big
blind. The optimal strategy for Γ has a guaranteed winning
probability somewhere in the narrow black area between the
two curves. We define the gap of our approximation as the
difference between the upper bound and the lower bound
of the winning probabilities of the player about to post the
small blind, i.e., the width of the black area in Figure 2.
The size of this gap is depicted in Figure 3.

It is interesting to compare our analysis with some pre-
vious analyses of various versions of poker. Billings et al
[2] focused on limit Texas Hold’em poker. The full game

0 1000 2000 3000 4000 5000 6000 7000 8000
0.000

0.005

0.010

0.015

Figure 3: The gap of the computed strategy as a
function of s1.

tree for this game is far too large (≈ 1018 nodes) to an-
alyze completely. Instead, a hand-built abstraction of the
game was analyzed. The abstraction was heuristically as-
sumed to approximate the original game, but not in any
rigorous sense. Gilpin and Sandholm [10] introduced a tech-
nique for automatically and exhaustively identifying rigor-
ously sound equilibrium-preserving abstractions of the game
tree for a class of well-structured games, including vari-
ants of poker. They successfully applied the technique to
find optimal strategies [9] for Rhode Island Hold’em [13],
which, however, is a significantly simplified version of Texas
Hold’em. The automated abstraction technique also gave
the option of allowing unsound abstractions, given that the
loss incurred was below a given threshold. The latter tech-
nique was used to give a new heuristical abstraction [11] to
the first three rounds of limit Texas Hold’em, as well as for
the two last rounds separately. The threshold implied a rig-
orous guarantee on the size of the error, but unfortunately
only to a three round pruning of the game, and therefore not
for the full game. Andersson [1] computed an abstraction
for no-limit Texas Hold’em, but again neither for the full
game nor with any rigorous guarantees on the performance.

A common feature of these analyses is that they consider
each hand as a separate game with the goal being to maxi-
mize the number of chips won in each hand, thereby aiming
to be optimal in a cash game, rather than a tournament. In
contrast to these works, we analyze a tournament. Com-
pared to the works on Texas Hold’em, we obtain a strategy
that rigorously approximates the optimal one (with a proven
upper bound of 0.014 on the approximation error). In con-
trast to the work of Gilpin and Sandholm on Rhode Island
Hold’em, we analyze a variant of poker that is being played
in real life (and which is, in fact, the most popular variant of
poker worldwide today). That it turns out to be possible to
analyze the large game is primarily due to the fact that we
consider no-limit rather than limit Texas Hold’em. Indeed,
it does not seem computationally feasible with current tech-
nology to give a similarly proven near-optimal strategy to a
limit Texas Hold’em tournament with the same stack sizes
and blind level. One might naively expect no-limit Hold’em
to be harder to analyze than limit Hold’em due to the fact
that the game tree of a single hand is much larger: The fan-
out of the tree at a node where a player is to bet is roughly
the number of chips at the disposal of that player. In con-
trast, in limit Hold’em, the player can choose only between
the three options of calling, raising and folding. However, in
the game Γ, the total number of chips is less than 14 times
the big blind. This means that one of the players must have
a short stack. Sklansky [14, page 119-121] notes that short-

stacked no-limit poker is not as hard as it looks. In fact, even
the completely trivial strategy of going all-in on every hand
is a decent approximation of the optimum strategy. Indeed,
the game where the strategy of Player 1 (the player aiming
to maximize payoff) has been fixed to always going all-in has
a critical vector which is a lower bound on the critical vec-
tor of the unrestricted game. Fixing the strategy for Player
2 (the player aiming to minimize payoff) in the analogous
way gives a game whose critical vector is an upper bound
on the critical vector of the unrestricted game. These lower
and upper bounds are easily computed (their computation
is a simple special case of the method described in Section
3), and in the case of Γ, such computations show the dif-
ference between the upper and lower bound to be no more
than 5.3 percentage points in winning probability (Sklansky
[14, page 120] reports a similar calculation for a tournament
with different blind sizes).

We aim to achieve a strategy with worst-case behavior
even closer to optimal. This can be achieved by sometimes
folding a hand. Sklansky [14, page 122-127] designed a sim-
ple heuristic strategy known as “The System”, which is easy
to memorize even by people who have never played a hand of
poker in their life. It simply specifies which hands one should
go all-in with, and which ones one should fold, depending
on whether anyone has raised so far in the hand. There
are separate instructions for the big blind, but the strategy
otherwise ignores position and stack size completely. Sklan-
sky later devised a more sophisticated “revised system” [15],
taking blind size and number of opponents into account. It
is interesting to understand how far such “systems” can be
pushed. Sklansky writes [14, page 126]: I am extremely
curious as to how strong it [The System] really might be.
And if it is strong, how much stronger yet a more complex,
move all-in, system would be? This paper studies Sklansky’s
question for the game Γ. Adopting terminology that has be-
come increasingly popular, we define a jam/fold strategy to
be a strategy for which any bet is the entire stack. Thus,
“The System” and its revision are jam/fold strategies. The
strategy we compute is the optimum (in the minimax sense)
jam/fold strategy for Γ and thus answers Sklansky’s ques-
tion for this particular game and assuming a worst case op-
ponent (the game-theoretic setup). Our graphs above show
it to be quite strong, losing less than 1.4 percentage points
(and for many stack sizes significantly less) winning prob-
ability compared to the optimal unrestricted strategy, i.e.,
an upper bound significantly smaller that the corresponding
figure of 5.3 percentage points for the “always-jam” strategy
(it is interesting to note that for the parameters of Γ, the
revised “system” is in fact equivalent to “always-jam”).

As for the case of “always-jam”, the reason computing
optimal jam/fold strategies turns out to be feasible is that
they make analysis of the post-flop game irrelevant. If either
player follows a jam/fold strategy, the post-flop game will
only be reached if both players are all-in, in which case there
are no further actions by the players in the hand. As a
consequence, the entire post-flop game consist of random
choices by nature, and can therefore be collapsed into an
expected payoff which can be straightforwardly computed
given the hidden pocket cards of the two players.

In the remainder of the paper, we describe the computa-
tion and the computed strategy in more detail.

chance

...

169 x 169 1

−SB2

fold

al
l i

n

BBshowdown

foldca
ll

chance

...

169 x 169 2

1 SB

ca
ll fold

−BB2

fold

al
l i

n

BBshowdown

foldca
ll

a) b)

Figure 4: Game trees for a single hand if Player 1 is
restricted to jam/fold. To the left is the case where
Player 1 posts small blind, and to the right is the
case where Player 1 posts big blind.

2. ANALYZING HANDS
We first consider the analysis of the play of single hands

and then in the next section show how to generalize the
considerations to the tournament setting. We will restrict
the strategy space of Player 1 to jam/fold strategies when
he posts the small blind as well as when he posts the big
blind.

To find the best jam/fold strategy when Player 1 posts
the small blind, we simply restrict his actions to these two
possibilities. His opponent will now only have to consider
when to call an all-in bet and when to fold. Since each player
can see only two cards, only the values of these cards and
whether they are of the same suit or not are relevant param-
eters for the decision. This reduction leads to 169 different
combinations of pocket cards for each player, and thereby
to the game tree sketched in Fig.4. Note that information
sets are not shown, but that each player has 169 information
sets; one for each possible pocket hand. Since the game is
defined by restricting the action space of Player 1, its value
is a lower bound on the value of a hand for Player 1 when
no such restrictions are made. Koller, Megiddo and von
Stengel [12] showed how to compute optimal strategies for a
game with hidden information by solving a linear program
of size proportional to the game tree. The size of the tree
of Fig.4 is sufficiently small for this algorithm to be suc-
cessfully applied. Previous to our work, Robert Anderson
(personal communication) made such a computation for var-
ious settings of the parameters and discussed his findings in
the forums on the website www.twoplustwo.com. This part
of our computation is essentially a reproduction of his com-
putations (and the results have been verified as consistent).
Using the linear programming solver PCx [6], we computed
values and minimax strategies for all hands with parame-
ters SB = 300, BB = 600 and combined stack size 8000,
for all individual stack sizes being multiples of 50. To get
rigorous bounds, we wanted exact rational solutions to the
linear programs. PCx, on the other hand, provided floating
point solutions. To get exact solutions, we used a tech-
nique similar to that of Dhiflaoui et al [7]: We interpreted
the floating point solution as an exact description of an ap-
proximately optimal solution and used a short sequence of
pivotings using exact rational arithmetic to obtain an opti-

Stack Mix

1800 T2
2100 95
2200 92s
2250 92s
2550 T5
2600 43s
2700 93s
2800 93s
2850 93s
2900 43s
3000 96
3050 96
3100 96
3250 J4
3300 T6
3350 63s
3400 65
3500 94s

Stack Mix

3550 63s
3600 86
3650 94s
3700 63s
3750 86
3800 94s
3850 T2s
3950 86
4000 86
4050 86
4150 T2s
4200 94s
4250 86
4300 63s
4350 94s
4400 86
4450 63s
4500 94s

Stack Mix

4600 65
4650 63s
4700 T6
4750 J4
4900 96
4950 96
5000 96
5100 43s
5150 93s
5200 93s
5300 93s
5400 43s
5450 T5
5750 92s
5800 92s
5900 95
6200 T2

Figure 5: Mixed hands for the player posting small
blind as a function of his stack size.

57%

unsuited

suited

2
3
4
5
6
7
8
9
T
J
Q
K
A

23456789TJQKA

6%

unsuited

suited

2
3
4
5
6
7
8
9
T
J
Q
K
A

23456789TJQKA

a) b)

Figure 6: Computed strategy for the single-hand
play when s1 = s2 = 4000. On the left is the strategy
for the player posting small blind, on the right is the
reply of the player posting big blind. White means
fold, black mean jam.

mal and exact rational tableau for the linear program. We
verified optimality using linear programming duality, which,
for the linear programs at hand, amounts to computing an
optimal counter-strategy against the strategy computed for
each of the two players and checking that the payoffs ob-
tained by the counter-strategies match. The strategies com-
puted were pure2 on most hands, but not completely pure.
A list of hands mixed by the small blind (i.e., folded with
non-zero probability and jammed with non-zero probability)
for different stack sizes is given as the table of Figure 5. The
computed strategy for the case of both stacks being of size
4000 can be seen as Figure 6a. All the computed strategies
(also those mentioned later in the paper) can be found at
www.daimi.au.dk/~bromille/pokerdata/.

Streib [16] reports a computation somewhat similar to
ours and those of Robert Anderson but with some important
differences and it is thus interesting to compare his results
with ours. First, Streib considered a game where the action
space of Player 1 is restricted to jam/fold as in our game of
Figure 4, but where the action spaces of the players are fur-

2Prescribed a deterministic action.

stacksize 43s J2

1800 fold jam
3600 jam fold

Figure 7: Unique minimax jam/fold actions for the
small blind.

ther restricted to calling with some percentage of their top
hands according to certain hand rankings. It is not clear to
us that analyzing such a game gives a rigorous lower bound
on the actual value of the hand in the same way that our
analysis does. Interestingly, Streib found pure equilibria for
his game for all parameters considered (using an iterative
procedure rather than linear programming), while our com-
putations establish that for the game of Fig. 4 and many
values of the parameters, there are no pure equilibria, even
though we found no case where more than one hand needs
to be mixed. In particular, using the results of our com-
putations we can show the following (somewhat perplexing)
theorem.

Theorem 1. Any optimal (in minimax sense) jam/fold
strategy for the small blind in a single hand of parameters
SB = 300, BB = 600 and stack sizes of both players being
4000 must mix play of 86 offsuit (i.e., must fold this hand
with non-zero probability and jam it with non-zero probabil-
ity). On the other hand, a minimax jam/fold strategy for
the small blind mixing only the play of 86 offsuit exists.

Proof. We actually give a “meta-proof” showing how a
proof can be given based on our computations.

One could, in theory, try all 2169 pure strategies, and ver-
ify that none of them obtains the value of the game against
an optimal counter-strategy, which can easily be computed.
Trying all of them is of course infeasible, but we can use the
computed strategy σ for Player 2 to rule out most of them.
If a pure strategy is a minimax strategy, it must be a pure
best reply to σ. This means that it must choose the action
with the highest expected value against σ for all possible
hands, thus fixing the required action for most hands. In
fact, there is only one hand, 86 offsuit, where the expected
payoff against σ is the same for both actions. Thus we only
have to check two pure strategies, and it turns out that none
of them obtains the value of the game against an optimal
counter-strategy. This calculation was done using exact ra-
tional arithmetic to make the present proof rigorous.

The procedure outlined in the proof above can be easily gen-
eralized to check for pure minimax strategies in arbitrary
two-player zero-sum extensive-form games with perfect re-
call. The general version will use time exponential in the
number of non-pure moves in the computed (mixed) mini-
max strategy (found using the Koller-Megiddo-von Stengel
algorithm). One cannot hope for a polynomial-time algo-
rithm, as the problem of deciding whether a given two-player
zero-sum extensive-form game with perfect recall has a pure
equilibrium is NP-hard [3].

Another interesting result of our computation is given in
the table of Figure 7. The table shows the action of the
small blind on hands 43 suited and J2 unsuited with a stack
size of 1800 and 3600. The computed strategy folds 43s and
jams J2 with the smaller stack and vice versa with the bigger
stack. Furthermore, using the technique also used to prove
Theorem 1, we have established that this pattern occurs

in all minimax jam/fold strategies for the small blind with
the stated stack sizes, not just in the computed strategy.
An intuitive explanation for the pattern is the following:
With the small stack size, the big blind will call an all-in
bet with the vast majority of his hands, including several
“trash” hands containing two medium sized cards. 43s fares
badly against these hands while J2 does okay, due to the
“highish” jack. On the other hand, with the bigger stack,
the average quality of a calling hand is higher. In particular,
it is more likely to include a jack and 43s is thus less likely
to be dominated by such a hand than J2 is. The pattern
shows that it is impossible to devise a fixed hand ranking
valid for all stack sizes so that low-ranked hands are folded
and high-ranked hands are jammed in the optimal jam/fold
strategies.

We have described how to analyze jam/fold strategies for
Player 1 when he posts the small blind. The situation is
a little more complicated when we instead want to analyze
jam/fold strategies for Player 1 in a hand G where he posts
the big blind. It might be tempting to simply use the strat-
egy for the big blind computed for the game of Figure 4, but
doing so would be a fallacy: We, as Player 1, want to assume
that we are restricted to jam or fold but we should make
no such assumptions about our opponent. In particular, we
cannot assume that our opponent, when he moves all-in, had
no other options besides folding. To analyze a hand where
Player 1 is posting the big blind, the game of interest is a
game G′ where Player 1 is restricted to jam/fold, but Player
2 (posting the small blind and acting first) is still allowed
the possibility to bet any amount he wishes. This makes
the value of G′ a lower bound for the value of G. However,
the many possible actions of Player 2 makes G′ infeasible
to analyze directly. To solve this problem, it turns out to
be useful to analyze a game G′′ where the actions of Player
2 as well as Player 1 have been restricted. To define G′′,
we restrict the actions of Player 2 (posting the small blind
and acting first) to {call, fold}, and the actions of Player 1
(posting the big blind and acting second) to {all-in, fold}
obtaining the game tree sketched in Figure 4. The following
lemma establishes that we can analyze G′′ instead of G′.

Lemma 2. The value of G′ is equal to the value of G′′.
Furthermore, an optimal (minimax) strategy for Player 1 in
G′′ can be converted to an optimal (minimax) strategy for
Player 1 in G′ in the following way: No matter what Player
2 does (except fold), Player 1 responds as he would against
a call by Player 2 in G′′.

Proof. For the zero-sum game G′, pairs of minimax and
maximin strategies correspond exactly to Nash equilibria
of G′. Also, note that the optimal strategy for Player 2
from G′′ can be immediately interpreted as a strategy in
G′. Hence, we just have to show that the strategy stated for
Player 1 is in equilibrium with the optimal strategy from G′′

for Player 2, even if played in G′. So consider these strategies
played against each other. Player 1’s strategy is clearly a
best response to Player 2’s, since Player 2 only uses the
actions also available to him in G′′ and the actions available
to Player 1 are the same in the two games. Thus, we just
have to show that Player 2’s strategy is a best response to
Player 1’s. But Player 1 responds in the same way to any
non-folding action made by Player 2. The size of the bet
made by Player 2 only influences the final payoff if Player 1
goes all-in and Player 2 subsequently folds. Hence, Player

2’s best response is to make such a bet as small as possible,
and should in fact just call. Thus, his optimal strategy from
G′′ is still a best response to Player 1’s strategy, also in G′,
as was to be proved.

Note that Lemma 2 tells us that the big blind, playing a
minimax jam/fold strategy can completely ignore the action
of the small blind. The size of G′′ is sufficiently small to be
analyzed using the Koller-Megiddo-von Stengel algorithm.
We did this for the same range of parameters as for the case
of the small blind, again using the PCx linear programming
solver. The computed strategy for the case of both stacks
being of size 4000 can be seen as Figure 6b. Note that the
figure prescribes looser play than Figure 6a. This is quite
natural since Player 1 ignores the action of Player 2 (posting
the small blind) and simply assumes that Player 2 called.
Under that assumption, the pot is now larger than in the
corresponding situation for the small blind in the game of
Figure 4, resulting in looser play. In contrast, the optimal
strategy for Player 2 (posting the big blind) in the game of
Figure 4 is tighter than the strategy of Figure 6a. But as
already noted, the optimal strategy for Player 2 in the game
of Figure 4 is irrelevant for us.

Note that the computed strategy may fold after a call
of the small blind, even though the flop could be seen for
free. This is a necessary consequence of the restriction to
jam/fold strategies (computationally, we cannot afford to see
the flop!). It is possible to get a computationally feasible
strategy which does marginally better than the computed
one and avoids folding after a call of the other player as
follows: Instead of folding after a call, we check. At any
point in time in the rest of the hand (i.e., postflop) when we
are supposed to act, we compute whether we have a hand
which against any possible hand of the opponent has a better
expected payoff from a jam (and a call from the opponent
and thus a showdown) than from a fold. If we do, we go all-
in. If we don’t, we fold, unless we can check. The required
computation could be done on-the-fly very efficiently, as the
flop is fixed.

3. ANALYZING THE TOURNAMENT
In the previous section, we described the analysis of sin-

gle hands. However, as pointed out by Sklansky [14, page
19-22], correct play in a tournament situation may differ sig-
nificantly from correct play in a cash game situation. Sklan-
sky’s arguments apply even for heads-up tournaments and
assuming optimal players, i.e., for the game-theoretic setup
considered in this paper. In this setup, we may rephrase
Sklansky’s argument as follows: In a cash game, a player
may choose to leave the table. In a tournament situation,
if the tournament doesn’t end with the current hand, he is
forced to play another hand. This other hand may have a
negative expected payoff for him (for instance, he may have
to post the big blind while the small blind has the advantage
with the given parameters). If it does have a negative ex-
pected payoff, he is better off trying to avoid playing it and
this will influence his optimal strategy in the current hand
towards trying to end the tournament, typically by playing
somewhat looser. Conversely, if the next hand has positive
expected payoff for him, he’ll play the current hand tighter.

In this section, we consider how to modify the analysis of
single hands to an analysis of the entire tournament. This
also enables us to give a precise quantitative insight in the

difference between optimal play in the tournament Γ and the
corresponding single hands. We intend to compute a strat-
egy for Player 1 who posts the small blind every other hand
and the big blind every other hand by restricting him to
jam/fold-strategies in both situations, using Everett’s no-
tion of recursive games explained in the introduction. To
interpret the tournament as a recursive game, we define a
game element for each possible configuration that can occur
before the cards are dealt in a hand. Each game element
has the form of one of the games from Fig.4, but instead of
each payoff, there is a reference to another game element.
More formally, let C = 8000 be the total number of chips
in play. We define Γi

k as the game element where Player
1 has k chips and Player 2 has the remaining C − k chips,
and Player i has the dealer button (Γ1

k was denoted ΓSB
k in

the introduction, while Γ2
k was denoted ΓBB

k). In the follow-
ing, index j is used to indicate the opponent of Player i, i.e.,
j = 3−i. If a hand is played in game element Γi

k, and Player
1 wins c chips, the game continues at game element Γj

k+c.

If game element Γi
C or Γi

0 is encountered, the game ends
with Player 1 or 2 as the respective winners. We let payoffs
in these sinks be 1 if Player 1 wins, and 0 if he loses. For
practical reasons, we don’t want to consider game elements
Γi

k for every k ∈ {0, 1, 2, . . . , 8000}. We observe that if k is
a multiple of 50 it stays that way, so we get a subgame by
considering only k ∈ I = {0, 50, 100, . . . , 8000}. A strategy
for this subgame can be extended to arbitrary stack sizes
by simply ignoring at most 49 chips. Clearly, any computed
lower bound on the guaranteed winning probability will still
be valid. Thus, the number of non-trivial game elements we
actually consider is only 2 · (#I − 2) = 318.

To analyze the recursive game just defined, we need to ex-
plain in more detail notions from Everett’s theory of recur-
sive games [8]. A stationary strategy of a recursive game is a
collection of strategies, one for each game element, where the
strategy associated with a given game element is to be used
whenever that game element is encountered during play. For
instance, for the game Γ, a stationary strategy is one that
plays a hand with a given stack distribution and button po-
sition in the same (possibly mixed) way every time such a
hand is encountered. For general zero-sum recursive games,
Everett shows the existence of a real-valued critical vector
(vg) with one entry for each game element g, so that

• For any ε > 0, there is a stationary strategy for Player
1 so that for all game elements g, if play starts in g
and if Player 1 plays by the strategy, he is guaranteed
an expected payoff of at least vg − ε,

• For any ε > 0, there is a stationary strategy for Player
2 so that for all game elements g, if play starts in g and
if Player 2 plays by the strategy, Player 2 is guaranteed
an expected loss of no more than vg + ε.

In both cases, we refer to the strategies as ε-optimal. Since
ε > 0 can be made arbitrarily small in the above state-
ments, they allow us to think of an entry of vg as analo-
gous to the usual value of a zero-sum game. However, it is
worth pointing out that strictly speaking, recursive games
may not have minimax (optimal) strategies, i.e, even though
strategies achieving expected payoff arbitrarily close to vg

exists, expected payoff exactly vg may not be attained by
any stationary strategy. Indeed, Everett presents simple
games with this property and we do not have any proof that

the game Γ considered here is any different. Thus, our claim
above of having computed “the optimal jam/fold strategy”
is actually slightly misleading; we really only aim to com-
pute a stationary strategy achieving the critical values for
the jam/fold game elements minus a very small ε (corre-
sponding in our concrete calculations to a probability mass
of roughly 10−8). But since we aim only to use these strate-
gies to approximate the critical vector for the unrestricted
game anyway, this point is largely irrelevant.

Recursive games generalize simple stochastic games and
no efficient algorithm is known for analyzing that class of
games [4, 5]. However, Everett’s existence proof of the criti-
cal vector is accompanied by the following non-deterministic
algorithm for computing a stationary strategy for Player 1
with a particular performance guarantee (and a lower bound
for the critical vector) and a stationary strategy for Player
2 (and an upper bound for the critical vector). Everett’s
non-deterministic algorithm is based on the following no-
tions. Given a vector of values with one entry for each game
element, one can reduce a game element to an ordinary (non-
recursive) game by replacing the outcomes leading to other
game elements with their respective entry in the given value
vector. If all game elements are evaluated with respect to
the given value vector, a new value vector is obtained. This
evaluation defines a map M, called the value map. The crit-
ical vector of the game is a fixed point of the value map,
but it may not be the only one. Let � and � be partial
orders on vectors of real numbers (one entry for each game
element), defined by:

~U � ~V ⇔


U i > V i if V i > 0
U i ≥ V i if V i ≤ 0

ff
∀i

~U � ~V ⇔


U i < V i if V i < 0
U i ≤ V i if V i ≥ 0

ff
∀i

Intuitively, 0 is a special case in the above definition as it is
the payoff of infinite play.

Theorem 3 (Everett, 1957).

• If M(v) � v, then v is a lower bound on the critical
vector. Furthermore, the stationary strategy for Player
1 obtained by finding the optimal strategy in each game
element, with arcs to other game elements replaced by
the corresponding values in v, has guaranteed expected
payoff at least vg for play starting in g.

• If M(v) � v, then v is an upper bound on the critical
vector.

Thus, if we manage to guess v1 < v2 so that M(v1) � v1 and
M(v2) � v2 and so that the entry-wise difference between
v2 and v1 is at most ε, we have approximated the criti-
cal vector with additive error at most ε. In our case, the
following simple iterative procedure provided such a good
guess for the critical vector, with additive error at most
around 10−8. We initially defined all entries of v1 to be
0 and all entries of v2 to be 1 and then iterated the assign-
ments v1 := M(v1) and v2 := M(v2) until v1 and v2 were
sufficiently close or until the conditions M(v1) � v1 and
M(v2) � v2 stopped being valid. For many games, this it-
eration would not converge to the critical vector, but in our
case, it did. A single iteration of vi := M(vi) meant solving
318 linear programs, each containing between 500 and 1000
constraints and variables. For this computation we used a

46%

unsuited
suited

2
3
4
5
6
7
8
9
T
J
Q
K
A

23456789TJQKA

24%

90%

unsuited

suited

2
3
4
5
6
7
8
9
T
J
Q
K
A

23456789TJQKA

a) b)

Figure 8: Computed strategy in the tournament
when s1 = s2 = 4000. On the left is the strategy
for the player posting small blind, on the right is
the reply of the player posting big blind.

cluster of twelve Linux machines running the PCx linear pro-
gramming code to solve around 20,000 linear programs, each
requiring around a minute for computation and verification
of equilibrium, totaling roughly two weeks of CPU-time.

The computed strategies were purified in the same way as
the single hand strategies of the last section. Some quan-
titative properties of the computed strategy were already
discussed in the introduction.

As stated earlier in the paper, Sklansky gave informal ar-
guments for the following two statements about tournament
play:

1. Correct play in a tournament situation may differ sig-
nificantly from correct play in a cash game situation,
even heads-up, assuming optimal players, with blinds
and stack sizes in the tournament situation matching
those in the cash game situation.

2. When Player 1 has a stack of size s1 chips and Player
2 has a stack of size s2 chips, then, assuming opti-
mal play, Player 1 wins with probability approximately
s1/(s1 + s2).

We already rephrased Sklansky’s argument for Statement
1. We may rephrase his argument for Statement 2 as follows:
If we interpret the initial stack sizes stated as the buy-ins
of the players, then, since Player 1 goes to the table with s1

chips and Player 2 goes to the table with s2 chips and both
play optimally, the expected payoff from the tournament
for Player 1 is s1 chips, as he can expect to take the same
amount out of the game as he brought in. Hence, he must
win the prize (i.e., s1+s2 chips) with probability s1/(s1+s2).

Note that this informal argument for Statement 2 ignores
the asymmetry of the situation: That one of the players will
post the first big blind and the other the first small blind
and that this may give one of the players (we may not know
which a priori) an advantage not considered in the argu-
ment. Hence, the stated probability is only approximately
right. The situation is further complicated by the fact that
it might not be the same blind that has the advantage for
different stack sizes.

Note that it is precisely the asymmetry of the game that
make Statement 1 true and Statement 2 only approximately
true. Thus, intuitively, the more significant Statement 1 ac-
tually is, the less precise Statement 2 is. Our computations
give us some precise quantitative insight about the signifi-
cance of the first statement and the precision of the last for

the concrete case of Γ. Figure 2 shows that Statement 2 is in
fact a fairly accurate statement. To gauge the significance of
Statement 1, we fixed the strategies of Player 1 in the game
elements to the single-hand jam/fold strategies computed
in Section 2 and computed the optimal counter-strategy of
Player 2 in the recursive game. This made the probabili-
ties of winning for Player 1 drop by less than 0.1 percentage
points compared to the winning probabilities of his optimal
jam/fold strategies in the game elements in the recursive
game. This insignificant drop indicates that for Γ (or more
precisely, for the jam/fold approximation to this game), the
effect of Statement 1 is almost completely insignificant and
one gets an extremely good approximation of correct play
by playing the tournament hand-for-hand. However, it does
not seem clear to us how to establish this a priori without
actually analyzing the recursive game as we did.

An interesting observation is that the critical vector can
be viewed as a utility function applied to the hand-for-hand
game, where the utility of a given stacksize is the corre-
sponding probability of winning. If we reexamine the red
graph of Figure 1, being the small blind’s utility function,
we can see that this utility function implies a slight risk tol-
erance for many stacksizes, e.g. s1 = s2 = 4000. This gives
an intuitive explanation for why the strategy in Figure 8a
prescribes going all-in slightly more often than the corre-
sponding strategy in Figure 6a. This effect is not noticeable
for the case of the big blind, since the utility function is
much closer to being linear.

4. CONCLUSIONS AND OPEN PROBLEMS
We have computed a near-optimal strategy for a par-

ticular short-stacked no-limit Hold’em tournament. While
short-stacked no-limit Hold’em is arguably an easier game
than limit Hold’em, this is not the case for deep-stacked no-
limit Hold’em as pointed out by several experts. Indeed,
unlike (say) chess, no-limit Hold’em is not a finitary game
as we can consider the game as we let the stack size ap-
proach infinity. When we do, minimax (or just approximate
minimax) play becomes a complete mystery to us. For in-
stance, consider an unrestricted (i.e., not a jam/fold) single
hand heads-up no-limit Hold’em hand with blinds of one
and two and a stack size of, say s = 10100 for both players.
Note that the value of the game is between −1 and 2 for
the small blind. We can do a little better by considering the
optimal jam/fold strategy for the small blind which for this
stack size consists of folding everything except aces and go-
ing all-in with aces. This strategy has a guaranteed expected
payoff of −1 + 3673/270725, thus yielding a slightly better
lower bound for the value of the game than −1. Similarly,
the strategy for the big blind of folding everything except
aces and going all-in with those in response to any bet by
the small blind has a guaranteed expected payoff for the big
blind of −2 + 3674/270725, thus yielding an upper bound
of 2 − 3674/270725 for the value of the game for the small
blind. We know no better bounds and thus ask whether one
can prove that it is not a minimax strategy (in the unre-
stricted game) for the small blind to fold everything except
aces and go all-in with aces when the stack size s becomes
sufficiently large? We certainly conjecture that the stated
strategy is not minimax. But it seems that any proof would
involve devising another strategy with a better guarantee
than −1 + 3673/270725. Such a strategy would presumably
have to play other hands than aces and would have to see a

flop in some situations (as the small blind clearly cannot go
all-in with any hand except the nuts with the stated stack
size, and the big blind may call whichever non-all-in bet the
small blind makes in any such situation). Giving non-trivial
bounds for any such strategy seems utterly hopeless to us.

4.1 Acknowledgments
We are indebted to Robert Anderson who previously com-

puted minimax jam/fold-strategies for single-hand play with
Player 1 being the small blind and who pointed out an error
in our computation. Also, we thank posters on the “1-table
Tournaments” forum on www.twoplustwo.com who provided
useful feedback to a previous version of this paper, in par-
ticular posters the shadow and marv.

5. REFERENCES
[1] R. Andersson. Pseudo-optimal Strategies in No-Limit

Poker. Master’s thesis, Ume̊a University, May 2006.

[2] D. Billings, N. Burch, A. Davidson, R. Holte,
J. Schaeffer, T. Schauenberg, and D. Szafron.
Approximating Game-Theoretic Optimal Strategies
for Full-Scale Poker. In IJCAI, 2003.

[3] J. R. S. Blair, D. Mutchler, M. van Lent. Perfect
Recall and Pruning in Games with Imperfect
Information. Computational Intelligence, 12:131–154,
1996.

[4] A. Condon. The Complexity of Stochastic Games.
Information and Computation, pages 203–224, 1992.

[5] A. Condon. On Algorithms for Simple Stochastic
Games. Advances in Computational Complexity
Theory, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 13:51–73, 1993.

[6] J. Czyzyk, S. Mehrotra, M. Wagner, S. J. Wright.
PCx: An Interior-Point Code for Linear Programming.
Optimization Methods and Software, 12:397–430, 1999.

[7] M. Dhiflaoui, S. Funke, C. Kwappik, K. Mehlhorn,
M. Seel, E. Schmer, R. Schulte, and D. Weber.
Certifying and Repairing Solutions to Large LPs, How
Good are LP-Solvers? In SODA, pages 255–256, 2003.

[8] H. Everett. Recursive games. In Contributions to the
Theory of Games Vol. III, Vol 39 of Annals of
Mathematical Studies, 1957.

[9] A. Gilpin and T. Sandholm. Optimal Rhode Island
Hold’em Poker. In AAAI, 2005.

[10] A. Gilpin and T. Sandholm. Finding Equilibria in
Large Sequential Games of Incomplete Information. In
Electronic Commerce, pages 160–169, 2006.

[11] A. Gilpin and T. Sandholm. A Texas Hold’em poker
player based on automated abstraction and real-time
equilibrium computation. In AAMAS, 2006.

[12] D. Koller, N. Megiddo, and B. von Stengel. Fast
Algorithms for Finding Randomized Strategies in
Game Trees. In STOC, pages 750–759, 1994.

[13] J. Shi and M. L. Littman. Abstraction Methods for
Game Theoretic Poker. In Computers and Games,
pages 333–345, 2001.

[14] D. Sklansky. Tournament Poker for Advanced Players.
Two Plus Two Publishing, 2002.

[15] D. Sklansky. Card Player Magazine, 2003.

[16] T. Streib. Blind versus Blind Play in Tournament
Situations, Nov. 2005. Two Plus Two Internet
Magazine (twoplustwo.com).

