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Abstract. We show that a proper equilibrium of a matrix game can
be found in polynomial time by solving a linear (in the number of pure
strategies of the two players) number of linear programs of roughly the
same dimensions as the standard linear programs describing the Nash
equilibria of the game.

1 Introduction

It has been known for more than fifty years that Nash equilibria of matrix games
(i.e., two-player zero-sum games in normal form) coincide with pairs of maximin
and minimax mixed strategies and can be found efficiently using linear pro-
gramming. However, as is also well-established in game theory, the notion of a
Nash equilibrium is too permissive to always prescribe sensible behavior. As an
example, consider the classical example of penny matching: Alice has to guess
whether Bob hides a penny heads or tails up. If she guesses correctly, she gets
the penny. The payoff matrix for this game, with Alice being the row player
trying to maximize payoff and Bob being the column player trying to minimize
it, is as follows:

hide penny heads up hide penny tails up
guess “heads up” 1 0
guess “tails up” 0 1

It is well known and easy to see that the unique pair of maximin, minimax
strategies and hence the unique Nash equilibrium in penny matching is for both
players to mix up their two pure strategies uniformly, i.e., Alice guesses “heads
up” with probability exactly 1

2
and Bob hides the penny heads up with proba-

bility exactly 1

2
. Thus, the value of the game is 1

2
. There is not much more to

say about this positively valued game, except that Bob clearly does not want to
play it at all. Let us consider a modified version, parsimonious penny matching,
where we give Bob the option of teasing Alice, by only pretending to hide a
penny, but never really putting a penny at risk. This game is described by the
following payoff matrix:

hide penny heads up hide penny tails up tease
guess “heads up” 1 0 0
guess “tails up” 0 1 0



It is clear that the value of parsimonious penny matching is 0 and that Bob’s
unique minimax strategy is to “tease” with probability 1. It is more interesting
to consider the situation for Alice: Any mix of her two pure strategies is a
maximin strategy (for instance, guessing “heads up” with probability 1 is a
maximin strategy). The reason is that to be a maximin strategy, it is sufficient
to guarantee that Alice achieves the value of the game. This value is 0 and Alice
will achieve this no matter what she does. Thus, any strategy profile in which
Bob chooses “tease” with probability 1 is a Nash equilibrium. But only one
of these prescribes sensible (in an intuitive sense) behavior for Alice: The one
where she uniformly mixes her two pure strategies as she did in the unmodified
penny matching game. Indeed, it seems that Alice ought to hope that Bob (non-
sensibly) chooses to hide a penny after all. Just in case he does, she should
opportunistically try to get as much as she can out of such a situation and play
as she would in the unmodified game.

To formalize considerations such as the above (and similar considerations
for much more intricate games, including general-sum ones), refinements of the
Nash equilibrium concept have been considered. A particularly appealing one is
Myerson’s notion of a proper equilibrium [13]. An equilibrium is said to be proper
if it is a limit point of a sequence of ε-proper completely mixed strategy profiles
for ε → 0+. Here, a strategy profile (i.e., a strategy for each player) is said to
be completely mixed if it prescribes strictly positive probability to every pure
strategy. It is said to be ε-proper if the following property is satisfied: If pure
strategy xi is a better reply than pure strategy xj against the mixed strategy
the profile prescribes to the other player, we have p(xj) ≤ εp(xi) where p(xk)
is the probability prescribed to pure strategy xk. We refer to Myerson’s paper
for an intuitive justification of this refinement, but note for now that the unique
proper equilibrium for parsimonious penny matching is the “sensible” strategy
profile where Bob chooses “tease” with probability 1 and Alice uniformly mixes
her two pure strategies.

In his seminal monograph on equilibrium refinements, van Damme [16], based
on earlier work by Dresher [4], outlined a procedure for computing a proper
equilibrium of a given matrix game. As he and Dresher describe the procedure,
it is inherently exponential time. The main technical result of the present paper is
a modification of the procedure so that it becomes a polynomial time algorithm.
Thus, our main result is the following.

Theorem 1. A proper equilibrium for a matrix game can be found in polynomial
time in the size of the given payoff matrix.

In addition, the algorithm we describe is also practical: We show that a proper
equilibrium in a matrix game may be found by solving a linear (in the number
of pure strategies of the two players) number of linear programs of roughly the
same dimensions as the usual linear program describing the maximin/minimax
strategies. Additional motivation for our result comes from Fiestras-Janeiro et
al [5] who define a notion of properness for solutions of general linear programs
(not necessarily describing optimal strategies for matrix games) by a reduction to
the matrix game case and argue that this notion is relevant as a solution concept



for general linear programs. They restate the exponential procedure of Dresher
and van Damme as a way of finding the proper solutions. By the algorithm we
present, we also get a polynomial time algorithm for finding a proper solution
in the sense of their paper for general linear programs.

In the rest of the paper, we present our efficient algorithm for finding proper
equilibria of matrix games. In Section 2, we present the original Dresher proce-
dure which was shown by van Damme to find a proper equilibrium for a matrix
game. Even though the philosophical motivation of Myerson’s notion of a proper
equilibrium is beyond the scope of this paper, the reader unfamiliar with My-
erson’s notion should be able to intuitively see why the equilibrium Dresher’s
procedure finds is “sensible”. In Section 3, we present our efficient modification
and give an example of its execution. In Section 4, we conclude with a discussion
on the relevance of our algorithm for AI applications and in particular, we ask
if it can be extended to solving games in extensive form (i.e., game trees).

2 Background

We review some notation from van Damme [16]. A matrix game is a 3-tuple
Γ = (Φ1, Φ2, R), where Φi is a finite nonempty set and R is a mapping R :
Φ1 × Φ2 → R. The set Φi is the set of pure strategies of Player i and R is the
payoff function for Player 1. We assume that the elements of Φi are numbered
and, consequently, we will speak about the kth pure strategy of Player i. A
mixed strategy si of Player i is a probability distribution on Φi. We denote the
probability which si assigns to pure strategy k of Player i by sk

i and we write Si

for the set of all mixed strategies of this player. If si ∈ Si, then C(si) denotes the
carrier of si, i.e. C(si) := {k ∈ Φi; s

k
i > 0.} We denote the set of pure strategies

which are in the carrier of some equilibrium strategy of Player i in Γ by Ci(Γ ).
Note that Φi\Ci(Γ ) are those pure strategies for Player i that have probability 0
of being played in all equilibria. Thus, we can think of the strategies in Φi\Ci(Γ )
as the superfluous strategies. An alternative characterization is given below.

The payoff function R extends to mixed strategies by letting it denote the
expected payoff when the mixed strategies are played. All equilibria of a matrix
game Γ yield the same payoff to Player 1, and we denote this value v(Γ ) and call
it the value of the game. We define O1(Γ ) = {s1 ∈ S1; R(s1, l) = v(Γ )∀l ∈ Φ2},
and O2(Γ ) = {s2 ∈ S2; R(k, s2) 5 v(Γ )∀k ∈ Φ1}. The set Oi(Γ ) is a convex
polyhedron, the elements of which are called the optimal strategies of Player i

in Γ . O1(Γ ) and v(Γ ) can be determined by solving the linear programming
problem (1):

maximizev,s1∈S1
v s.t. R(s1, l) = v for all l ∈ Φ2 (1)

It was shown by Bohnenblust, Karlin and Shapley [3], and by Gale and
Sherman [6] that Φ2\C2(Γ ) consists of exactly those pure strategies k so that
for some mixed strategy s1 ∈ O1 we have that R(s1, k) > v(Γ ). Thus, we can also
think of Φ2\C2(Γ ) as the exploitable pure strategies for Player 2: The strategies



for Player 2 against which it is possible for Player 1 to play optimally, yet get
more than his “fair share” of the game. Both characterizations of Φ2\C2(Γ ) will
be useful below.

We have now introduced the relevant notation to understand van Damme’s
reformulation [16, page 59] of the original procedure due to Dresher:

For a matrix game Γ = (Φ1, Φ2, R) Dresher’s procedure for selecting a
particular optimal strategy of player 1 is described as follows:

(i) Set t := 0, write Φt
1 := Φ1, Φt

2 := Φ2 and Γ t := (Φt
1, Φ

t
2, R). Compute

O1(Γ
t), i.e. the set of optimal strategies of player 1 in the game Γ t.

(ii) If all elements of O1(Γ
t) are equivalent in Γ t, then go to (v), other-

wise go to (iii).
(iii) Assume that player 2 makes a mistake in Γ t, i.e. that he assigns a

positive probability only to the pure strategies which yield player 1
a payoff greater than v(Γ t). Hence, restrict player 2’s pure strategies
set to Φt

2\C2(Γ
t).

(iv) Determine the optimal strategies of player 1 which maximize the
minimum gain resulting from mistakes of player 2. Hence, compute
the optimal strategies of player 1 in the game Γ t+1 := (Φt+1

1 , Φt+1

2 , R),
where Φt+1

1 := ext O1(Γ
t) is the (finite) set of extreme optimal

strategies of player 1 in Γ t and Φt+1

2
:= Φt

2\C2(Γ
t). Replace t by

t + 1 and repeat step (ii).
(v) The set of Dresher-optimal (or shortly D-optimal strategies) of player

1 in Γ is the set D1(Γ ) := O1(Γ
t).

It was shown by van Damme that if the above procedure is used to find a
D-optimal strategy for Player 1 and the analogous procedure is used to find a D-
optimal strategy for Player 2, then the strategy profile resulting from combining
them is a proper equilibrium in the sense of Myerson.

We now discuss how to interpret the algorithm and analyze the implications
for its complexity. First, strictly speaking, O1(Γ

t) is a set of mixed strategies
for Player 1 in the game Γ t, not the game Γ , so we need to understand how to
interpret line (v). However, as is clear from the procedure, each pure strategy
for Player 1 in Γ i corresponds to a mixed strategy for Player 1 in Γ i−1. Thus,
each mixed strategy in Γ i also corresponds to a mixed strategy in Γ i−1 and by
iterating this interpretation, each mixed strategy in Γ t can also be interpreted
as a mixed strategy in Γ . In the following section, it will be convenient to have
some notation for this interpretation: If s is a mixed strategy for Player 1 in Γ i

for some i, we let ŝ be the corresponding mixed strategy in Γ and also extend
this notation to sets of strategies. Second, it is not quite clear what is meant by
“Compute O1(Γ

t)” in line (i), i.e., what representation is intended at this point
in the procedure for this infinite object. However, in line (iv) we are going to
need ext O1(Γ

t), i.e., the set of all corners of O1(Γ
t), so we can assume that this

is the finite representation we use. Indeed, van Damme is very explicit that the
set of corners of the polytope O1(Γ

t) will be explicitly computed: He refers in
the text following the procedure to an algorithm by Balinski [1] for performing



such an enumeration and he notes that there are a finite number of extreme
points. Also in Dresher’s original formulation is it very clear that an enumera-
tion is to be performed, and Dresher even carries out such an enumeration for
a small example. This explicit enumeration is the main source of inefficiency of
the algorithm. Indeed, it is well known and easy to see that in the worst case, the
number of extremal points of a polytope defined by a linear program is exponen-
tial in the size of the linear program. Thus, the Dresher procedure as stated is
an exponential procedure in the worst case sense. Also, in practice, enumerating
all extremal optimal solutions to a linear program (even when this set is small)
is a much more elaborate process than just finding an optimal solution. Finally,
it is not explicitly stated by van Damme how to compute Φt+1

2 := Φt
2\C2(Γ

t) in
line (iv) of the algorithm. In the original version by Dresher, it is done by let-
ting C2(Γ

t) be the subset of Φt
2 which yield the value of the game against every

optimal strategy of Player 1, i.e., by using the characterization of Φt
2\C2(Γ

t) as
the exploitable strategies for Player 2. As we have an explicit representation of
ext O1(Γ

t), and it is enough to check for optimality against this finite set, this is
one possibility. Another way to do compute C2(Γ

t), which is not very practical
but at least polynomial, is to check each of k ∈ Φt

2 for membership of C2(Γ
t).

This could be done by solving |Φt
2| linear programs of the following form:

max
x,p

p

s.t. A′>x ≥ ekp

x>1m = 1

x ≥ 0m

where ek is the kth standard basis vector, and 0i and 1i are constant column
vectors of height i, filled with 0s and 1s respectively, and A′ is the m × |Φt

2|
payoff matrix of the game Γ t with the value of the game Γ t subtracted from
each entry (i.e., the game matrix is “normalized” so that it has value zero). An
optimal solution to the linear program with a positive value of p corresponds to
an optimal strategy for Player 1 obtaining payoff strictly larger than v against
the k’th pure strategy of Player 2, i.e, we have that k is exploitable by the
characterization of Gale and Sherman mentioned above. This is the case if and
only if k is not in C2(Γ

t). Alternatively, we could write a linear program whose
set of feasible solutions is the optimal mixed strategies for Player 2 and with
the objective function to maximize being the probability of choosing k. This
formulation directly expresses whether k is superfluous or not. In both cases, we
should solve |Φt

2| linear programs in the t’th iteration of the procedure, leading
to a worst case quadratic number of programs being solved in total during the
execution of Dresher’s procedure.

3 Algorithm

To improve on the efficiency of Dresher’s procedure, we have to change the way
O1(Γ

t) is represented, since we can not afford to enumerate the extreme points of



this polyhedron. Since O1(Γ
t) is the set of optimal solutions to a linear program,

it can be represented as a set of linear constraints. Our approach is to include
the linear constraints of O1(Γ

t−1) in the linear program used to obtain O1(Γ
t),

or actually Ô1(Γ t), i.e., the corresponding set of mixed strategies in the original
game.

Lemma 2. For all t, the set Ô1(Γ t) is the set of x∗-parts and the value of the
game Γ t is the z∗-part of optimal solutions (x∗, z∗) to the LP:

Pt : max
x∈Rm, z∈R

z

s.t. A′
i
>

x ≥ 0n′

i
, ∀i : 0 ≤ i < t

At
>x ≥ 1nt

z

x>1m = 1

x ≥ 0m

where m is |Φ1|, ni is |Φi
2| and n′

i is |C2(Γ
i)|, A′

i is the m × n′
i payoff matrix

of the game Υ ′
i = (Φ1, C2(Γ

i), R) with the value of Γ i (computed in a previous
round) subtracted from each entry, and At is the m × nt payoff matrix of the
game Υt = (Φ1, Φ

t
2, R).

The above lemma gives us an alternative way of computing O1(Γ
t). We next

present an alternative way of computing C2(Γ
t).

Lemma 3. Player 2’s superfluous strategies in Γ t, i.e., Φt
2\C2(Γ

t), are those k

such that pk = 1 in any (and all) optimal solutions to the LP:

Qt : max
x∈Rm, p∈Rnt

p>1nt

s.t. A′
i
>

x ≥ 0n′

i
, ∀i : 0 ≤ i < t

A′′
t
>

x ≥ p

p ≤ 1nt

p ≥ 0nt

x ≥ 0m

with the same definitions as in Lemma 2 and with A′′
t being At with the value

of Γ t (found when solving Pt), subtracted from each entry.

Due to the space constraints, we omit the proofs of the lemmas. We are now
ready to state our modification of Dresher’s procedure:

Modified Dresher procedure

(i) Set t := 0, and let Φ0
2 := Φ2.

(ii) Find an optimal solution to Pt.



(iii) Find an optimal solution to Qt. Let Φt+1

2 be those k ∈ Φt
2 where

pk = 1 in the optimal solution found.
(iv) If Φt+1

2
= ∅ then go to (v) else replace t by t + 1 and go to (ii).

(v) The set of D-optimal strategies of Player 1 in Γ is the set of optimal
solutions to Pt. Output any one of these optimal solutions.

Lemma 2 and 3 give us that the optimal solutions to Pt for the terminal value
of t are indeed the D-optimal strategies for Player 1. By computing a D-optimal
strategy for Player 1 and afterwards a D-optimal strategy for Player 2 by apply-
ing the procedure a second time, we have computed a proper equilibrium.

That the above given procedure runs in polynomial time, can be seen by
observing that |Φt

2| decreases by at least 1 in each iteration. This means that
we solve at most |Φ2| linear programs of the form of Pt and just as many of
the form of Qt. The number of variables in Pt is |Φ1| + 1, and the number of

constraints is |
∑t−1

i=0
C2(Γ

i)|+ |Φt
2|+1 = |

∑t−1

i=0
C2(Γ

i)|+ |Φ2\
⋃t−1

i=0
C2(Γ

i)|+1

= |
∑t−1

i=0
C2(Γ

i)| − |
∑t−1

i=0
C2(Γ

i)| + |Φ2| + 1 = |Φ2| + 1. This is independent
of t, and it is also the same number of constraints used to find just a Nash
equilibrium in the standard way, i.e., the number of constraints in the linear
program (1). The number of variables in Qt is |Φ1| + |Φt

2|, which is less than
|Φ1|+ |Φ2| for all t. The number of constraints is the same as in Pt, not counting
simple bounds on variables. We thus solve at most a linear number of linear
programs of sizes comparable to the size of the linear program (1). Since linear
programs are polynomial time solvable, the entire procedure is polynomial time.
Also, from a more practical point of view, Notice that an optimal solution to
Pi is a feasible solution to Pi+1, allowing us to “warm start” an LP-solver on
Pi+1. Notice as well that the x-part of an optimal solution to Pi is a feasible
solution to Qi when the remaining variables are set to 0, again allowing for a
“warm start”.

3.1 Example

As an example of an execution of the algorithm, we will now find the proper
strategy for Alice in the game of parsimonious penny matching from the intro-
duction. The first linear program we need to solve, P0 is the usual linear program
for finding the Nash equilibria of the game.

P0 : max
x,z

z

s.t. 1x1 + 0x2 ≥ z

0x1 + 1x2 ≥ z

0x1 + 0x2 ≥ z

x1 + x2 = 1

x1, x2 ≥ 0

Solving this, we find that the value of the game is z∗ = 0. The next step is
to decide which of Bob’s strategies are superfluous. This is done by solving Q0.



Since z∗ was 0, A′′
0 is equal to A.

Q0 : max
x,p

p1 + p2 + p3

s.t. 1x1 + 0x2 ≥ p1

0x1 + 1x2 ≥ p2

0x1 + 0x2 ≥ p3

p1, p2, p3 ≤ 1

p1, p2, p3 ≥ 0

x1, x2 ≥ 0

Solving this, we find an optimal solution x∗ = [1, 1]
>

, p∗ = [1, 1, 0]
>

, and there-
fore conclude that Bob’s two first strategies are superfluous, i.e. that he would
not willingly hide a penny. In the next iteration, Alice refines her strategy, trying
to gain as much as possible from a mistake of Bob, while maintaining optimality
in case no such mistake is made. Thus, we solve P1:

P1 : max
x,z

z

s.t. 0x1 + 0x2 ≥ 0

1x1 + 0x2 ≥ z

0x1 + 1x2 ≥ z

x1 + x2 = 1

x1, x2 ≥ 0

The unique solution is x∗ = [ 1
2
, 1

2
]
>

, z∗ = 1

2
. Thus, Alice can expect to gain half

a penny if Bob makes the mistake of not teasing. We then check whether we can
refine the strategy even further by solving Q1:

Q1 : max
x,p

p1 + p2

s.t. 0x1 + 0x2 ≥ 0
1

2
x1 −

1

2
x2 ≥ p1

− 1

2
x1 + 1

2
x2 ≥ p2

p1, p2 ≤ 1

p1, p2 ≥ 0

x1, x2 ≥ 0

The optimal solution has p∗ = [0, 0]
>

, and thus there are no further mistakes
that can be exploited.

4 Discussion

Our main result deals with finding proper equilibria in zero-sum normal form
games, i.e. games given by a payoff matrix. However, in many realistic situations



where it is desired to compute prescriptive strategies for games with hidden
information, in particular, the kinds of strategic games considered by the AI
community, the game is given in extensive form. That is, the game is given as a
game tree with a partition of the nodes into information sets, each information
set describing a set of nodes mutually indistinguishable for the player to move.
One may analyze an extensive form game by converting it into normal form
and then analyzing the resulting matrix game. However, the conversion from
extensive to normal form incurs an exponential blowup in the size of the rep-
resentation. Koller, Megiddo and von Stengel [8] showed how to use sequence
form representation to efficiently compute minimax strategies for two-player
extensive-form zero-sum games with imperfect information but perfect recall.
The minimax strategies can be found from the sequence form by solving a linear
program of size linear in the size of the game tree, avoiding the conversion to
normal form altogether.

The Koller-Megiddo-von Stengel algorithm has been used by the AI commu-
nity for solving many games, in particular variants of poker, some of them very
large [14,2,7]. However, as was first pointed out by Koller and Pfeffer [9], the
equilibria computed by the Koller-Megiddo-von Stengel procedure may in gen-
eral be “non-sensible” in a similar sense as discussed above for matrix games.
Alex Selby [14], computing a strategy for a variant of Hold’Em poker found
similar problems. In a recent paper [12], we suggested that the notion of equi-
librium refinements from game theory would be a natural vehicle for sorting
out the insensible equilibria from the sensible ones, also for the application of
computing prescriptive strategies for extensive-form zero-sum games, to be used
by game playing software. We showed how to modify the Koller-Megiddo-von
Stengel algorithm so that a quasi-perfect equilibrium (an equilibrium refinement
due to van Damme [15]) is computed, and we showed how computing such an
equilibrium would eliminate the insensible behavior in the computed strategy
alluded to in Selby’s poker example and in many other examples as well.

An equilibrium for a zero-sum extensive form game is said to be normal-
form proper if the corresponding equilibrium for the corresponding matrix game
is proper. It was shown by van Damme that normal-form properness is a fur-
ther refinement of quasi-perfection. Here, we show an example of an equilibrium
for a fairly natural extensive-form game we call Penny matching on Christmas
morning. The equilibrium arguably prescribes insensible play. However, it is
quasi-perfect, and in fact, the algorithm of [12] gives the insensible equilibrium
as output. However, the equilibrium is not normal-form proper, thus suggest-
ing that this further refinement is also relevant for prescribing proper play in
extensive-form zero-sum games. The game of Penny matching on Christmas
morning is as follows. Recall from the introduction that in the standard penny
matching game, Bob (Player 2) hides a penny and Alice (Player 1) has to guess
if it is heads or tails up. If she guesses correctly, she gets the penny. If played on
Christmas morning, we add a gift option: After Player 2 has hidden his penny
but before Player 1 guesses, Player 2 may choose to publicly give Player 1 a gift
of one penny, in addition to the one Player 1 will get if she guesses correctly. The
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Fig. 1. Penny matching on Christmas morning - “bad” equilibrium

extensive form of this game as well as the pair of maximin/minimax behavioral
strategies computed by the game theory software tool Gambit [11] using the
Koller-Megiddo-von Stengel algorithm is given in Figure 1. We see that if Player
1 does not receive a gift, the strategy computed suggests that she randomizes her
guess and guesses heads with probability 1

2
and tails with probability 1

2
. This is

indeed the strategy we expect to see. On the other hand if Player 1 does receive
a gift, the strategy computed suggests that she guesses heads with probability 1.
This does not seem sensible. Indeed, if she had randomized her guess, as in the
“no-gift” scenario, her conditional expected payoff, conditioned by the fact that
she receives the gift, would be guaranteed to be at least a penny and a half. On
the other hand, with the strategy suggested, this conditional expected payoff is
only a penny in the case where the strategy of Player 2 happens to be the pure
strategy of hiding the penny tails up and giving the gift. Thus, it seems that the
unique sensible equilibrium for the game is the one where Player 1 randomizes
her guess uniformly, even after having received a gift.

The “bad” equilibrium is quasi-perfect and a possible output of the algorithm
for computing quasi-perfect equilibria of [12]. However, it is not normal-form
proper and in fact the unique normal-form proper equilibrium for the game is
the “good” equilibrium where player 1 randomizes her guess uniformly, even
after having received a gift. This can be seen by converting the game to normal
form and applying either the original Dresher’s procedure or the version from this
paper. We are not aware of any other equilibrium refinement notion that handles
this and similar examples “correctly”. It thus seems quite motivated to study
methods for computing a normal-form proper equilibrium for a given extensive-
form zero-sum game. We may do this by converting the game into normal form
(incurring an exponential blowup in the size of the representation) and running
Dresher’s procedure. If the original version of Dresher’s procedure were used,
we would have a doubly-exponential time procedure. If the version of Dresher’s
procedure suggested in this paper is used, we have a singly-exponential time
procedure. Ideally, we would like some way of combining the Koller-Megiddo-
von Stengel algorithm with Dresher’s procedure and obtain a polynomial time
procedure, but don’t see an obvious way of doing this. We thus leave the following
as a major open problem:



Open Problem 1 Can a normal-form proper equilibrium of an extensive-form
two-player zero-sum game with perfect recall be found in time polynomial in the
size of the given extensive form?

It is interesting to note that insisting on normal-form properness provides an
intriguing and non-trivial solution to the problem of choosing between different
minimax strategies even in perfect information games, a problem recently studied
by Lorenz [10] using an approach very different from the equilibrium refinement
approach. As an example, consider the game given in Figure 2 (payoffs are paid
by Player 2 to Player 1). The value of the game for Player 1 is 0 and he is

1

2

2

U

D

0

1

0

2

Fig. 2. Up or Down?

guaranteed to obtain this value no matter what he does. However, if he chooses
U and his opponent makes a mistake, he will receive a payoff of 1. On the
other hand, if he chooses D and his opponent makes a mistake, he will receive a
payoff of 2. In the unique normal-form proper equilibrium for this game, Player
I chooses U with probability 2/3 and D with probability 1/3 as can be seen
by converting the program to normal form and applying Dresher’s procedure.
An intuitive justification for this strategy is as follows. Player 1 should imagine
being up against a Player 2 that cannot avoid sometimes making mistakes, as
otherwise the choice of Player 1 is irrelevant. On the other hand, Player 1 should
assume that Player 2 is still a rational player who can make an effort to avoid
making mistakes, and in particular train himself to avoid making mistakes in
certain (but not all) situations. Thus, Player 1’s strategy shouldn’t be pure: In
particular, if he chooses D with probability 1 (as is surely tempting), Player
2 may respond by concentrating his efforts to avoid making mistakes in his
bottom node. Then, Player 1 will not get his “fair share” out of Player 2’s
mistakes. In conclusion, computing normal-form proper equilibria for zero-sum
extensive-form games seems very interesting, even in the special case of perfect
information games. Doing this special case efficiently might be easier than solving
the general open problem above. It would also be interesting to compare this
approach of selecting between different minimax solutions for such games with
the very different approach of Lorenz.
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