
Computing a quasi-perfect equilibrium of a two-player game

Peter Bro Miltersen∗ and Troels Bjerre Sørensen∗

February 9, 2007

Abstract

Refining an algorithm due to Koller, Megiddo and von Stengel, we show how to apply Lemke’s
algorithm for solving linear complementarity programs to compute a quasi-perfect equilibrium in
behavior strategies of a given two-player extensive-form game of perfect recall. A quasi-perfect
equilibrium is known to be sequential, and our algorithm thus resolves a conjecture of McKelvey
and McLennan in the positive. A quasi-perfect equilibrium is also known to be normal-form
perfect and our algorithm thus provides an alternative to an algorithm by von Stengel, van den
Elzen and Talman. For the case of a zero-sum game, we devise variants of the algorithm that rely
on linear programming rather than linear complementarity programming and use the simplex
algorithm or other algorithms for linear programming rather than Lemke’s algorithm. We argue
that these latter algorithms are relevant for recent applications of equilibrium computation to
artificial intelligence.

Keywords: Equilibrium computation, quasi-perfect equilibrium.
JEL classification: C63, C72

∗Department of computer science, University of Aarhus, Aabogade 34, DK-8200 Aarhus N, Denmark. Email

{bromille,trold}@daimi.au.dk.

1

1 Introduction

Koller, Megiddo and von Stengel (1996) showed how to apply Lemke’s algorithm (Lemke, 1965)
for solving linear complementarity programs (LCPs) to compute a Nash equilibrium in behavior
strategies of a given two-player extensive-form game of imperfect information but perfect recall.
Their algorithm avoids converting the extensive-form game to normal form and thus avoids an ex-
ponential blowup in the size of the representation of the game. Instead, the linear complementarity
program they devise has roughly the same number of variables and constraints as the number of
information sets of the game considered and can therefore be used in practice to solve rather large
games. For the case of zero-sum games, Koller, Megiddo and von Stengel (1994) gave a variant
of their algorithm based on linear programming rather than linear complementarity programming.
This version of the algorithm is motivated by the fact that linear programs are more efficiently solv-
able than linear complementarity programs, both in theory and in practice. It has been used by
artificial intelligence researchers (Billings et al., 2003; Gilpin and Sandholm, 2005), for constructing
strategies for two-player poker games with millions of information sets. The computed strategies
are used for computer programs capable of playing the poker games considered, for instance against
human opponents. That is, they are to be understood and assessed as prescriptive strategies.

We shall henceforth refer to the algorithms of Koller, Megiddo and von Stengel as the KMvS
algorithms. In this paper we show how to modify the KMvS algorithms for both the general-sum and
the zero-sum case so that a quasi-perfect equilibrium is computed. Quasi-perfection is an attractive
equilibrium refinement notion due to van Damme (1984). It refines sequential equilibrium as well
as normal-form perfect equilibrium. It has been argued by Mertens (1995) that quasi-perfection
is conceptually superior to Selten’s notion of extensive-form perfection. In particular, Mertens
presents a certain two-player voting game where any extensive-form perfect equilibrium involves
using a weakly dominated strategy. That is, extensive-form perfection is in general inconsistent
with admissibility while quasi-perfection guarantees normal-form perfection, which for equilibria of
two-player games is equivalent to admissibility. Further discussion of quasi-perfection can be found
in the survey of Hillas and Kohlberg (2002).

1.1 Background and motivation

Our algorithm addresses several issues previously raised by the computational game theory com-
munity as well as by the artificial intelligence community.

The KMvS algorithms are based on the sequence form for extensive form games due to von
Stengel (1996). As a consequence of this, the equilibrium computed is in behavior plans rather
than behavior strategies, i.e., no behavior is computed for information sets that are guaranteed not
to be reached according to the plan. This is not an issue if one is interested only in computing a
Nash equilibrium, as one can then assign arbitrary behavior to these information sets. One can even
find a subgame perfect equilibrium simply by solving subgames separately. However, it did not seem
obvious how to extend the sequence form approach to find, e.g., a sequential equilibrium (Kreps
and Wilson, 1982) where meaningful behavior must be assigned to all information sets. McKelvey
and McLennan (1996) discuss this difficulty but still conjecture “that a suitable generalization
of the sequence form will be the natural vehicle for computation of sequential equilibrium.” It is
exactly this conjecture that we confirm in this paper. The desired generalization guaranteeing the
computation of meaningful behavior in all information sets turns out to be a symbolic perturbation
of the linear complementarity programs describing the equilibria in sequence form.

2

The only previous algorithm we are aware of that modifies the KMvS algorithms so that some
equilibrium refinement is computed is an algorithm due to von Stengel, van den Elzen and Tal-
man (2002). Their algorithm is for the general-sum case and computes a normal-form perfect
equilibrium. As quasi-perfection refines normal-form perfection, our algorithm provides an alter-
native to theirs. Interestingly, the algorithm of von Stengel, van den Elzen and Talman is based
on applying Lemke’s algorithm in a rather different way from the way it was originally applied
by Koller, Megiddo and von Stengel. In contrast, our application is technically very close to this
original application. As far as we know, the algorithm by von Stengel, van den Elzen and Talman
has no variant based on linear programming rather than linear complementarity programming and
applicable to the case of zero-sum games.

Finally, a main motivation of the present paper comes from the application of the zero-sum
version of the KMvS algorithm by the artificial intelligence community to the computation of
prescriptive strategies to be used by game playing computer programs. It is well known that the
Nash equilibrium concept has serious deficiencies as a prescriptive solution concept, even for the
case of zero-sum games where Nash equilibria are simply pairs of minimax strategies. That this
deficiency shows up in the equilibria computed by the KMvS algorithm was discovered by Koller
and Pfeffer (1997) who implemented the algorithm in their software package GALA and based
on their computational experiences with GALA observed: “[Using maximin strategies] can lead to
very counterintuitive behavior. For example, assume that player 1 is guaranteed to win $1 against
an optimal player 2. But now, the latter makes a mistake which allows player 1 to immediately
win $10000. It is perfectly consistent with the definition for the ‘optimal’ (maximin) strategy to
continue playing so as to win the $1 that was the original goal.”. Clearly, insisting on an equilibrium
in undominated strategies would eliminate the undesirable behavior thus alluded to by Koller and
Pfeffer. Thus, we suggest that our algorithm may be preferable to the original KMvS algorithm
for the artificial intelligence applications.

1.2 Outline of algorithm and organization of paper

Our algorithm is based on applying a perturbation to the game G considered, resulting in a game
G(ǫ), parametrized by a parameter ǫ > 0. While perturbed games are ubiquitous in the theory of
equilibrium refinements, we believe that the particular perturbation model we suggest is new. We
show that limit points of Nash equilibria of the perturbed games are quasi-perfect equilibria of the
original game. We then show how to modify the KMvS algorithm so that a parametric expression
of a Nash equilibrium of G(ǫ), valid for all sufficiently small ǫ > 0 is computed. This parametric
expression can be used to directly derive a quasi-perfect equilibrium of G.

The outline of the paper is as follows: In Section 2 we present our notation for extensive-form
games and present the necessary facts about the sequence form. We also present van Damme’s
notion of quasi-perfect equilibria. In Section 3 we introduce our perturbation model and show
how a parametric expression for a Nash equilibrium of the perturbed game yields a quasi-perfect
equilibrium of the original game. In Section 4 we show how to apply Lemke’s algorithm to compute
such a parametric expression. In Section 5.1 we show how to adapt the approach to the zero-
sum case, using the simplex algorithm rather than Lemke’s algorithm. Finally, in Section 5.2, we
show how to use generic solvers (i.e., solvers not necessarily based on the simplex algorithm) for
unparametrized linear programs to solve the parametric linear programs we derive for the zero-
sum case. As a corollary of this, we get a polynomial time algorithm for computing a quasi-perfect
equilibrium of a given two-player extensive-form game with imperfect information but perfect recall.

3

2 Preliminaries

2.1 Extensive-form games and the sequence form

Throughout the paper, unless we mention otherwise, we consider a two-player, extensive-form game
G with imperfect information but perfect recall. The game is given by a finite tree with payoffs
at the leaves, information sets partitioning nodes of the tree and nodes of chance being allowed.
Actions of a player are denoted by labels on edges of the tree. Perfect recall means that all nodes
in an information set belonging to a player share the sequence of actions and information sets of
that player that are visited on the path from the root to the nodes. A behavior strategy assigns
probabilities to actions in a way consistent with the information sets. A behavior plan only assigns
such probabilities to actions of information sets that may be reached if the plan is played. For
details, see e.g., Koller, Megiddo and von Stengel (1996) or any textbook on game theory.

An important insight of von Stengel (1996) and Koller, Megiddo and von Stengel is that behavior
strategies for games of perfect recall are for computational purposes often better represented in
sequence form, which we describe next. Given a behavior strategy for one of the players, the
realization weight of a leaf or node z in the tree is the product of behavior probabilities of actions
in the sequence σ of actions made by that player on the path from the root of the game to z.

Because of perfect recall, all nodes in an information set belonging to a player share the same
sequence of actions of that player, and are therefore assigned the same realization weight relative
to that player. Further, we may assume without loss of generality that actions are labeled so that
any particular label only occurs at one information set. Then, we can conveniently extend the
terminology and let the realization weight of the node z as well as the realization weight of the
sequence σ and the realization weight of the information set h to which z belongs all denote the
same value.

A realization plan for a player is a vector of realization weights indexed by his possible sequences
of actions. Note that a behavior probability is the ratio between two realization weights. If this
ratio is 0/0, the realization weights do not define a behavior probability. Still, the map between
behavior plans and realization plans is a bijection, so given a realization plan, we may talk about the
corresponding behavior plan and vice versa. Also, if a realization plan has strictly positive weight
on all possible sequences, the corresponding behavior plan is fully mixed at every information set
and is therefore, in fact, a behavior strategy.

For a game G of perfect recall, the statement that a vector is a valid realization plan can be
expressed by a non-negativity constraint and a system of linear equations with no more equations
than information sets. We let

Ex = e, x ≥ 0 (1)

denote the constraints expressing that x is a valid realization plan for Player I and we let

Fy = f, y ≥ 0 (2)

be the constraints expressing that y is a valid realization plan for Player II. Here, E and F are
matrices containing entries from {−1, 0, 1} only.

The key to the computational usefulness of sequence form is the following fact: If Player I plays
by realization plan x and Player II plays by realization plan y, then the expected payoff for Player
I is given by a bilinear form x⊤Ay. Similarly, the expected payoff for Player II is given by x⊤Cy.
Here, A and C are matrices depending on G, and easily computed given the extensive form of G.

4

2.2 Quasi-perfect equilibria

Van Damme (1984) presents several characterizations of quasi-perfect equilibria. We shall adopt
one of them as the definition of quasi-perfect equilibria in the present paper. We give the general
definition but shall only use the two-player case in this paper.

Definition 1 Let G be an m-player game in extensive form with perfect recall.
Let γ = (γi) be a behavior strategy profile for G which is fully mixed in each information set,

γi being the strategy of Player i. Also, we let γ−i denote (γ1, . . . , γi−1, γi+1, . . . , γm).
Fix any information set h in G. Let i be the player to which h belongs. An h-local purification

of the strategy γi is a behavior strategy for Player i obtained by replacing the behavior of Player i
at h and at every information set belonging to Player i that may be encountered by Player i after
he encounters h, by behavior that puts all probability mass on some single action at each of these
information sets. The behavior at all other information sets is left unchanged.

We say that an h-local purification γ′
i of γi is an h-local best response to γ−i if it achieves the

best expected payoff against γ−i among all h-local purifications of γi.
We say that an h-local purification γ′

i of γi is ǫ-consistent with γi if γi assigns behavior probability
strictly bigger than ǫ to the actions to which γ′

i assigns behavior probability 1 at h and subsequent
information sets.

We say that the behavior strategy profile γ is ǫ-quasi-perfect if it is fully mixed and if for each
player i and every information set h belonging to Player i, all h-local purifications of γi that are
ǫ-consistent with γi are h-local best responses to γ−i.

Finally, a behavior strategy profile for G (not necessarily fully mixed) is a quasi-perfect equi-
librium if it is a limit point as ǫ → 0+ of ǫ-quasi-perfect behavior strategy profiles.

It was shown by van Damme that any game of perfect recall possesses a quasi-perfect equilibrium
and that such an equilibrium is sequential as well as normal-form perfect. The proof of existence
uses the existence of normal-form proper equilibria and the relationship between these equilibria
and quasi-perfect equilibria established by van Damme. As far as we know, no very simple and
direct proof of existence is known. For the two-player case, a constructive proof of existence follows
from the results of this paper.

3 Perturbed games

In this section we define a certain perturbation G(ǫ) of G parametrized by ǫ > 0, and show that a
parametric expression for an equilibrium of G(ǫ) can be used to compute a quasi-perfect equilibrium
of G. In later sections, we then turn to computing such a parametric expression.

Definition 2 Let G be a two-player game of perfect recall and let ǫ > 0 be a parameter. We
define the perturbed game G(ǫ) to be a game of exactly the same structure as G (i.e., same
information sets, actions and payoffs) but with a restriction on the realization plans allowed: In a
valid realization plan for either player in G(ǫ), the realization weight of any sequence σ of actions
that can be played must be at least ǫ|σ| where |σ| is the number of actions in the sequence σ.

While perturbed games are ubiquitous in the theory of equilibrium refinements, we believe that
the particular perturbation model of Definition 2 is novel. Note that the perturbation model is
strongly tied to the sequence form and is analogous to but not equivalent to a Selten tremble which

5

would put a lower bound on ǫ on the behavior probability of each action. In fact, while a limit
point of equilibria of a game perturbed by such Selten trembles is by definition an extensive-form
perfect equilibrium of the game, our main Lemma 3 below shows that a limit point of equilibria of
a game perturbed as in Definition 2 is a quasi-perfect equilibrium. The example of Mertens (1995)
of a two-player game where no extensive-form perfect equilibrium is quasi-perfect thus highlights
that the two perturbation models are in fact very different, in spite of their superficial similarity.

To concretely illustrate this difference, consider the one-player game G of Fig. 1. Let G(ǫ) be the
sequence form perturbation of G of Definition 2. Let G′(ǫ) be G perturbed by Selten trembles, i.e.,
with each behavior probability restricted to be at least ǫ. Note that the only non-optimal outcome
of the games occur if the player first chooses R and then r. In the only equilibrium of G′(ǫ), the
behavior probabilities of the actions R and r are both ǫ. This leads to the realization weights
xR = ǫ and xRr = ǫ2. The limit as ǫ → 0 has xR = 0, and therefore any extensive-form perfect
equilibrium chooses L with probability 1. Intuitively, in an extensive-form perfect equilibrium, a
player takes the possibility of mistakes that may be made in the future into account, including his
own potential future mistakes. In contrast, any strategy with xRr = ǫ2 is an equilibrium of G(ǫ),
as any such strategy yields the optimal expected payoff of −ǫ2. In particular, the value of xR and
hence the behavior probability of the action R may in equilibrium be any value between ǫ and 1.
Note that this is consistent with behavior in a quasi-perfect equilibrium: In such an equilibrium,
a player takes the possibility of mistakes made in the future by other players into account, but
he ignores his own potential future mistakes. Our main lemma confirms this intuitive connection

-10

10

1

rl

RL

Figure 1: A one-player game

between the perturbed game G(ǫ) and quasi-perfect equilibria of G, for a general game G.

Lemma 3 Let G be a two-player game of perfect recall. For any ǫ > 0, any Nash equilibrium in
behavior strategies of G(ǫ) is an ǫ-quasi-perfect behavior strategy profile for G.

Proof Let γ = (γ1, γ2) be a Nash equilibrium in behavior strategies of G(ǫ). According to the
definition, we have to show that for every information set h in G, any h-local purification of γ that
is ǫ-consistent with b is an h-local best response. So let an information set h be given. Assume
without loss of generality that h belongs to Player I. Let an h-local purification γ′

1 of γ1 that is
ǫ-consistent with γ1 be given and let x′ be the realization plan corresponding to γ′

1. Let γ∗
1 be an

arbitrary h-local purification of γ1 and let x∗ be the realization plan corresponding to γ∗
1 . To show

that γ′
1 is an h-local best response, we need to show that (x∗)⊤Ay ≤ (x′)⊤Ay.

Let x be the realization plan corresponding to γ1. We claim that there is a δ > 0 so that
x̃ = x + δ(x∗ − x′) is a valid realization plan for G(ǫ). To see this, we observe that since x, x∗, x′

6

are all valid realization plans, the linear equations Ex̃ = e are satisfied and hence we only have to
worry about the constraint stating that the realization weight of a sequence of d actions should be
at least ǫd. The plans x∗ and x′ are identical on all sequences, except on sequences that contain an
action taken at h, so we only have to check these. Among these sequences, we only have to worry
about the ones to which x′ assigns non-zero realization weight. But since γ′

1 is ǫ-consistent with
γ1, a trivial induction reveals that the realization weight given by x to each of these sequences is
strictly bigger than ǫ|σ|. Hence, the claim follows for some sufficiently small δ > 0. Fix such a δ.

Let y be the realization plan corresponding to b2. We have that

x̃⊤Ay = (x + δ(x∗ − x′))
⊤
Ay

= x⊤Ay + δ((x∗)⊤Ay − (x′)
⊤
Ay). (3)

Since x̃ is a valid realization plan for player 1 in G(ǫ) and γ = (γ1, γ2) is a Nash equilibrium, we
also have

x̃⊤Ay ≤ x⊤Ay (4)

and combining (3) and (4) we have (x∗)⊤Ay− (x′)⊤Ay ≤ 0, i.e., (x∗)⊤Ay ≤ (x′)⊤Ay, as desired. ♠

It is here worth pointing out that while extensive-from (trembling hand) perfect equilibria are
defined as limit points of equilibria of perturbed games, we are not aware of any natural charac-
terization of quasi-perfect equilibria in terms of limit points of equilibria of perturbed games. The
present paper provides no such characterization either, but our main lemma above points out that
a least a certain subset of the quasi-perfect equilibria can be obtained as such limit points, at least
for the case of two-player games.

Our algorithms for computing a quasi-perfect equilibrium all first compute a parametric expres-
sion for an ǫ-quasi-perfect behavior strategy profile. More precisely, in the next section we shall
prove the following fact.

Fact 4 For any two-player game G of perfect recall, there is a δ > 0 and a map γ mapping each
positive real number ǫ to two vectors of real numbers (γ1(ǫ), γ2(ǫ)) so that

1. each entry of γi(ǫ), i = 1, 2, is a rational function, i.e. a ratio between two polynomials in ǫ,

2. for all values of ǫ ∈ (0, δ], γ(ǫ) is a Nash equilibrium of G(ǫ) in behavior strategies.

Furthermore, the proof is constructive and algorithmic: Given the game G, we show how to ex-
plicitly compute the coefficients of the polynomials defining γ. Given these expressions, it is now
straightforward to compute a quasi-perfect equilibrium of G: Any rational function r of parameter
ǫ so that r(ǫ) ∈ [0, 1] for sufficiently small ǫ has a unique limit as ǫ → 0+, and this limit can be
easily computed from the coefficients of the two polynomials defining r; it is either 0 or the ratio
between two coefficients of these polynomials. Thus, we can determine the limit as ǫ → 0+ of all
behavior probabilities in (γ1(ǫ), γ2(ǫ)) and by Lemma 3 and by Definition 2, these values together
define a quasi-perfect equilibrium of G in behavior probabilities.

Note that it is crucial that we compute the limit of the equilibria of G(ǫ) in behavior strategies
and not the limit of the equilibria of G(ǫ) in realization plans. Only by doing the former do we
ensure the computation of meaningful behavior at all information sets, including those having
realization weight 0 in the computed equilibrium.

7

4 The general-sum case using Lemke’s algorithm

In this section we show how to apply Lemke’s algorithm to find a parametric expression for an
equilibrium of G(ǫ), thus proving Fact 4. This is a technical modification of the original KMvS
algorithm and we shall follow the approach of Koller, Megiddo and Stengel (1996) very closely.
Thus, we shall in this section assume familiarity with their approach, including their excellent
exposition of Lemke’s algorithm.

First, we shall mimic Koller, Megiddo and von Stengel’s derivation of a linear complementarity
program characterizing the Nash equilibria of a game G in realization plans (Koller et al., 1996,
Section 2) and derive a parametrized linear complementarity program describing the Nash equilibria
of the perturbed game G(ǫ).

Theorem 5 The equilibria of G(ǫ) are given by the solutions to the following linear complemen-
tarity program.

Ex = e

Fy = f

u = E⊤p − Ay ≥ 0

v = F⊤q − C⊤x ≥ 0 (5)

x − k(ǫ) ≥ 0

y − l(ǫ) ≥ 0

u⊤(x − k(ǫ)) + v⊤(y − l(ǫ)) = 0

where k(ǫ) is the vector indexed by sequences σ of Player I so that kσ(ǫ) = ǫ|σ|. Similarly, l(ǫ) is
the vector indexed by sequences π of Player II so that lπ(ǫ) = ǫ|π|.

The variables of the program are x (a realization plan for Player I), y (a realization plan for
Player II), and p, q, u, v (auxiliary vector variables). The matrices A,C,E, F are as described in
Section 2.1.

Proof Suppose that a strategy of Player II is fixed and given in sequence form by a realization
plan y. A best response by Player I as a realization plan x is then given by

max
x

x⊤(Ay) so that

Ex = e (6)

x ≥ k(ǫ).

The dual of (6) is

min
p,u

p⊤e − u⊤k(ǫ) so that

E⊤p ≥ Ay + u (7)

u ≥ 0.

Since k(ǫ) is positive at every entry, an optimal solution to (7) has u = E⊤p − Ay. Also, by linear
programming duality, feasible solutions x to (6) and (p, u) to (7) are optimal if and only if the two
objective function values are equal, i.e.,

x⊤(Ay) = p⊤e − u⊤k(ǫ) (8)

8

which, using e = Ex and E⊤p − Ay = u is equivalent to

u⊤(x − k(ǫ)) = 0. (9)

Similarly, suppose that a strategy of Player I is fixed and given in sequence form by a realization
plan x. A best response by Player II as a realization plan y is then given by

max
y

x⊤(Cy) so that

Fy = f (10)

y ≥ l(ǫ).

The dual of (10) is

max
q,v

q⊤f − v⊤l(ǫ) so that

F⊤q ≥ C⊤x + v (11)

v ≥ 0.

Since l(ǫ) is positive at every entry, an optimal solution to (11) has v = F⊤q −C⊤x. Also, feasible
solutions y to (10) and (q, v) to (11) are optimal if and only if the two objective function values
are equal, i.e.,

x⊤(Cy) = q⊤f − v⊤l(ǫ) (12)

which, using f = Fy and F⊤q − ⊤x = v is equivalent to

v⊤(y − l(ǫ)) = 0. (13)

The Nash equilibrium condition of x and y being best responses to each other is then expressed
by combining the constraints of (6), (7), (9), (10), (11) and (13), leading to the linear complemen-
tarity program (5). ♠

Still following Koller, Megiddo and Von Stengel, we now put the derived linear complementarity
program in standard form in order to apply Lemke’s algorithm. We define x̃ = x−k(ǫ), ỹ = y− l(ǫ),
ẽ = e−Ek(ǫ), f̃ = f−Fl(ǫ), α = −Al(ǫ) and β = −C⊤k(ǫ) and rewriting p = p′−p′′ with p′, p′′ ≥ 0
and q = q′ − q′′ with q′, q′′ ≥ 0, we can write the system (5) as

z ≥ 0

w = Mz + b(ǫ) ≥ 0 (14)

z⊤w = 0

where

M =



















−A E⊤ −E⊤

−C⊤ F⊤ −F⊤

−E
E

−F
F



















, (15)

9

z = (x̃, ỹ, p′, p′′, q′, q′′)⊤, and b(ǫ) = (α, β, ẽ,−ẽ, f̃ ,−f̃)
⊤
. For ǫ = 0, the LCP is identical to the one

derived by Koller, Megiddo and von Stengel (1996). In particular, M is the same matrix M as in
their Equation (2.10). Thus, we have an LCP in standard form, completely analogous to the LCP
described by Koller, Megiddo and von Stengel, the only difference being that our vector b(ǫ) is a
formal perturbation of their vector b, parametrized by the parameter ǫ > 0. Note that each entry
of b(ǫ) is a polynomial in ǫ.

We now apply Lemke’s algorithm to this parametrized program exactly as Koller, Megiddo and
von Stengel applied Lemke’s algorithm to their program, while keeping ǫ a symbolic indeterminate,
representing a sufficiently small number. That is, we generalize the system (14) to

z ≥ 0

w = Mz + dz0 + b(ǫ) ≥ 0 (16)

z⊤w = 0

where z0 ≥ 0 is a new scalar variable and d = (1, 1, 1, .., 1)⊤. Solutions to (14) are now exactly the
solutions to (16) for which z0 = 0. In the case of a non-degenerate LCP (we shall deal with the
degenerate case later), Lemke’s algorithm works by traversing a sequence of solutions to the system
of linear equations

Iw − dz0 − Mz = b(ǫ) (17)

where I is an n × n identity matrix. The solutions considered are basic solutions, that is, the
vector b(ǫ) is represented as a linear combination of n linearly independent columns of the matrix
[I,−d,−M]. These columns form a non-singular n × n submatrix B. The corresponding variables
are the basic variables of the solution (the basis). The nonbasic variables all have value 0. For any
basic solution and for any 1 ≤ i ≤ n, at most one of zi, wi is nonbasic. Thus, a basic solution where
z0 is a nonbasic variable is a solution to (14). A basic solution where z0 is a basic variable has for
some i both zi as wi as nonbasic variables. Furthermore, it is an invariant of the algorithm that one
of these (say, wi) just left the basis. The other one (in that case, zi) will enter the basis in the next
iteration of the algorithm. This iteration is given by the following pivoting operation, changing the
basis and the corresponding basic solution: Let h be the column of [I,−d,−M] corresponding to
the entering variable. To find the leaving variable, the algorithm picks the largest value of v so that

B−1b(ǫ) − B−1hv ≥ 0. (18)

This makes some component of B−1b(ǫ)−B−1hv zero, and the corresponding basic variable leaves
the basis. The matrix B is now updated according to the new basis.

In our case, each entry of b(ǫ) is a formal polynomial in ǫ, with ǫ to be interpreted as a
sufficiently small number. We should check that the pivoting operation is still well-defined and
can be performed algorithmically. Indeed, for all sufficiently small ǫ > 0, the choice of leaving
variable is independent of ǫ > 0. Furthermore, the correct choice can be found by comparing the
polynomials fj(ǫ) = (B−1b(ǫ))j/(B

−1h)j and finding the smallest according to lexicographic order,
i.e. the order ≤lex defined by

∑

aiǫ
i ≤lex

∑

a′iǫ
i ⇔ ([∀i : ai = a′i] ∨ [at < a′t for t = min{i|ai 6= a′i}]) (19)

and this comparison can indeed be performed algorithmically while keeping ǫ an indeterminate.
Pivoting in this way, we have that if Lemke’s algorithm terminates with a solution for which

10

z0 = 0, this solution is an expression for a valid solution to (14) for all sufficiently small ǫ > 0. The
entries of vectors x, y found are formal polynomials in ǫ. The corresponding behavior probabilities
are then rational functions in ǫ, as stated in Fact 4. Thus, to complete the description of the
algorithm and the proof of Fact 4, we should ensure that Lemke’s algorithm will indeed terminate
with such a solution. As Koller, Megiddo and von Stengel, the concerns we have to deal with are
degeneracy and ray termination.

Degeneracy occurs when the leaving variable is not uniquely defined, with two or more entries
of B−1b(ǫ) − B−1hv being zero for the maximum v for which B−1b(ǫ) − B−1hv is non-negative.
Degeneracy may cause Lemke’s algorithm to cycle. The only known way for avoiding degeneracy
in general is to apply a symbolic perturbation to the LCP. In particular, Koller, Megiddo and von
Stengel replace their condition B−1b − B−1hv ≥ 0 (the condition analogous to (18) but with b a
vector of unparametrized values) with

B−1bǫ − B−1hv ≥ 0 (20)

where bǫ = b + (ǫ, ǫ2, ǫ3, . . . , ǫn)
⊤

and ǫ > 0 is a formal parameter, representing a sufficiently small
value, exactly as in our parametrized LCP. That is, even when solving unparametrized LCPs one
has to consider formally perturbed programs and do pivoting operations using a lexicographic rule
as we describe above1. It is easy to see that the perturbation of (20) ensures non-degeneracy if b
is a vector of unparametrized values. When using the same method on our parametrized LCP, we
have to deal with two perturbations, the one introduced by the parameter ǫ > 0 in the formulation
of our LCP and another introduced to eliminate degeneracy, the latter still being necessary as the
program (16) may well be degenerate. We need to ensure that the latter technical perturbation does
not interfere with the former meaningful one. The simplest way is to make the latter perturbation
an order of magnitude smaller than the former and replace the condition (18) with

B−1b′(ǫ) − B−1hv ≥ 0 (21)

where b′(ǫ) = b(ǫ)+(ǫd+1, ǫd+2, ǫd+3, . . . , ǫd+n)
⊤

and d is the maximum degree of the polynomials in
ǫ that define b. Again, it is easy to see that the perturbation (21) ensures non-degeneracy. Note that
the original perturbation should appear in the solution we eventually output while the perturbation
introduced to avoid degeneracy should not. That is, the solution we eventually produce and output
is the one satisfying the equation Iw − dz0 − Mz = b(ǫ) (with z0 = 0) and not the one satisfying
Iw − dz0 − Mz = b′(ǫ).

Finally, we have to deal with the possibility of ray termination. By definition, this happens
when B−1b−B−1hv is non-negative for arbitrarily large values of v and hence no leaving variables
can be found. Exactly the same argument as given in Theorem 4.1, Lemma 4.2, Lemma 4.3, and
Theorem 4.4 of Koller, Megiddo and von Stengel (1996) shows that this will not happen when
Lemke’s algorithm is applied to the LCP given by (14), if a sufficiently large constant is subtracted
from all entries of A and C and if the lexicographic perturbation method is used to eliminate
degeneracy. Note that their LCP is a special case of ours. As their proof goes through without any
modification whatsoever for our more general parametrized LCP, we shall not repeat it here.

This concludes our description of our application of Lemke’s algorithm to solve the general-sum
case.

1This also means that the modification necessary for turning a standard implementation of Lemke’s algorithm

into one solving LCPs parametrized as ours is in fact minor.

11

5 The zero-sum case

5.1 The zero-sum case using the simplex algorithm

In this section we consider the zero-sum case, i.e., we assume C = −A. We derive a variant of
algorithm of the last section based on linear programming and the simplex algorithm rather than
linear complementarity programming and Lemke’s algorithm.

We mimic the derivation of Koller, Megiddo and von Stengel (1994) for the unperturbed case.
If G is a zero-sum game, so is G(ǫ), and so the set of Nash equilibria of G(ǫ) is the Cartesian
product of the sets of minimax strategies for each of the two players. First we derive the minimax
strategy for Player II. Suppose that a strategy of Player II is fixed and given in sequence form by a
realization plan y. As in the proof of Theorem 5, a best response by Player I as a realization plan
x is then given by

max
x

x⊤(Ay) so that

Ex = e (22)

x ≥ k(ǫ)

whose dual program is

min
p,u

p⊤e − u⊤k(ǫ) so that

E⊤p ≥ Ay + u (23)

u ≥ 0.

The value of the optimal solution to (23) expresses the expected payoff that Player I can achieve
in the perturbed game G(ǫ) if Player II plays using strategy y. Player II wants to choose a valid
realization plan y so that this is minimized. His minimax strategy is thus given by

min
p,u,y

p⊤e − u⊤k(ǫ) so that

E⊤p ≥ Ay + u (24)

Fy = f

y ≥ l(ǫ)

u ≥ 0.

Reversing the roles of the two players and arguing completely analogously, we obtain the minimax
strategy for Player I.

max
q,v,x

q⊤f + v⊤l(ǫ) so that

F⊤q ≤ A⊤x − v (25)

Ex = e

x ≥ k(ǫ)

v ≥ 0.

12

Since (24) and (25) are dual linear programs they describe an equilibrium for the perturbed game
G(ǫ). Also, because of this duality, we only need to apply the simplex algorithm to one of these
programs to solve them both.

To easily apply the simplex algorithm to the program, we convert it into standard form. For
convenience, by adding a constant to every leaf of the original extensive form, we may transform
the game into one where every payoff for Player I is positive and hence every payoff for Player II
is negative. Then, a reformulation of (24) is

max
p,u,y

−p⊤e + u⊤k(ǫ) so that

−E⊤p + Ay + u ≤ 0 (26)

−Fy ≤ −f

−y ≤ −l(ǫ)

p, u, y ≥ 0.

By introducing slack variables, we put (25) in the following standard form.

max
z

c(ǫ)⊤z so that

w = Mz + b(ǫ) ≥ 0 (27)

z ≥ 0.

Here, b(ǫ) and c(ǫ) are vectors with entries being either constants (i.e., not depending on ǫ) or some
power ǫj .

For details about the simplex algorithm, we refer to Schrijver (1987). To solve (27), the simplex
algorithm traverses a sequence of basic solutions to the system of linear equations

Iw − Mz = b(ǫ) (28)

where I is an n× n identity matrix. That is, the vector b(ǫ) is represented as a linear combination
of n linearly independent columns of the matrix [I,−M]. These columns form a non-singular n×n
submatrix B. The corresponding variables are the basic variables of the solution (the basis). The
nonbasic variables all have value 0. As in Lemke’s algorithm, we go from one basic solution to
the next by a pivoting operation. In the simplex algorithm, the entering variable is chosen in the
following way. Let cB(ǫ) be the entries of c(ǫ) corresponding to basic variables. Given a non-basic
variable, we let d(ǫ) = 0 if the variable considered is a slack variable wj and otherwise we let d(ǫ) be
the corresponding entry of c(ǫ). We let h be the column of [I,−M] corresponding to this variable.
The variable is allowed to enter the basis if

d(ǫ) − cB(ǫ)⊤B−1h > 0. (29)

In case of more than one choice of such variables, Bland’s rule prescribes choosing the one with
smallest index in some fixed enumeration of the variables. Bland’s rule ensures termination of the
simplex algorithm. If (29) fails to hold for all non-basic variables, the current solution is optimal.
Having found a variable to enter the basis, the simplex algorithms picks the leaving variable in
exactly the same way as Lemke’s algorithm, i.e., by picking the largest value of v so that

B−1b(ǫ) − B−1hv ≥ 0. (30)

13

This makes some component of B−1b(ǫ)−B−1hv zero, and the corresponding basic variable leaves
the basis. Again, in case of a tie, Bland’s rule prescribes choosing the one with smallest index.

The simplex algorithm as described will solve any given bounded linear program to optimality
so our only concern is to check that the algorithm can be carried out on our parametric program
(27). Here, b(ǫ) and c(ǫ) are formal polynomial in ǫ, with ǫ to be interpreted as a sufficiently
small number. Indeed, the conditions (29) and (30) are both independent of ǫ when ǫ > 0 is
sufficiently small and both can be checked by comparing easily computed polynomials according
to lexicographic order, exactly as in the case of Lemke’s algorithm. Also, for the program at hand,
it is straightforward to find an initial basis so that the corresponding basic solution is feasible for
all sufficiently small ǫ > 0. Thus, we can solve the parametrized program (27) to optimality using
the simplex algorithm. The primal solution of the final tableau of the simplex algorithm yields
a realization plan y for Player II and the dual solution of the final tableau yields a realization
plan x for Player I, both being vectors of formal polynomials in ǫ. The corresponding behavior
probabilities are then rational functions in ǫ, as stated in Fact 4.

This concludes our description of our application of the simplex algorithm to solve the zero-sum
case.

5.2 The zero-sum case using generic linear programming solver

A major concern of computer science is the existence of polynomial time algorithms for solving
computational problems. A polynomial time algorithm takes as input a string over {0, 1} and
produces another such string using a number of atomic Boolean operations (such as taking the
logical AND of two bits) which is polynomial bounded in the length of the input string. For details,
see, e.g., Chapter 2.4 of Schrijver (1987).

For the equilibrium computation problems of the present paper, the input string is a description
of the extensive form game. In order to ensure finiteness of such a description, we assume that
payoffs are rational numbers. If so, we can in fact assume without loss of generality that they are
integers. The output is a description of the behavior probabilities of the equilibrium. For the two-
player games we consider, these can be assumed to be rational numbers when payoffs are integers
so that the output string is also finite.

While Lemke’s algorithm and the Lemke-Howson algorithm are regarded as fairly efficient in
practice, they are known not to be polynomial time algorithms (Savani and von Stengel, 2004).
In fact, no polynomial time algorithm for computing a Nash equilibrium is known, not even for a
bimatrix game. Also, the simplex algorithm is not a polynomial time algorithm, but alternative
polynomial time algorithms for linear programming such as the ellipsoid algorithm (Khachiyan,
1979) and interior point algorithms (Karmarkar, 1984) are known. Thus, it follows from the work
of Koller, Megiddo and von Stengel that a Nash equilibrium of a two-player extensive-form zero-sum
game of perfect recall can be found in polynomial time.

Since the ellipsoid algorithm and interior point algorithms solve unparametrized linear programs,
it does not follow immediately from the previous section that we have a polynomial time algorithm
for finding a quasi-perfect equilibrium. However, in this section we point out that these algorithms
can in fact also be used to solve a parametrized linear program of the form (27) in polynomial time.
In particular, we prove:

Proposition 6 A quasi-perfect equilibrium of a given two-player extensive-form zero-sum game of
perfect recall can be found in polynomial time.

14

Proof The idea is to apply an arbitrary polynomial time algorithm for solving linear programs to
(27) with the parameter ǫ replaced with a concrete, very small value. We shall then argue that we
can reconstruct the optimal parametric solution from the concrete optimal solution obtained.

Let V be the maximum absolute value of any coefficient occurring in (27). As in Section
5.1, we let n be the number of equations of (27), i.e., the size of the basis in a basic solution.
Let ǫ∗ = 1

2
n−n−1V −2n−1. Consider the program (27) with the parameter ǫ substituted with the

concrete value ǫ∗. It is easy to see that this unparametrized program is feasible. Let x′ be a basic
feasible and optimal solution. We claim that the corresponding basic solution (i.e., the solution
with the same set of basic variables) to the parametrized program if also feasible and optimal for
all values of ǫ ≤ ǫ∗.

To verify the claim, we observe that a basic solution with basis matrix B is feasible for a
particular value of ǫ if B−1b(ǫ) ≥ 0. It is optimal if the inequality (29) is violated for all non-
basic variables. By Cramer’s rule and the Hadamard inequality, these feasibility and optimality
conditions are equivalent to a system of inequalities

∀i :
d

∑

j=0

kijǫ
j ≥ 0 (31)

where kij are rational numbers that can be written as fractions with numerator of absolute value
at most nn/2+1V n+1 and denominator |det B| ≤ nn/2V n. By multiplying the equations by |det B|,
we may in fact assume that kij are integers of absolute value at most nn+1V 2n+1 = 1/2ǫ∗. Thus,
for any ǫ ≤ ǫ∗, the inequalities (31) are equivalent to the conditions

∀i : [∀j : kij = 0] ∨ [kmin{j|kij 6=0} > 0] (32)

which do not depend on ǫ, as was to be proved.
Our polynomial time algorithm works as follow. We run a polynomial time unparametrized

linear programming solver on the program (27) with the parameter ǫ being fixed to the value ǫ∗.
Note that the number of bits in the description of ǫ∗ is polynomial in the size of the program, so
this can be done in polynomial time. We obtain an optimal solution to the program. Given any
such optimal solution, it is straightforward to efficiently obtain a basic optimal solution, including a
partition of the variables into basic and non-basic ones. Then, we obtain the corresponding solution
to the parametrized program (27) as a vector of polynomials in ǫ by computing the inverse of the
basis matrix B−1 and using equation (28). By the claim, this corresponding solution is indeed
feasible and optimal for all ǫ ≤ ǫ∗ and hence a minimax strategy for Player II in G(ǫ) in realization
weights for sufficiently small values of ǫ > 0. We similarly compute a parametrized minimax
strategy for Player I and derive a quasi-perfect equilibrium in behavior strategies as explained in
Section 3. ♠

We remark that even though the algorithm in the proof of the proposition is polynomial time,
it is quite impractical due to the small value of ǫ∗ which leads to the resulting unparametermized
linear programs containing coefficients with a very large number of digits. Thus, even though
interior point methods is a practical alternative to the simplex method for solving unparametrized
linear programs, we don’t know how to apply these methods to practically compute a quasi-perfect
equilibrium for a zero-sum game. In the algorithm of Section 5.1, ǫ is kept symbolic and coefficients
are of the same order of magnitude as the payoffs of the game to be solved. This leads to a much
more practical algorithm, even though it is not polynomial time.

15

Acknowledgements

We would like to thank Daphne Koller, Bernhard von Stengel, Andrew McLennan, Robert Wilson,
Ted Turocy and the anonymous reviewers for very helpful discussions and comments on preliminary
versions of this paper. One such version (Miltersen and Sørensen, 2006) was presented at the 17th
annual ACM-SIAM Symposium on Discrete Algorithms and appears in the proceedings of that
conference. The research of Peter Bro Miltersen is supported by BRICS, a center of the Danish
National Research Foundation, by a grant from the Danish Science Research Council and by Center
for Algorithmic Game Theory, funded by the Carlsberg foundation.

References

Billings, D., Burch, N., Davidson, A., Holte, R., Schaeffer, J., Schauenberg, T., and Szafron,
D.: Approximating Game-Theoretic Optimal Strategies for Full-scale Poker, in Proceedings of
Eighteenth International Joint Conference on Artificial Intelligence: Springer 2003

van Damme, E.: 1984, A relation between perfect equilibria in extensive form games and proper
equilibria in normal form games, International Journal of Game Theory 13, 1–13 (1987)

van Damme, E.: Stability and Perfection of Nash Equlibria, 2nd ed: Springer-Verlag 1991
Gilpin, A. and Sandholm, T.: Finding Equilibria in Large Sequential Games of Incomplete Infor-

mation, Technical Report CMU-CS-05-158: Carnegie Mellon University 2005
Hillas, J. and Kohlberg, E.: Foundations of Strategic Equilibria, in R. Aumann and S. Hart (eds.),

Handbook of Game Theory, vol. 3: Elsevier Science 2002
Karmarkar, N.: A New Polynomial-Time Algorithm for Linear Programming, Combinatorica 4(4),

373–395 (1984)
Khachiyan, L.: A Polynomial Algorithm in Linear Programming, Soviet Mathematics Doklady

20, 191–194 (1979)
Koller, D., Megiddo, N., and von Stengel, B.: Fast algorithms for finding randomized strategies in

game trees, in Proceedings of the 26th Annual ACM Symposium on the Theory of Computing:
ACM 1994

Koller, D., Megiddo, N., and von Stengel, B.: Efficient Computation of Equilibria for Extensive
Form Games, Games and Economic Behavavior 14, 247–259 (1996)

Koller, D. and Pfeffer, A.: Representations and Solutions for Game-Theoretic Problems, Artificial
Intelligence 94(1–2), 167–215 (1997)

Kreps, D. M. and Wilson, R.: Sequential Equilibria, Econometrica 50(4), 863–894 (1982)
Lemke, C.: Bimatrix equilibrium points and mathematical programming, Management Science

11, 681–689 (1965)
McKelvey, R. and McLennan, A.: Computation of equilibria in finite games, in H. Amman, D.

Kendrick, and J. Rust (eds.), Handbook of Computational Economics: Elsevier 1996
Mertens, J.-F.: Two examples of strategic equilibrium, Games and Economic Behavior 8, 378–388

(1995)
Miltersen, P. B. and Sørensen, T. B.: Computing sequential equilibria for two-player games, in

Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms: ACM
2006

Savani, R. and von Stengel, B.: Exponentially Many Steps for Finding a Nash Equilibrium in a
Bimatrix Game, in Proceedings to 45th Annual IEEE Symposium on Foundations of Computer
Science: IEEE Computer Society Press 2004

16

Schrijver, A.: Theory of Linear and Integer Programming: Wiley 1987
von Stengel, B.: Efficient computation of behavior strategies, Games and Economic Behavior 14,

220–246 (1996)
von Stengel, B., van den Elzen, A., and Talman, D.: Computing Normal Form Perfect Equilibria

for Extensive Two-Person Games, Econometrica 70(2), 693–715 (2002)

17

