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ABSTRACT
We present Tartanian, a game theory-based player for heads-
up no-limit Texas Hold’em poker. Tartanian is built from
three components. First, to deal with the virtually infinite
strategy space of no-limit poker, we develop a discretized
betting model designed to capture the most important strate-
gic choices in the game. Second, we employ potential-aware
automated abstraction algorithms for identifying strategi-
cally similar situations in order to decrease the size of the
game tree. Third, we develop a new technique for automat-
ically generating the source code of an equilibrium-finding
algorithm from an XML-based description of a game. This
automatically generated program is more efficient than what
would be possible with a general-purpose equilibrium-finding
program. Finally, we present results from the AAAI-07
Computer Poker Competition, in which Tartanian placed
second out of ten entries.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous; J.4 [Computer
Applications]: Social and Behavioral Sciences—Economics

General Terms
Algorithms, Economics

Keywords
Equilibrium finding, automated abstraction, Nash equilib-
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1. INTRODUCTION
Poker is a complex game involving elements of uncertainty,

randomness, strategic interaction, and game-theoretic rea-
soning. Playing poker well requires the use of complex,
intricate strategies. Optimal play is far from straightfor-
ward, typically necessitating actions intended to misrepre-
sent one’s private information. For these reasons, and oth-
ers, poker has been proposed as an AI challenge problem [4].
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There has been a recent flurry of research into developing
strong programs for playing poker. Just as chess was once
seen as an important challenge problem for AI, poker is now
starting to be seen in the same way. At the recent Man
Versus Machine Poker Competition, two professional poker
players, Phil Laak and Ali Eslami, defeated the computer
competitors, but by a small margin.

The bulk of the research into poker AI, including that
demonstrated at the Man Versus Machine competition, has
been on heads-up limit Texas Hold’em [16, 21, 3, 2, 7, 8, 10,
23, 24, 13]. In that game, the players only ever have at most
three possible actions (fold, call, or raise). In no-limit Texas
Hold’em, on the other hand, players may bet any amount up
to the amount of chips remaining in their stack. This rule
change significantly alters the optimal strategies, and also
poses new research problems when developing a computer
program for playing the game.

In this paper we present Tartanian, our game theory-
based player for heads-up no-limit Texas Hold’em poker.
After presenting related work (Section 1.1), we describe the
rules of the game (Section 2). We present an overview of
Tartanain, including the three main components, in Sec-
tion 3. Sections 4–6 discuss each of the three components
in more detail, respectively. In Section 7, we present the
results of the 2007 AAAI Computer Poker Competition in
which Tartanian placed second out of ten entries. Finally,
in Section 8, we present conclusions and suggest directions
for future research.

1.1 Related work on no-limit Texas Hold’em
programs

As mentioned above, most AI work on Texas Hold’em
poker has been for the limit variety. However, there are a
few exceptions that have focused on no-limit.

The most notable contribution to no-limit has been the
computation of near-optimal strategies for the later stages
of a no-limit tournament [17, 5]. (In a tournament, the
players start with the same number of chips, and play is
repeated until only one player has chips left. Typically the
minimum bets increase after a certain number of hands, so
eventually the stacks are very low relative to the minimum
bet.) That work focused on the computation of jam/fold
strategies, that is, strategies in which the players either fold
or bet all of their chips as their first action. In contrast, we
study the unlimited space of strategies, which is drastically
richer and contains better strategies than jam/fold.



Rickard Andersson’s master’s thesis [1] is more closely re-
lated to the work described in this paper since that work also
develops strategies for a heads-up no-limit Texas Hold’em
game. However, in that work round-based abstraction is
used: the different betting rounds of the game are separated
into phases and solved separately. That approach has been
used before, but suffers from many known drawbacks [10].
In contrast, we solve the game model in one large optimiza-
tion. Also, that work considered a game where each player
only has 40 chips, whereas we consider a game where each
has 1000 chips. Since the size of the betting space grows
exponentially in the number of chips each player has, this is
a significant difference. Also, the size of the card abstrac-
tion that we consider is drastically larger than what was
considered in that earlier work.

2. RULES OF HEADS-UP NO-LIMIT
TEXAS HOLD’EM POKER

There are many variants of poker. In this paper we fo-
cus on two-player (heads-up) no-limit Texas Hold’em poker.
As in the 2007 Association for the Advancement of Artifi-
cial Intelligence (AAAI) Computer Poker Competition, we
consider the variant known as Doyle’s game, named for the
accomplished professional poker player Doyle Brunson who
publicized this game. The game rules are as follows.

Blinds Two players, the small blind and big blind, start
every hand with 1000 chips. Before any cards are dealt,
the small blind contributes one chip to the pot and the
big blind contributes two chips.

Pre-flop Both players receive two hole cards, face down,
from a standard deck of 52 playing cards. The small
blind then has the options of folding (thus ending the
game and yielding all of the chips in the pot to the
other player), calling (contributing one more chip), or
raising (calling one more chip and then adding two or
more chips to the pot). In the event of a call or a raise,
the big blind has the option to take an action. The
players alternate playing in this manner until either
one of the players folds or calls. Note that it is possible
for a player to go all-in at any point by raising all of
his remaining chips. Also, the size of the raise must
always be at least as large as any raise already made
within the current betting round.

Flop Three community cards are dealt face up. The players
participate in a second betting round, with the big
blind going first. The first bet must be at least two
chips. If the players are already all-in then no betting
actions take place.

Turn One community card is dealt face up. The players
again participate in a betting round as on the flop.

River A final community card is dealt face up. The players
again participate in a betting round as on the flop and
turn.

Showdown Once the river betting round has concluded
(and if neither player has folded), a showdown occurs.
Both players form the best five-card poker hand us-
ing their two hole cards and the five community cards.
The player with the best hand wins the chips in the

pot. In the event of two equally ranked hands, the
players split the pot.

The differentiating feature of Doyle’s game compared to
other variants of Texas Hold’em is that each player begins
every hand with the same number of chips (1000 in our
case). This is an important distinction since the quantity
of a player’s chips greatly influences his optimal strategy.
Incorporating this rule makes for a more fair game since
both players start every hand on equal footing.

3. OVERVIEW OF TARTANIAN
We constructed our poker-playing program, Tartanian,

from three conceptually separate components. Here we pro-
vide an overview of each component.

1. Discretized betting model. In no-limit poker, a
player may bet any quantity up to the amount of chips
he has remaining. Therefore, in principle, the betting
action space is infinite (since a player could bet a frac-
tional amount of a chip). Even if players are restricted
to betting integral amounts of chips (as is the case
in most brick-and-mortar casinos), the number of ac-
tions available is huge. (The small blind has nearly
1000 actions available at the time of the first action.)
This issue does not arise in limit poker and so has
until now received very little attention. To deal with
this huge strategy space, we use a discretized betting
model. This also entails a reverse model for mapping
the opponent’s actions—which might not abide to the
discretization—into the game model. We describe the
design and operation of these models in Section 4.

2. Automated card abstraction. In addition to ab-
stracting the players’ betting actions, it is also nec-
essary to abstract nature’s moves of chance (i.e., the
dealing of the cards). Recent research has introduced
abstraction algorithms for automatically reducing the
state-space of the game in such a way that strategi-
cally similar states are collapsed into a single state.
This can result in a significant decrease in problem
size with little loss in solution quality. We apply our
potential-aware automated abstraction algorithm [10],
though this is the first time that that algorithm has
been applied in the no-limit setting. We describe this
application of automated card abstraction to no-limit
Texas Hold’em in Section 5.

3. Equilibrium finding. Two-person zero-sum games
can be modeled and solved as linear programs using
simplex or interior-point methods. However, those al-
gorithms do not scale to games as large as the ones we
are considering. Recently, we have developed gradient-
based algorithms which scale to games many orders
of magnitude larger than what was previously possi-
ble [12, 6]. We apply these new algorithms to our prob-
lem, and we also develop a system for automatically
constructing the source code for computing the crucial
part of the equilibrium computation directly from a de-
scription of the game. This is particularly useful given
the wide variety of betting models in which we may
ultimately be interested. We detail this equilibrium-
finding process in Section 6.



The following three sections describe these three compo-
nents in detail, respectively.

4. BETTING ABSTRACTION
The most immediate difficulty encountered when moving

from limit to no-limit Texas Hold’em is in the development
of a betting model. In limit Texas Hold’em, the players
only ever have at most three possible actions available to
them (fold, call, or raise). This small branching factor in
the action sequences allows the model builder to include
all possible actions in the model of the game used for the
equilibrium analysis.1

In no-limit Texas Hold’em, on the other hand, the number
of actions available to the players can be huge. For example,
when the small blind makes his first action, he can fold, call,
or raise to any (integral) amount between 4 and 1000, for a
total of 999 possible actions. (If the bets were not limited
to be integral amounts then the branching factor would ac-
tually be infinite.) Information sets (decision points) with
high degree occur elsewhere in the game tree as well. Even
if bets are limited to integers, the size of the unabstracted
game tree of no-limit heads-up Texas Hold’em is approxi-
mately 1071 nodes, compared to “only” 1018 nodes in the
limit variant.

In the remainder of this section, we discuss the design of
our discretized betting model. This consists of two pieces:
the choice of which bet amounts we will allow in our model
(Section 4.1) and the mapping of actions in the real game
back to actions in our abstracted game (Section 4.2).

4.1 Betting model
Although there are potentially a huge number of actions

available to a player at most points of the game, in prac-
tice among human players, a few bets occur much more fre-
quently than others. These include bets equal to half of the
size of the current pot, bets equal to the size of the current
pot, and all-in bets. We discuss each of these in turn.

• Bets equal to half of the size of the current pot are good
value bets2 as well as good bluffs. When a player has a
strong hand, by placing a half-pot bet he is giving the
opponent 3:1 pot odds.3 For example, if a half-pot bet
is placed on the river, then the opponent only needs
to think that he has a 25% chance of winning in order
for a call to be “correct”. This makes it a good value
bet for the opponent who has a good hand.

Half-pot bets also make good bluffs: they only need to
work one time in three in order for it to be a profitable
play. This bet size is advocated by many poker experts
as a good-size bet for bluffing [11].

1Of course an abstraction of the playing cards is still neces-
sary in models of limit Texas Hold’em intended for equilib-
rium analysis.
2A bet is considered a value bet if the player placing the bet
has a strong hand and aims to bet in a way that will entice
the opponent into calling the bet. This increases the size of
the pot, thus increasing the amount that the player placing
the bet will likely win.
3Pot odds is the ratio of the current size of the pot to the
current amount that a player needs to call. They are often
used by human players as a guide for making decisions of
whether to call or fold.

• Bets equal to the size of the current pot are useful when
a player believes that he is currently “in the lead”,
and does not wish to give the opponent a chance to
draw out to a better hand (via the additional cards
dealt later on in the hand). By placing a pot bet, the
player is taking away the odds that the opponent would
need to rationally call the bet—with almost any draw-
ing hand, that is, a hand that is not good currently,
but has the potential to improve with additional cards.
(Half-pot bets are also good for this purpose in some
situations.) It is usually not necessary to bet more
than this amount.

Pot bets are particularly useful pre-flop when the big
blind, who will be out of position (i.e., acting first) in
later betting rounds, wishes to make it more expensive
for the small blind to play a particular hand.

• In most situations it is a bad idea to go all-in because
if the opponent makes the call, he most likely has the
better hand, and if he does not make the call, then
nothing (or very little) is gained. However, this is a
commonly used move (particularly by beginners). In
some situations where the pot is large relative to the
players’ remaining chips, it makes more sense to em-
ploy the all-in move.

Another good reason for including the all-in bet in the
model is that it provides a level of robustness in the
model. This aspect will be discussed further in Sec-
tion 4.2.

There are also a few bets that are particularly poor or
redundant actions, and therefore we do not include them in
our betting model in order to keep it relatively small, thus
gaining computational tractability.

• Making bets that are small relative to the pot are usu-
ally a bad idea. When facing such a bet, the opponent
has terrific pot odds to make a call. Since the opponent
can make the call with almost any hand, not much in-
formation about the opponent’s hand is revealed. Also,
since the bet is so small, it is not of much value to a
player with a strong hand.

• Once a player’s quantity of remaining chips is small
relative to the pot, he is in a situation known as pot-
committed. When facing a subsequent bet of any size,
the player will be facing great pot odds and will almost
surely be compelled to call (because he can call with
whatever he has left, even if that amount is drastically
smaller than the pot). In this sense, a rational player
who is pot-committed is basically in the same situation
as a player who went all-in already. Thus bets that
lead to pot-committed situations are, in a sense, nearly
redundant. Therefore, in order to reduce the action
space for computational tractability, we advocate not
allowing bets that put the player in a pot-committed
situation. Similarly, we advocate not allowing bets
that put the opponent in a pot-committed situation if
he calls.

• In theory, the players could go back and forth several
times within a betting round. However, such a se-
quence rarely occurs in practice. The most common
sequences involve just one or two bets. In order to



keep the betting model small, we advocate a cap of
three bets within a betting round.4

Taking all of the above considerations into account, we
designed our betting model to allow for the following actions:

1. The players always have the option of going all-in.

2. When no bets have been placed within a betting round,
the actions available to the acting player are check, bet
half the pot, bet the pot, or go all-in.5

3. After a bet has been placed within a betting round,
the actions available to the acting player are fold, call,
bet the pot, or go all-in.

4. If at any point a bet of a certain size would commit
more than half of a player’s stack, that particular bet
is removed from the betting model.

5. At most three bets (of any size) are allowed within any
betting round.

The above model could most likely be improved further,
particularly with the incorporation of a much larger body of
domain knowledge. However, since our research agenda is
that of designing game-independent solving techniques, we
avoid that approach where possible. We propose as future
research a more systematic automated approach to designing
betting abstractions—and more generally, for discretizing
action spaces in games.

4.2 Reverse mapping
Once the betting model has been specified and an equi-

librium analysis has been performed on the game model (as
described in Section 6), there still remains the question of
how actions in the real game are mapped into actions in the
abstracted game. For example, if the betting model contains
half-pot bets and pot bets, how do we handle the situation
when the opponent makes a bet of three-fourths of the pot?
In this section we discuss several issues that arise in devel-
oping this reverse mapping, and discuss the different design
decisions we made for Tartanian.

One idea is to map actions to the nearest possible action
in terms of amount contributed to the pot. For example,
if the betting model contains half-pot bets and pot bets,
and the opponent bets four-fifths of the pot, we can treat
this (in our model) as a pot-size bet. (Ties could be bro-
ken arbitrarily.) However, this mapping can be subject to
exploitation. For example, consider the actions available

4After we developed our betting model, we observed that
allowing an unlimited number of bets (in conjunction with
a minimum bet size of half the pot) only increases the size
of the betting model by 15%. Therefore, in future versions
of our player, we plan to relax this constraint.
5Due to a bug in the equilibrium-finding code that was dis-
covered less than one week before the 2007 AAAI Computer
Poker Competition, we were unable to incorporate the half-
pot betting action in that model. Thus, the experimental
results presented in Section 7 do not reflect the full capabil-
ities of our player. Since it is reasonable to expect that the
presence of an additional action could only improve the per-
formance of an agent (the agent always has the option of not
taking that action), we expect that the experimental results
in this paper are a pessimistic representation of Tartanian’s
performance.

to the small blind player after the initial blinds have been
posted. At this point, the small blind has contributed one
chip to the pot and the big blind has contributed two chips.
According to our betting model, the options available to the
small blind are to fold (adding zero chips), call (one chip),
half-pot bet (three chips), pot bet (five chips), or all-in (999
chips). Clearly, there is a huge gap between contributing
five chips and 999 chips. Suppose that the opponent in this
situation actually contributes 500 chips. In absolute dis-
tance, this is closer to the pot bet than it is to the all-in
bet. However, the bet is so large relative to the pot that
for all practical purposes it would be more suitably treated
as an all-in bet. If the opponent knows that we treat it as
a five-chip bet, he can exploit us by using the 500-chip bet
because we would call that with hands that are too weak.6

Another possible way of addressing the interpolation prob-
lem would be to use randomization.7 Suppose an action is
played where a player contributes c chips to the pot. Sup-
pose that the closest two actions in the betting model corre-
spond to actions where the player contributes d1 and d2

chips, with d1 < c < d2. We could then randomly se-
lect the first action in the betting model with probability
p = 1 − c−d1

d2−d1
and select the second action with probabil-

ity 1 − p. This would help mitigate the above-mentioned
example where a 500-chip bet is treated as a pot-size bet.
However, this would still result in it being treated as a pot-
size bet about half of the time.

Instead of using the absolute distances between bets for
determining which actions are“closest”, we instead advocate
using a relative distance. Again considering the situation
where the opponent contributes c chips and the two sur-
rounding actions in the model contribute d1 and d2 chips,
with d1 < c < d2, we would then compare the quantities c

d1

and d2
c

and choose the action corresponding to the smallest
quantity. In the example where the small blind contributes
500 chips in his first action, the two quantities would be
500
5

= 100 versus 999
500

= 1.998. Hence, according to this
metric, our reverse mapping would choose the all-in bet as
desired.

5. AUTOMATED CARD ABSTRACTION
As discussed in the previous section, the size of the un-

abstracted game tree for no-limit heads-up Texas Hold’em
is approximately 1071 nodes. In addition to abstracting the
players’ betting actions, it is also necessary to perform ab-
straction on the game’s random actions, i.e., the dealing of
the cards. Fortunately, the topic of automated abstraction
of these signal spaces has received significant attention in
the recent literature. We leverage these existing techniques
in our player.

We developed the GameShrink algorithm [9] for perform-
ing automated abstraction in imperfect information games.
This algorithm was based on ordered game isomorphisms, a
formalization capturing the intuitive notion of strategic sym-
metries between different nodes in the game tree. For exam-
ple, in Texas Hold’em, being dealt the hole cards A♠A♣ ver-

6The experimental results in Section 7 reflect the perfor-
mance of a version of our player that used this simplistic
mapping rule. In that section we discuss situations in which
this mapping led to weak play.
7A similar randomization technique has been proposed pre-
viously for mitigating this problem [1].



sus A♦A♥ results in a strategically identical situation. The
GameShrink algorithm captures such strategic symmetries
and leads to a smaller game on which the equilibrium anal-
ysis can be performed. The equilibrium in the abstracted
game corresponds exactly to an equilibrium in the original
game, so the abstraction is lossless. We used this technique
to solve Rhode Island Hold’em [20], a simplified version of
limit Texas Hold’em. A simple modification to the basic
GameShrink algorithm yields a lossy version, which can be
used on games where the losslessly abstracted game is still
too large to solve. We used that lossy version to construct
the limit Texas Hold’em player GS1 [7].

Subsequently, we observed several drawbacks to that lossy
version of GameShrink; this led to the development of an au-
tomated abstraction algorithm based on k-means clustering
and integer programming [8]. The basic idea is to perform
a top-down pass of the card tree (a tree data structure that
contains a path for every possible deal of the cards). At each
level of the card tree, hands are abstracted into buckets of
similar hands, with the additional constraint that children
of different parents cannot be in the same bucket. At each
level, for the children of each parent in turn, k-means clus-
tering (for various values of k) is used to cluster the children.
Then, an integer program is solved to allocate how many (k)
children each parent gets to have, under the constraint that
the total number of children at the level does not exceed a
threshold that is pre-specified based on how fine-grained an
abstraction one wants. Then the process moves to the next
deeper level in the tree. We used this technique to develop
the limit Texas Hold’em player GS2.

The metric we initially proposed for use in the k-means
clustering and integer programming approach was based sim-
ply on the winning probability of a hand (based on a uniform
roll-out of the remaining cards). However, this does not take
into account the (positive and negative) potential of hands.
Furthermore, a hand’s strength becomes apparent over time,
and the strengths of different hands are revealed via differ-
ent paths. We developed a potential-aware metric to take
this into account. We further improved the basic top-down
algorithm by making multiple passes over the card tree in
order to refine the scope of analysis, and GS3, a limit Texas
Hold’em player, was developed based on this abstraction al-
gorithm [10].

In Tartanian, we use the same automated abstraction al-
gorithm as we used for GS3. The number of buckets we allow
for each level are the inputs to the algorithm. We used 10
buckets for the first round, 150 for the second round, 750
for the third round, and 3750 for the fourth round. These
numbers were chosen based on estimates of the size of prob-
lem that our equilibrium-finding algorithm, described below,
could solve to high accuracy in a reasonable amount of time.

Once the discretized betting model and reverse mapping
have been designed, and the card abstraction has been com-
puted, we are ready to perform the final step, equilibrium
computation. We will describe that next.

6. EQUILIBRIUM COMPUTATION
The Nash equilibrium problem for two-player zero-sum

sequential games of imperfect information with perfect re-
call can be formulated using the sequence form representa-
tion [19, 14, 22] as the following saddle-point problem:

max
x∈Q1

min
y∈Q2

xTAy = min
y∈Q2

max
x∈Q1

xTAy. (1)

In this formulation, x is player 1’s strategy and y is player 2’s
strategy. The bilinear term xTAy is the payoff that player 1
receives (player 2 receives the negative of this amount) when
the players play the strategies x and y. The strategy spaces
are represented by Qi ⊆ R|Si|, where Si is the set of se-
quences of moves of player i, and Qi is the set of realization
plans of player i. Thus x (y) encodes probability distribu-
tions over actions at each point in the game where player 1
(2) acts. The set Qi has an explicit linear description of the
form {z ≥ 0 : Ez = e}. Consequently, problem (1) can be
modeled as a linear program (see [22] for details).

The linear programs that result from this formulation have
size linear in the size of the game tree. Thus, in principle,
these linear programs can be solved using any algorithm for
linear programming such as the simplex or interior-point
methods. For relatively small games, that suffices [15, 20,
3, 9]. However, for many games the size of the game tree
and the corresponding linear program is enormous and thus
intractable. Recently, there has been interest in finding ε-
equilibria using alternative algorithms. Formally, we want
to find strategies x∗ and y∗ such that

max
x∈Q1

xTAy∗ − min
y∈Q2

(x∗)TAy ≤ ε. (2)

Nesterov’s excessive gap technique (EGT) [18], an algorithm
for solving certain non-smooth convex optimization prob-
lems, has been specialized to finding ε-equilibria in two-
person sequential games [12]. We further improved that ba-
sic algorithm via 1) the introduction of heuristics that speed
up the algorithm by an order of magnitude while maintain-
ing the theoretical convergence guarantees of the algorithm,
and 2) incorporating a highly scalable, highly parallelizeable
implementation of the matrix-vector product operation that
consumes the bulk of the computation time [6].

Since the matrix-vector product operation is so performance-
critical, having custom software developed specifically for
this purpose is important for the overall performance of the
algorithm. In Section 6.1 we discuss tools we have devel-
oped for automatically generating the C++ source code for
computing the required matrix-vector product based on an
XML description of the game.

6.1 Automatic C++ source code generation for
the matrix-vector product

As mentioned above, the most intensive portion of the
EGT algorithm is in computing matrix-vector products xTA
and Ay. For small games, or games where the structure of
the strategy space is quite simple, the source code for com-
puting this product could be written by hand. For larger,
more complicated games, the necessary algorithms for com-
puting the matrix-vector product would in turn be more
complicated. Developing this code by hand would be a te-
dious, difficult task—and it would have to be carried out
anew for each game and for each betting discretization.

We can see two alternatives for handling this problem.
The first, and most obvious, is to have a tree-like repre-
sentation of the betting model built in memory. This tree
could be built from a description of the game. Then, when
the matrix-vector product operation is needed, a general al-
gorithm could traverse this tree structure, performing the
necessary computations. However, the performance of this
algorithm would suffer some since there is the overhead of
traversing the tree.
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<bml name=’CustomBetting’>

<round number=’1’>

<decisions>

<decision player=’2’ sequence=’’ parent=’-1’>

<action name=’F’ number=’0’ />

<action name=’C’ number=’1’ />

<action name=’R1’ number=’2’ />

<action name=’A’ number=’3’ />

</decision>

<decision player=’1’ sequence=’C’ parent=’-1’>

<action name=’k’ number=’0’ />

<action name=’r1’ number=’1’ />

<action name=’a’ number=’2’ />

</decision>

<decision player=’2’ sequence=’Ca’ parent=’1’>

<action name=’F’ number=’19’ />

<action name=’C’ number=’20’ />

</decision>

<decision player=’1’ sequence=’A’ parent=’-1’>

<action name=’f’ number=’32’ />

<action name=’c’ number=’33’ />

</decision>

<!-- other decisions omitted... -->

</decisions>

<leaves>

<leaf seq1=’2’ seq2=’19’ type=’fold’ sequence=’CaF’ payoff=’2.0’ />

<leaf seq1=’2’ seq2=’20’ type=’showdown’ sequence=’CaC’ potshare=’1000.0’ />

<leaf seq1=’32’ seq2=’3’ type=’fold’ sequence=’Af’ payoff=’-2.0’ />

<leaf seq1=’33’ seq2=’3’ type=’showdown’ sequence=’Ac’ potshare=’1000.0’ />

<!-- other leaves omitted... -->

</leaves>

</round>

<!-- other rounds omitted... -->

</bml>� �
Listing 1: A snippet of the BML for our first-round betting model. The r1 action indicates a pot-size bet.

A second approach, which offers better performance, is to
generate the C++ source code automatically for the game at
hand. This eliminates the need for a tree-like representation
of the betting model. Instead, for each node of the tree
we simply have one line of source code which performs the
necessary operation.

For this approach to work, we need some way of specifying
a betting model. We accomplish this with our Betting Model
Language (BML), an XML-based description of all possible
betting models for no-limit Texas Hold’em. Listing 1 con-
tains a snippet of the BML file used by our player.

The BML file consists of a <round> section for each bet-
ting round (only parts of the first betting round are shown in
Listing 1). Within each <round>, there are <decision> en-
tries and <leaf> entries. The <decision> entries specify the
actions available to each player at any stage of the game, as
well as specifying certain indices (given via the number key)
which are used by the equilibrium-finding algorithm for ac-
cessing appropriate entries in the strategy vectors.

The <leaf> entries encode the payoffs that occur at termi-
nal sequences of the game. When a <leaf> has type equal to
’fold’, then it contains a payoff value which specifies the
payoff to player 1 in that case. Similarly, when a <leaf> has
type equal to ’showdown’, then it contains a potshare value
which specifies the amount of chips that each player has con-
tributed to the pot so far. (Of course, the actual payoffs in

showdown leaves also depend on the players’ cards.)
Listing 2 contains a snippet of C++ code produced by our

software for translating BML into C++. As can be seen, the
code is very efficient as each leaf of the game tree is processed
with only a few instructions in one line of code each.

7. EXPERIMENTAL RESULTS
Tartanian participated in the no-limit category of the 2007

AAAI Computer Poker Competition. Each of the 10 en-
tries played head-to-head matches against the other 9 play-
ers in Doyle’s no-limit Texas Hold’em poker. Each pair of
competitors faced off in 20 duplicate matches of 1000 hands
each. A duplicate match is one in which every hand is played
twice with the same cards, but the players are switched. (Of
course, the players’ memories are reset so that they do not
remember the hands the second time they are played.) This
is to mitigate the element of luck inherent in poker since if
one player gets a particularly lucky hand, then that will be
offset by giving the other player that same good hand.

Table 1 summarizes the results.8 Tartanian placed second
out of the ten entries. The ranking system used in this
competition was instant runoff bankroll. In that system,
the total number of chips won or lost by each program is

8The full competition results are available on the web at
http://www.cs.ualberta.ca/~pokert/.



� �
void TexasMatrixNoLimit::multvec_helper_round1_fold

(Vec& x, Vec& b, const unsigned int i, const unsigned int j, const double prob) {

b[i + 2] += x[j + 19] * prob * 2.0; // CaF

b[i + 32] += x[j + 3] * prob * -2.0; // Af

/* other payoffs omitted... */

}

void TexasMatrixNoLimit::multvec_helper_round1_showdown

(Vec& x, Vec& b, const unsigned int i, const unsigned int j, const double prob, const double win) {

b[i + 2] += x[j + 20] * win * prob * 1000.0; // CaC

b[i + 33] += x[j + 3] * win * prob * 1000.0; // Ac

/* other payoffs omitted... */

}� �
Listing 2: A snippet of the automatically-generated C++ code for computing the matrix-vector product.

compared to all of the others. The entrant that loses the
most is eliminated and finishes in last place; this ranking
process iterates until there is a single winner.

Once the ranking process had only three remaining en-
tries (Tartanian, BluffBot, and Hyperborean), 280 more du-
plicates matches were held in order to obtain statistical sig-
nificance. Based on this total of 300 duplicate matches, Tar-
tanian beat Hyperborean by 0.133±0.039 small bets, but lost
to BluffBot by 0.267± 0.032.

An interesting phenomenon was that Tartanian’s perfor-
mance against PokeMinn was significantly worse than against
any other opponent—despite the fact that PokeMinn fared
poorly in the competition overall. We manually investi-
gated the hand histories of this match-up and observed that
PokeMinn had a tendency to place bets that were partic-
ularly ill-suited to our discretized betting model. For ex-
ample, a common bet made by PokeMinn was putting in
144 chips pre-flop. As mentioned in Footnote 6, the version
of our player in the competition was using the simplistic
absolute rounding mapping and so it would treat this as a
pot-size bet. However, it actually makes much more sense
to treat this as an all-in bet since it is so large relative to
the size of the pot. We expect that our improved rounding
method based on relative distances, described in Section 4.2,
will appropriately handle this.

8. CONCLUSIONS AND FUTURE RESEARCH
We presented Tartanian, a game theory-based player for

heads-up no-limit Texas Hold’em poker. To handle the huge
strategy space of no-limit poker, we created a discretized
betting model that attempts to retain the most important
actions in the game. This also raised the need for a reverse
model. Second, as in some prior approaches to game theory-
based poker players, we employed automated abstraction
for shrinking the size of the game tree based on identi-
fying strategically similar card situations. Third, we pre-
sented a new technique for automatically generating the
performance-critical portion of equilibrium-finding code based
on data describing the abstracted game. The resulting player
is competitive with the best existing computer opponents.

Throughout, we made many design decisions. In this re-
search so far, we have made educated guesses about what
good answers are to the many questions. In particular, the
design of the discretized betting model (and reverse model)
and the choice of the number of buckets for each level of the
card abstraction were largely based on our own understand-
ing of the problem. In the future, we would like to auto-

mate this decision-making process (and hopefully get better
answers). Some concrete paths along these lines would be
the development of an automated discretization algorithm
for the betting model. This could attempt to incorporate
a metric for the amount that is lost by eliminating certain
strategies, and use this to guide its decisions as to what
strategies are eliminated from the model. Another research
direction involves developing a better understanding of the
tradeoffs between abstraction size and solution quality. We
would also like to understand in a more principled way how
to set the number of buckets for the different levels of the
abstracted card tree.
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Tartanian finished second.
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