Comparing Refinement Settings

Heiko Schmidt

Christian-Albrechts-Universität, Kiel, Germany

Copenhagen, 20 Sept. 2007

Motivation

Compare refinement settings, e.g. *Modal Transition Systems* (MTS) and *Disjunctive Modal Transition Systems* (DMTS)

- Can every set of TSs described by a DMTS also be described by an MTS?
- Can the refinement structure of MTS be embedded into DMTS?
- Which transformations between MTS and DMTS exist that preserve sets of implementations or refinement structure? What are their complexity?

Agenda

- compare refinement settings with respect to relative expressiveness
 - e.g., MTS, DMTS, mixed transition systems, modal automata, μ-automata, transition systems with ready, failure, ready trace, failure trace inclusion, ...
- discuss different comparison approaches via transformations
- present some comparison results

Refinement settings

Refinement settings

- a set of models
 - e.g. MTS
- a refinement preorder
- a distinguished subset of *concrete* models, called *implementations*
 - usually the smallest elements of the refinement preorder
 - usually correspond to (deterministic) transition systems
 - refinement preorder coincides with bisimulation equivalence
 - e.g. those MTS with equal may- and must transition relations

Refinement settings are preorders

- preorder induces partial order on refinement equivalence classes
- partial order can be drawn as a Hasse diagram:

- models: 1, 2, 3, A, B, C (refinement equivalence classes)
- implementations: A, B, C (bisimulation equivalence classes)
- refinement preorder (refinements by transitivity not drawn)

Implementations: TSs vs. deterministic TSs

• refinement settings, where the implementations are...

• (possibly nondeterministic) transition systems

nondeterminism of implementations is *persistent* (not *resolvable* by refinement)

deterministic transition systems

nondeterminism is resolvable by refinement

Implementations are (possibly nondeterministic) transition systems

Examples:

- MTS, DMTS, mixed transition systems
- μ -automata, modal automata
- a variant called one-selecting modal transition systems (1MTS) with an exclusive (XOR) interpretation of hypertransitions

Implementations are deterministic transition systems

Examples:

- transition systems with ready simulation
- transition systems with readiness, failure, ready trace, failure trace inclusion
 - *T*₁ refines *T*₂ iff every ready/failure/... trace of *T*₁ is a ready/failure/... trace of *T*₂
- MTS, DMTS, mixed transition systems, μ-/modal automata

Comparison

Elementwise comparison

- S_i: refinement settings
- elementwise comparison only makes sense, if the compared settings have the same models

Definition

 $S_1 \leq S_2$ iff every refinement pair in S_1 is a refinement pair in S_2

$$\begin{array}{rcl} S_1 \preceq S_2 & \Longleftrightarrow & \leq_{\mathcal{S}_1} \subseteq \leq_{\mathcal{S}_2} \\ & \Leftrightarrow & \forall M, M' : M \leq_{\mathcal{S}_1} M' \Rightarrow M \leq_{\mathcal{S}_2} M \end{array}$$

Elementwise comparison

- <u>≺</u>? Yes!
- \succeq ? No! 1 \leq_{S_2} 2, but 1 $\not\leq_{S_1}$ 2
- right setting is more expressive

Implementation-based comparison

Definition

 $S_1 \leq S_2$ iff for every model M_1 in S_1 there is a model M_2 in S_2 such that the set of implementations refining M_1 equals the set of implementations refining M_2

$$\begin{array}{ll} S_1 \preceq S_2 & \iff & \forall M_1 \in S_1 : \exists M_2 \in S_2 : impl(M_1) = impl(M_2) \\ & \iff & \exists f : S_1 \to S_2 : \\ & \forall M_1 \in S_1 : impl(M_1) = impl(f(M_1)) \end{array}$$

 such a function f is called *implementation-based* embedding

Implementation-based comparison

- <u>≺</u>? Yes!
- <u>≻</u>? Yes!
- settings are equally expressive

Preorder-based comparison: Homomorphism

Definition

- $S_1 \preceq S_2$ iff there is a *preorder-based homomorphism* $f: S_1 \rightarrow S_2$, i.e.,
 - *f* is monotonic, i.e., $\forall M_1, M'_1 : M_1 \leq_{S_1} M'_1 \Rightarrow f(M_1) \leq_{S_2} f(M_2)$
 - 2 *f* keeps implementations fixed, i.e., for all implementations I_1 , we have $I_1 \approx f(I_1)$
 - $\bullet \, \approx$ is usually bisimulation equivalence, which coincides with refinement on implementations
 - elementwise comparison is the special case f = id

Preorder-based comparison: Homomorphism

- ✓? Yes! id is a preorder-based homomorphism
 (this comparison is a generalization of the elementwise comparison!)
- Yes! *f* : 1 → 2, 2 → 2 is a preorder-based homomorphism
- settings are equally expressive

Preorder-based comparison: Embedding

Definition

 $S_1 \preceq S_2$ iff there is a *preorder-based embedding* $f: S_1 \rightarrow S_2$, i.e.,

- 2 *f* keeps implementations fixed, i.e., for all implementations I_1 , we have $I_1 \approx f(I_1)$
 - every preorder-based embedding is also an implementation-based embedding

Preorder-based comparison: Embedding

- \leq ? No! *id* does not work, because $1 \leq_{S_2} 2$. So try $f: 1 \mapsto 2, 2 \mapsto 2$? Does not work, because $C \leq_{S_2} 2$, but $C \not\leq_{S_1} 1$
- [▶] ? No! The homomorphism f: 1 → 2, 2 → 2 from before
 is no embedding, because C ≤_{S1} 2, but C ≤_{S2} 1
- settings are incomparable

What a mess!

- Elementwise comparison: right is more expressive
- Implementation-based approach: equally expressive
- Preorder-based homomorphism approach: right is more expressive
- Preorder-based embedding approach: incomparable

Applicability and applications

Elementwise comparison

- Pro: clear and simple definition
- Pro: checking refinement in a setting with less refinement pairs could be easier
- Con: only settings based on the same models can be compared
- Con: restriction to identity function, structures only isomorphic are not identified

Applicability and applications

Implementation-based comparison

- Pro: clear and simple definition
- Pro: suitable for applications that are based only on implementations (e.g. generalized model checking)
- Con: refinement structure not captured at all
- Pro: a change in the refinement structure can be desirable: checking thorough refinement $(impl(M_1) \subseteq impl(M_2)?)$: if checking approximated refinement fails in current setting \rightarrow apply a refinement-structure-changing transformation and re-check

Applicability and applications

Preorder-based comparison (homomorphism/embedding)

- Pro: takes refinement structures into account
 - important property of a refinement setting, e.g. for stepwise refinement or abstraction
 - algorithm/tool reuse (complexity!)
 - theoretical results carry over
- Con: definition more complicate:
 - implementations need to remain fixed... why?
 - existence of a homomorphism only... significance?

Some results

DMTS/1MTS

Heiko Schmidt Comparing Refinement Settings

DMTS/1MTS

- disjunctive modal transition systems (DMTS)
 - interpret hypertransitions disjunctively (OR)
- 1-selecting modal transition systems (1MTS)
 - interpret hypertransitions exclusively (XOR)
- Do we increase expressiveness using the alternative refinement?
- No wrt. implementation-based comparison (equally expressive)
- Yes wrt. preorder-based comparison

Some results

Comparison wrt. deterministic transition systems

Comparison wrt. deterministic transition systems

- various refinement settings
- implementations are deterministic transition systems
- implementation-based comparison

The preorder of refinement settings

Concluding remarks

Conclusion

- comparison via transformations is useful
 - for the theoretical understanding of refinement settings
 - for switching between settings to get the best of different settings: approximation to thorough refinement, algorithms, tools (*complexity!*)
 - to carry over theoretical results (e.g., non-existence)

Which comparison approach?

• elementwise comparison:

- clear and simple
- limited in application, because "transformation" must be id
- implementation-based comparison:
 - suitable for applications based only on implementations
 - suitable if it is desirable that the refinement structure changes (for a different approximation of thorough refinement)
- preorder-based comparison:
 - takes complete refinement preorder into account

Future Work

- Iots of work to do:
 - different comparison approaches (primarily implementationand preorder-based)
 - various refinement settings (weak refinement not considered so far)
 - implementations: deterministic or not
- understanding better the relevance of different comparison approaches
 - further applications for the different kinds of transformations?
 - is the requirement to keep implementations fixed always suitable?
 - any use for preorder-based homomorphisms?