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Abstract

At AAAI’07, Zinkevich, Bowling and Burch introduced the
Range of Skill measure of a two-player game and used it as
a parameter in the analysis of the running time of an algo-
rithm for finding approximate solutions to such games. They
suggested that the Range of Skill of a typical natural game is
a small number, but only gave heuristic arguments for this.
In this paper, we provide the first methods for rigorously es-
timating the Range of Skill of a given game. We provide
some general, asymptotic bounds that imply that the Range
of Skill of a perfectly balanced game tree is almost exponen-
tial in its size (and doubly exponential in its depth). We also
provide techniques that yield concrete bounds for unbalanced
game trees and apply these to estimate the Range of Skill of
Tic-Tac-Toe and Heads-Up Limit Texas Hold’em Poker. In
particular, we show that the Range of Skill of Tic-Tac-Toe is
more than 100,000.

Introduction
Zinkevich, Bowling and Burch (2007) recently presented a
new algorithm, the Range of Skill Algorithm, for finding ap-
proximate minimax strategies of very large two-player zero-
sum imperfect information games. Their algorithm was suc-
cessfully used to compute such approximate solutions to
much larger game trees than was previously possible. In par-
ticular, it was applied to certain abstractions of Limit Texas
Hold’em. To gain some theoretical insight into why the al-
gorithm works so well, Zinkevich et al. applied the approach
of parameterized complexity. To every symmetric game and
every real value ε > 0, they associated an integer valued
parameter ROSε(G) (for Range of Skill) and showed by an
elegant analysis that their algorithm finds an ε-approximate
solution of a game G using at most ROSε(G) iterations of
its main loop. They also presented some intuition suggest-
ing that for most natural games, the Range of Skill is a rel-
atively small number. The intuition is derived from relating
the measure to the difficulty of playing a game from a human
perspective. Imagine lining up players, such that any player
in the line will be able to win against all previous players,
say, 75 % of the time. This captures the intuition that one is
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able to gain different levels of insight on how to play a game.
The difficulty of a game may then be measured by the num-
ber of players it is possible to line up. With this in mind, the
Range of Skill was formally defined for a game as the length
of the longest list of arbitrary strategies, called a ranked list,
such that the expected payoff to the higher ranked strategy
is more than some parameter ε when two strategies from the
list are matched against each other.

Given the impressive practical performance of the Range
of Skill algorithm, it seems important to better understand
the theoretical analysis. In particular, we should understand
how to rigorously estimate the Range of Skill parameter for
concrete games. The present paper provides the first meth-
ods for doing this.

First, we slightly adjust the definition of ROS to get a ver-
sion we call AROS that also works for asymmetric games.
This definition was implicit in Zinkevich et al.: Even though
their definition was only described for symmetric games,
their algorithm was only applied to asymmetric ones. The
analysis of the complexity of their algorithm goes through
with this definition. Then, we prove the following general
results.

• For a game tree G of size n with all payoffs having abso-
lute value at most β and any real number ε > 0, we have
AROSε(G) ≤ 2(2βn/ε)n.

• For a perfectly balanced and perfectly alternating perfect
information binary game tree G of depth d with every
non-terminal position being open and payoffs being −1
or 1, we have AROS0.99(G) ≥ 22Ω(d)

.

• The Range of Skill AROS1(G) of any combinatorial
game G is at most equal to the number of leaves of the
game tree of G.

• The Range of Skill AROS1(G) of any combinatorial
game G is at least the number of positions in the game
tree with two immediate terminal successors with payoffs
−1 and 1.

Also, we describe techniques for improving the latter two
bounds for concrete game trees. Armed with the general
techniques, we study some concrete games. Tic-Tac-Toe
was suggested by Zinkevich et al. as a game of very low
Range of Skill. We show that AROS1 of Tic-Tac-Toe is
in fact between 104,615 and 131,840. The main game of



study of Zinkevich et al. was an abstraction of Limit Texas
Hold’em Poker, where the number of bets in each round is
restricted to three. We show that AROSε for this game is
at least 1470ε−1. The latter concrete result is particularly
interesting for 2ε = 1/100. This was the approximation
achieved by Zinkevich et al. when they computed an ap-
proximate solution to the poker game. The actual number of
iterations of their main loop needed to achieve this approx-
imation is reported to be 298. In contrast, the upper bound
on the number of iterations given by the Range of Skill is no
less than 294,000 and possibly much larger: In contrast to
the case of Tic-Tac-Toe the bounds on the Range of Skill of
the poker game are very far from being tight. The discrep-
ancy between these numbers suggests that while the Range
of Skill algorithm seems to be an extremely attractive way of
approximately solving large games in practice, it is less clear
that the analysis in terms of Range of Skill is a convincing
way of providing theoretical evidence for this.

Preliminaries
Throughout the paper, we are going to consider two-player
zero-sum games with Player 1 trying to maximize payoff
and Player 2 trying to minimize payoff. The (expected) pay-
off when Player 1 plays (mixed) strategy b1 and Player 2
plays (mixed) strategy b2 will be denoted u(b1, b2).

The formal definition of Range of Skill proposed by
Zinkevich et al. only applies to symmetric games, and their
algorithm was also only described for symmetric games,
even though it is exclusively applied to asymmetric games
in their paper (note that all turn based games are asymmet-
ric). For the discussions of this paper, it is important to ap-
propriately fix the setup for asymmetric games. We describe
in Figure 1 what we believe is the most natural variant of
the Range of Skill algorithm for asymmetric games. In par-
ticular, for other variants, it does not seem obvious how to
appropriately define the Range of Skill measure so that it
upper bounds the complexity of the algorithm.

We now define a corresponding Asymmetric Range of
Skill measure. Recall that a strategy profile for a two-player
game is a pair of strategies, one for each player.
Definition 1. Given a two-player zero-sum game G
with payoff function u, define a list of strategy profiles
(bi

1, b
i
2), i = 1..N to be an ε-ranked list, if for all i > j,

u(bi
1, b

j
2) − u(bj

1, b
i
2) ≥ 2ε. The Asymmetric Range of Skill

or AROSε(G) is the length of the longest ε-ranked list.
Note that in the definition, the strategies in each profile

are not played against each other. Rather, (bi
1, b

i
2) should be

thought of as two strategies a single player i adopts for play-
ing a game; one for playing as Player 1 and one for playing
as Player 2. With this interpretation, u(bi

1, b
j
2) − u(bj

1, b
i
2)

is the expected payoff for i in a tournament where i plays j
twice, first as Player 1, then as Player 2.

For the case of a symmetric game, this definition agrees
with the definition of ROS of Zinkevich et al., except that
we require a soft inequality (≥ 2ε) rather than a sharp one
(> 2ε). We make this change for convenience, as it allows
us to focus on the interesting case ε = 1 (see below), but
clearly the spirit of the definition remains intact, and any

1. Let G be a two player zero-sum game with strategy
space Γi for Player i, i = 1, 2.

2. For i = 1, 2, let Σi = {b0
i }, where b0

i is an arbitrary
element of Γi.

3. Repeat
(a) Let G1 be the game which is like G but with Player

1 restricted to strategies in Σ1. Let v1 be the value
of G1, and let (y1, b2) be an equilibrium (i.e., pair
of minimax mixed strategies) of G1.

(b) Let G2 be the game which is like G but with Player
2 restricted to strategies in Σ2. Let v2 be the value
of G2, and let (b1, y2) be an equilibrium of G2.

(c) Add b1 to Σ1 and b2 to Σ2.
until v2 − v1 < 2ε.

4. Return (y1, y2).

Figure 1: Asymmetric Range of Skill algorithm

concrete lower or upper bound can be converted between
ROS and AROS by perturbing ε up or down. More impor-
tantly, the proof of Zinkevich et al. immediately generalizes
to show the following theorem (recall that an ε-equilibrium
is a strategy profile where no player may gain more than ε
by deviating):

Theorem 2. The Asymmetric Range of Skill algorithm ter-
minates after at most AROSε(G) iterations of its main loop
and computes a 2ε-equilibrium.

Proof. That a 2ε-equilibrium is computed follows from the
fact that when the procedure terminates, for values v1 and
v2 with v2 − v1 < 2ε, the strategy y1 for Player 1 is guar-
anteed to achieve a gain of at least v1 against an optimal,
unrestricted counter strategy while the strategy y2 for Player
2 is guaranteed to achieve a loss of at most v2 against an
optimal, unrestricted counter strategy.

Next, we estimate the number of iterations. Let the name
of a variable in Figure 1 with superscript j added denote its
value in the j’th iteration of this loop after executing (b) but
before executing (c). Suppose the loop has N iterations. Let
0 ≤ j < k < N . Since bj

2 ∈ Σk
2 and bk

1 is a minimax
strategy in G2, we have u(bk

1 , bj
2) ≥ vk

2 . Similarly, bj
1 ∈

Σk
1 implies u(bj

1, b
k
2) ≤ vk

1 . Also, since k < N , we have
vk
2 − vk

1 ≥ 2ε. These inequalities together imply u(bk
1 , bj

2)−
u(bj

1, b
k
2) ≥ 2ε. This means that the strategy profiles (bj

1, b
j
2)

for j = 0..N − 1 form an ε-ranked list and hence N is at
most AROSε(G).

By a combinatorial game we mean a perfect information
game with no moves of chance and with all payoffs at leaves
being 1, −1 or 0 (i.e. win/lose/tie for Player 1). For com-
binatorial games, the case ε = 1 (the largest meaningful
value of ε for these payoffs) is particularly natural. Note
that if (bi

1, b
i
2), i = 1..N is a 1-ranked list for a combina-

torial game we must have for all i > j that u(bi
1, b

j
2) = 1



and u(bj
1, b

i
2) = −1. That is, i beats j with probability 1,

no matter who starts the game. Further, when considering
AROS1(G) for combinatorial games, we can without loss of
generality restrict attention to pure strategies. Indeed, when
some strategy beats another strategy with probability 1, any
random choice it makes can be frozen to an arbitrary deter-
ministic one without changing this fact.

In some parts of the paper, it is convenient to operate with
game trees satisfying certain niceness conditions. It is easy
to transform any tree into one satisfying these:

Definition 3. A node x of a combinatorial game G is said to
be open if the subtree rooted at x contains leaves of payoff
both −1 and 1. The open tree of G is the largest embedded
subtree of G for which every internal node is open. Further-
more, we denote by the reduced open tree the open tree that
has been transformed by repeatedly doing the following.

• Merging nodes that are not alternating (i.e., successive
nodes controlled by the same player).

• Removing internal nodes of outdegree 1 by extending the
edge from the parent to the child.

• Removing leaves that has the same payoff as a sibling leaf.

Asymptotic results
Theorem 4. Let any two-player zero-sum extensive-form
game of perfect recall be given. Let n be the total number
of actions in the game tree and let β be the largest absolute
value of the payoff at any leaf. Then, for any ε > 0, we have
AROSε(G) ≤ 2(2βn/ε)n.

Proof. We shall in fact only look at the case where the
largest absolute value of any payoff is 1. The general case
follows easily by scaling. Assume AROSε(G) = N , and let
{(bj

1, b
j
2)}

N−1
j=0 be an ε-ranked list. We are going to use se-

quence form representation of mixed strategies. For a game
of perfect recall, the sequence form representation x (y) of a
mixed strategy b1 (b2) belonging to Player 1 (Player 2) has
the following properties (see Koller, Megiddo and von Sten-
gel (1994) for details):

• x (y) is a real vector containing at most the total number
of actions of Player 1 (Player 2) in the game. Every entry
in x and y is between 0 and 1.

• The expected payoff for Player 1 when Player 1 plays b1

and Player 2 plays b2 is given by x>Ay, where A is a
matrix depending on the game.

• The absolute values of entries of the vector Ay as well
as the vector x>A are all bounded by the largest absolute
value of the payoff at any leaf of the game.

We let xj be the sequence form representation of bj
1 and

yj be the sequence form representation of bj
2. Also, let

x̃j (ỹj) be xj (yj) rounded to r bits of precision, with
r = dlog(1/ε) + log ne. Let sj be a string containing the
binary representation of all values x̃j , ỹj . Note that s has
length rn. We claim:

• For all k > j, we have that x̃k>Ayj − xj>Aỹk > 0 and
for all k < j we have that x̃k>Ayj − xj>Aỹk < 0.

We only prove the first half of the claim; the proof of the
second half is similar. From the definition of an ε-ranked
list, we have xk>Ayj − xj>Ayk ≥ 2ε. Since each entry of
x̃k differs from the corresponding entry of xk and each entry
of ỹk differs from the corresponding entry of yk by strictly
less than 2−r ≤ ε/n and the entries in Ayk and xk>A are
bounded in absolute value by 1, the claim follows.

The claim implies that each string sk can be shared by at
most two different values of k. Indeed, x̃k and ỹk may be
reconstructed from sk and the claim implies that we can al-
most reconstruct k from x̃k and ỹk: It is either the largest
value j for which x̃k>Ayj − xj>Aỹk > 0 or the small-
est value j for which x̃k>Ayj − xj>Aỹk < 0. Thus, we
have that 2rn ≥ N/2. That is, N ≤ 2dlog(1/ε)+log nen+1 ≤
2(1+log(1/ε)+log n)n+1 = 2(2n/ε)n.

Note that combining Theorem 4 with Theorem 2 pro-
vides an upper bound on the running time of the Asymmet-
ric Range of Skill algorithm as a function of the size of the
game tree. The bound is exponential, but a priori, it was not
obvious that even an exponential bound could be given.

Next, we turn to lower bounds on Range of Skill, showing
that Theorem 2 does not imply that the Asymmetric Range
of Skill algorithm has a running time which is polynomi-
ally bounded in the size of the game tree. Zinkevich et al.
mentions that the game where both players choose a number
between 1 and n, and the largest number wins, has Range of
Skill linear in n. Our general approach for lower bounding
the Range of Skill is to find embeddings of this game within
any given game G. The following lower bound is the first
example of this method.
Theorem 5. For any ε > 0 there is a constant kε so that the
following is true. Let G be a game that contains as an em-
bedded subtree a perfectly balanced, perfectly alternating,
perfect information open tree of depth kεd with no nodes
of chance and with payoffs −1 and 1 at the leaves. Then,
AROS1−ε(G) ≥ 22d

.

Proof. The Greater Than problem on S = {1, ..., N} is
the following communication problem (for formal defini-
tions of two-party communication protocols and complexity,
see Kushilevitz and Nisan (1996)): Alice and Bob each get
a number in S and must communicate by transmitting bits
to determine which number is the larger (they are promised
that they are distinct). Combining Nisan (1993) with New-
man (1991), we have that for any ε > 0, there is a c and a
private coin (meaning that each player has a separate source
of randomness, not accessible to the other player) random-
ized communication protocol for the Greater Than problem
on {1, ..., 22d} with error probability ε and at most cd bits
communicated.

Two players can simulate a communication protocol by
making moves in a perfectly balanced, perfectly alternating,
perfect information open game tree, arbitrarily associating
in each position of the tree the communication bit 0 to one
action and the communication bit 1 to another. In this way,
a tree of depth 2M + 1 enables them to simulate any com-
munication protocol of communication complexity M . The
loss of a factor of two is due to the fact that the protocol will



specify in any situation one of the players to communicate
next - if this is not the player to move, the player to move
will move arbitrarily. Since the position arrived at after sim-
ulating the protocol is non-terminal, it is still possible for
each player to win. Thus, the players may let the output bit
of the protocol determine who actually wins the game.

With a tree of depth larger than 2cd, we can associate
to any number j in {1, ..., 22d} the mixed strategy pro-
file (bj

1, b
j
2) where both strategies consists of simulating in

this way the Nisan-Newman communication protocol for the
Greater Than problem on input j (with bj

1 simulating Alice
and bj

2 simulating Bob) followed by selecting an appropriate
leaf.

Then, by construction, {(bj
1, b

j
2)}j is an ε-ranked list.

It is clear from the definition of AROS that for a fixed
game G, AROSε(G) is a non-increasing function in ε. We
conclude this section with a theorem giving more precise
information. This theorem will be useful for lower bounding
the Range of Skill of Texas Hold’em for relevant values of
ε.

Theorem 6. For any game G, any ε > 0, and any integer k,
we have AROSε/k(G) ≥ k(AROSε(G)− 1) + 1.

Proof. We show how to construct a longer ε/k-ranked list
p from an ε-ranked list b, where the j’th element of b is the
mixed strategy profile bj = (bj

1, b
j
2), j = 0..N − 1. The idea

is to take all pairs of adjacent elements of the list and insert
k − 1 convex combinations between each of these pairs.

More precisely, we define

pkj+i = ((k − i)/k)bj + (i/k)bj+1

for j = 0..N − 2 and i = 0..k − 1 and we let pk(N−1) =
bN−1. It is easy to see that the resulting list is ε/k-ranked.

Range of Skill for combinatorial games
The asymptotic lower bound of Theorem 5 suggests that the
Range of Skill of many natural games are huge numbers.
However, the theorem has two drawbacks.

• To apply the theorem successfully we need a perfectly
balanced, perfect information game tree of a certain depth
embedded in the game of interest. Many game trees are
quite unbalanced. Also, the value of kε is not explicitly
stated. We might estimate it by going through the ar-
guments of Nisan and Newman, but would find that it
is rather large. So, despite of being a superpolynomial
bound, the theorem would provide poor estimates of the
Range of Skill for many concrete games.

• The use of mixed strategies is essential for the argument.
Thus, the theorem provides no lower bound on AROS1.

In this section, we address both issues. First, it is easy to
see that going from AROS1−ε to AROS1, we encounter a
“phase transition”: The Range of Skill is now bounded by
the size of the game tree.

Theorem 7. The number of leaves in the reduced open
tree of a combinatorial game G is an upper bound on
AROS1(G).

Proof. Let (bj
1, b

j
2), j = 0..N − 1 be the longest 1-ranked

list. As mentioned in the Preliminaries section, we can with-
out loss of generality assume that all strategies in the list are
pure.

Let m be the number of leaves in the reduced open tree
of G. If N > m we would, by the pigeonhole principle,
have i and j, with i > j, in the longest 1-ranked list, so
that when the strategies in the profile (bj

1, b
j
2) are played

against each other, the same leaf is reached as when the
strategies in the strategy profile (bi

1, b
i
2) are played against

each other. Clearly, this is also the leaf reached when bj
1 is

played against bi
2 and when bi

1 is played against bj
2. But this

contradicts the fact that the list is 1-ranked as this implies
that Player 2 wins in the first case and that Player 1 wins in
the second.

We next present a way to lower bound AROS1 which
yields good bounds for concrete games and in many natural
cases beats the figures for AROS1−ε that could be obtained
by working out the constant kε in Theorem 5. We first de-
scribe a way of constructing strategy profiles that will be
useful for constructing 1-ranked lists.

Given a combinatorial game G, we impose an ordering
on the reduced open tree T of G, such that for some fixed
representation of T , we let the children of any node be or-
dered from left to right in increasing order. We require that a
leaf that makes the player in turn lose (win) the game is the
leftmost (rightmost) child of its parent.

For a given strategy profile (b1, b2) and a given node x,
we will say that the players are going for the leaf that will be
reached if b1 and b2 are matched against each other starting
at x. Note that specifying what the players are going for at
every node will describe the entire strategy profile. Further-
more, we will say that the players are going for a loss (going
for a win) if they are going for the leaf of lowest (highest)
order of the subtree rooted at x.

We can then construct a strategy profile from a leaf x in
the following way.

• If possible, the players are going for x.

• At nodes of lower order than x, the players are going for
a win.

• At nodes of higher order than x, the players are going for
a loss.

• At nodes that are not internal of T , actions are chosen that
make sure the previously decided winner wins the game.

Figure 2 shows two applications of this construction of
strategy profiles. We can now show the following lower
bound on AROS1(G).

Theorem 8. For a combinatorial game G, let m be the num-
ber of nodes of the reduced open tree T of G that has two
leaves as children. Then AROS1(G) ≥ m.



Proof. For every node x of T that has two leaves, we can
construct a strategy profile for a 1-ranked list from either of
these leaves. To see this we need to consider what happens
when two such strategy profiles match up.

It is clear that at most one of the players will be going for
a win at any given time and at most one will be going for a
loss. Also, if the player to choose an action leading to a leaf
is either going for a win or a loss, the player whose strategy
is constructed from the leaf of highest order is certain to
get a payoff of 1. We therefore only need to consider what
happens at the node x when the player in turn is going for a
leaf of x.

If the opposing player is still going for his leaf, the higher
ranked player is sure to get a payoff of 1 because of the or-
dering of the nodes. If not, the opposing player is either
going for a win or a loss, meaning that the previous choice
either led to the subtree of highest or lowest order. Since ev-
ery internal node of T has outdegree at least 2, both cannot
be the case, and we are free to construct a strategy profile for
the 1-ranked list from one of the leaves.

The case analysis of the proof of Theorem 8 holds in gen-
eral, and we can use this to construct even more strategy
profiles for the 1-ranked list using the same scheme. We
observe the following.

(i) If a player chooses the action leading to the node of high-
est order, and his opponent is not already going for a win,
then his opponent will not be going for a win in the next
move either, and the other way around for the subtree of
lowest order.

(ii) The reduced open tree T is perfectly alternating, meaning
that if a player i chose the action leading to the root r of
some subtree of T , and player i controls the node from
which an action leads to a leaf x of T , then the path from
r to x must be of even length.

As in the end of the proof of Theorem 8 consider the prob-
lematic situation where one player j is going for a win, and
the other player i chooses an action leading to a leaf x that
ensures that player j loses. Since x lets the player in turn
get a payoff of 1, x must be the leaf of highest order of some
subtree of T rooted at some node r. Furthermore, it follows
from (i) that for the largest such subtree player i chose the
action leading to r, and from (ii) that the length of the path
from r to x is at least two and even. We can make a similar
observation for the opposite scenario. To make use of these
observations we introduce the following definition.
Definition 9. A leaf x of the reduced open tree T of a com-
binatorial game is said to be problematic if

• x is neither of highest nor lowest order of T .
• The length of the path from x to the root of the largest

subtree of T for which x is of either highest or lowest
order, is even and at least two.

The problematic leaves are exactly the ones giving rise to
strategy profiles that, when matched against other strategy
profiles, might produce the problematic situation. Hence,
the list of all strategy profiles constructed from distinct
leaves of T that are not problematic is a 1-ranked list. The

length of this 1-ranked list depends on the ordering of the
leaves, which in turn depends on the representation of T .
Different permutations of T therefore produce different 1-
ranked lists. The length of the constructed 1-ranked list is,
however, always at least as long as the number of nodes of
T with two leaves.

Figure 2 illustrates the construction of strategy profiles for
a 1-ranked list. The numbers below the leaves correspond
to the indices of the constructed strategy profiles in the 1-
ranked list, and the shaded leaves are problematic.

I

II II II

1 I 1 -1 I I

-1 1 -1 II -1 1

1 -1

1

2

3 4

5

6 7

Figure 2: Strategy profiles constructed from leaf number 4
(black arrows) and leaf number 5 (gray arrows).

Range of Skill of Tic-Tac-Toe and Limit
Hold’em Poker

Using a computer program, we have counted the number
of non-problematic leaves in the game of Tic-Tac-Toe.
As mentioned above, this number depends on the actual
representation of the game tree. We only created strategies
for a single representation (i.e., permutation of actions)
of the reduced open tree of Tic-Tac-Toe. It might well
be possible to get tighter results by choosing different
representations. The results are listed in Table 1. The source
code for the program used can be found at

http://daimi.au.dk/%7Etdh/RangeOfSkill.zip.

Tree Number of leaves
Game tree 255168
Open tree 153872
Reduced open tree 131840
Nodes of the reduced open tree with two leaves: 50544
Number of non-problematic leaves: 104615

Table 1: Tic-Tac-Toe.

The numbers in the table imply:

104615 ≤ AROS1(Tic-Tac-Toe) ≤ 131840.

Our approach to finding strategies for a 1-ranked list does
not apply directly to games of chance and imperfect infor-
mation. For games such as poker, we can, however, ig-
nore the random cards, and play the game as a game of no



chance and perfect information, using only the betting tree.
The possibility of folding without a showdown ensures that
we still have leaves of positive as well as negative payoff.
For Limit Hold’em Poker this leaves us with a betting tree
which is considerably smaller than the original game tree,
but which we may still use to obtain lower bounds on the
Range of Skill using the technique for combinatorial games
described in the previous section. Note that we do not ac-
tually have a combinatorial game, as the payoffs are small
integers in a wider range than −1, 0, 1. However, it is not
hard to see that the lower bounds for AROS1 of the previous
section are still valid for trees with arbitrary positive integers
in place of 1 and arbitrary negative integers in place of −1.

We will focus on the variant of Limit Texas Hold’em
Poker to which Zinkevich et al. apply their algorithm. In
this game there are four rounds of betting, each with up to
three raises. The blinds at the beginning of the first round
also count as a raise, meaning there are actually only two
raises allowed in the first round. In order to avoid a random
outcome of the game we trim the betting tree by removing
all leaves that do not correspond to folding. We then pro-
duce a 1-ranked list the same way as for Tic-Tac-Toe. The
results are listed in Table 2. In particular, the Range of Skill
for ε = 1 is at least 1471. Combining this with Theorem
6, we get the figure for AROSε with 2ε = 1/100 that was
mentioned in the introduction.

Tree Number of leaves
Trimmed betting tree 1715
Open tree 1715
Reduced open tree 1610
Nodes of the reduced open tree with two leaves: 490
Number of non-problematic leaves: 1471

Table 2: Limit Texas Hold’em Poker.

Open problems
We have seen that for the case of combinatorial games and
with ε = 1, the Range of Skill measure has attractive combi-
natorial properties. Indeed, it seems natural to ask if there is
a simple natural characterization that would allow us to ex-
actly compute AROS1(G) for a given combinatorial game,
say in time linear in the size of the tree, or at least in poly-
nomial time. We do not have such a characterization at
the moment, and one might, in fact, also speculate that this
problem could be NP-hard. We have already seen that our
approach seems to introduce a lot of variation through the
choice of representation of the reduced open tree that seems
hard to formalize and show an exact bound for. Also, Fig-
ure 3 shows an example where we can do even better than
what our current approach accomplishes. The strategy pro-
file indicated by the arrows, will win against any of the con-
structed strategies and could therefore be added to the 1-
ranked list as well. This goes to show that a new extended
approach would be needed to find the exact Range of Skill.

For the case of imperfect information games and small
values of ε, our understanding is much worse. For instance,
for the Texas Hold’em abstraction, our lower bound for the
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Figure 3: Example showing how to add more strategy pro-
files than our approach can supply.

Range of Skill is 1470ε−1, while the best upper bound is the
one given by Theorem 4. Here, the upper and lower bounds
differ by several orders of magnitude and new ideas seem
needed to bridge this gap.

A main conclusion of this work is that Theorem 2 does
not provide a very good upper bound on the actual num-
ber of iterations of the Range of Skill algorithm. We can
make the following simple observations: For a combinato-
rial game G, any strategy profile in a 1-ranked list is a best
response to any mix of strategies of lower ranked strategy
profiles. If the algorithm is initialized with the first strategy
profile of the longest 1-ranked list, the number of iterations
could therefore be exactly AROS1(G). If, on the other hand,
the algorithm is initialized with a perfectly mixed strategy
profile, it would terminate in only one iteration. In the more
general setting it is not clear how the algorithm behaves, and
it would be desirable to gain more insight into this.

References
Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast
algorithms for finding randomized strategies in game trees.
In Proceedings of the 26th Annual ACM Symposium on the
Theory of Computing, 750–759.
Kushilevitz, E., and Nisan, N. 1996. Communication Com-
plexity. Cambridge University Press, New York, USA.
Newman, I. 1991. Private vs. common random bits in
communication complexity. Inf. Proc. Lett. 39(2):67–71.
Nisan, N. 1993. The communication complexity of thresh-
old gates. In Miklós, V., and Szonyi, T., eds., Combina-
torics, Paul Erdös is Eighty, Volume 1. János Bolyai Math-
ematical Society, Budapest. 301–315.
Zinkevich, M.; Bowling, M.; and Burch, N. 2007. A
new algorithm for generating equilibria in massive zero-
sum games. In Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence, 788–793.


