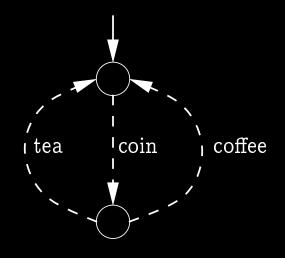
On Modal Refinement and Consistency

Kim G. Larsen, Ulrik Nyman and Andrzej Wąsowski

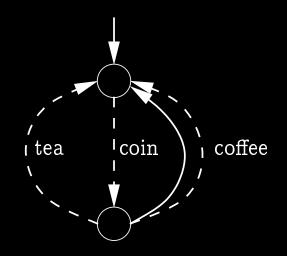
Aalborg University

1

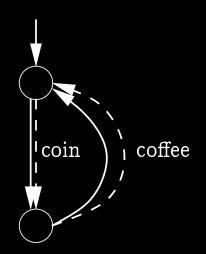
Modal Transition Systems



Modal Transition Systems



Modal Transition Systems



An implementation.

Outline

- Modal Transition Systems
- Part I: Refinement vs Implementation Inclusion
- Part II: Consistency
- Conjectures & Summary

Part I

Refinement
vs
Implementation
Inclusion

Def. Modal transition system $S = (states_S, \Sigma, \longrightarrow_S, \dashrightarrow_S)$

- *states*_S: a finite set of states
- Σ : an alphabet of actions
- $ullet \longrightarrow_{\mathsf{S}} \subseteq states_{\mathsf{S}} imes \Sigma imes states_{\mathsf{S}} \pmod{\mathsf{must}}$

Transition relations are finite.

Def. Modal transition system $S = (states_S, \Sigma, \longrightarrow_S, -\rightarrow_S)$

- states_S: a finite set of states
- Σ : an alphabet of actions
- $\longrightarrow_S \subseteq states_S \times \Sigma \times states_S \pmod{must}$
- $--+_S \subseteq states_S \times \Sigma \times states_S \pmod{p}$

Transition relations are finite.

Def. Modal Refinement $S \leq_m T$ iff for any $\alpha \in \Sigma$:

whenever $S_{-} \xrightarrow{\alpha} S'$ for some S' then for some T': $T_{-} \xrightarrow{\alpha} T'$ and $S' \leq_m T'$

whenever $T \xrightarrow{\alpha} T'$ for some T' then for some S': $S \xrightarrow{\alpha} S'$ and $S' <_m T'$

Generalizes simulation/bisimulation

Def. Modal Refinement $S \leq_m T$ iff for any $\alpha \in \Sigma$:

whenever $S \xrightarrow{\alpha} S'$ for some S' then for some $T': T \xrightarrow{\alpha} T'$ and $S' \leq_m T'$

whenever $T \xrightarrow{\alpha} T'$ for some T' then for some S': $S \xrightarrow{\alpha} S'$ and $S' \leq_m T'$

Generalizes simulation/bisimulation

Implementations

Def. A modal transition system I is an implementation iff $\longrightarrow_{I} = - \rightarrow_{I}$.

Note: refinements of I are bisimilar.

Def. Implementation Inclusion $S \subseteq_m T$ iff \forall implementations I $I \leq_m S$ implies $I \leq_m T$.

Implementations

Def. A modal transition system I is an implementation iff $\longrightarrow_{I} = - \rightarrow_{I}$.

Note: refinements of I are bisimilar.

Def. Implementation Inclusion $S \subseteq_m T$ iff \forall implementations I. $I \leq_m S$ implies $I \leq_m T$.

Def. A refinement \mathcal{R} is sound and complete wrt implementation inclusion if

$$SRT$$
 iff $S \subseteq_m T$.

Thm. Modal refinement is sound:

$$S \leq_m T$$
 implies $S \subseteq_m T$

Proof. Simple.

Def. A refinement \mathcal{R} is sound and complete wrt implementation inclusion if

SRT iff $S \subseteq_m T$.

Thm. Modal refinement is sound:

 $S \leq_m T$ implies $S \subseteq_m T$. Proof. Simple.

Thm. Modal refinement is incomplete Proof.

 $s \not\leq_m t$, while $\forall i.i \leq_m s \text{ iff } i \leq_m t$

Theorem.

- Establishing implementation inclusion is co-NP hard
- even for syntactically consistent systems $(--+)_S = \longrightarrow_S$.

Side note. Modal refinement is in P.

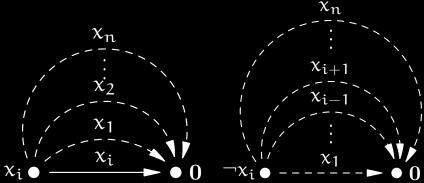
Proof. by reduction from validity checking (3-DNF-TAUTOLOGY).

Proof sketch.

- Construct T_{φ} (representing a tautology over $x_1 \dots x_n$)
- Construct S_{φ} (representing φ)

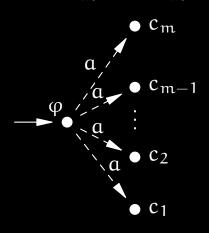
Such that true $\Longrightarrow \varphi$ is a tautology iff $[T_{\varphi}, true] \subseteq [S_{\varphi}, \varphi]$

Representing x_i Representing $\overline{x_i}$

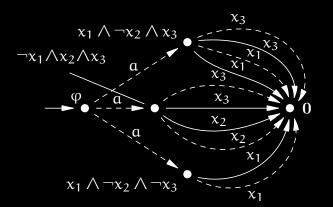


Combine to represent any satisfiable term.

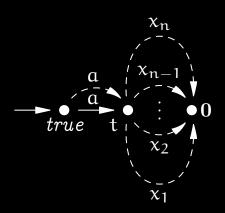
A DNF formula: $c_1 \lor c_2 \lor ... \lor c_{m-1} \lor c_m$.



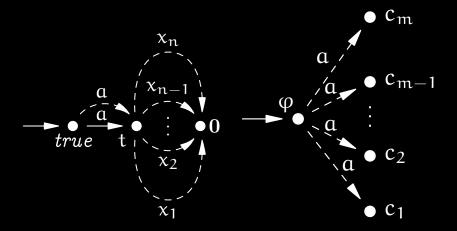
Reduction for $\varphi = (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land \neg x_3).$



A true formula over the same variables.



Implementation inclusion $\rightarrow \phi$ is valid.



Part II

Consistency

(*) Syntactic consistency: $\longrightarrow \subseteq --\rightarrow$

- No support for contradictions.
- Logic: consistency = existence of solutions under a satisfaction relation. Here:
 - refinement is satisfaction
 - ▶ implementations are solutions.
 - ► consistency: existence of implementation
- Characterize consistency using a computable criterion, like (*)

- (*) Syntactic consistency: → ⊆ -->
 No support for contradictions.
 - Logic: consistency = existence of solutions under a satisfaction relation. Here:
 - ► refinement is satisfaction
 - ▶ implementations are solutions.
 - ► consistency: existence of implementation
 - Characterize consistency using a computable criterion, like (*)

Def. Strong Consistency

A state S is strongly consistent iff there exists an implementation I such that

$$I \leq_m S$$
.

Computing Consistency

For $\sigma, \sigma' \subseteq states_S$ we write:

 $\sigma \xrightarrow{\alpha \mid S \mid} \sigma'$ iff $\exists s \in \sigma. \ \exists s' \in \sigma'. \ s \xrightarrow{\alpha} s'$

 $\sigma \xrightarrow{\alpha \mid S \mid} \sigma' \quad \text{iff} \quad \forall s \in \sigma. \, \exists s' \in \sigma'. \, s \xrightarrow{\alpha} s'$

(state sets are conjunctions of constraints)

Computing Consistency

Def. $\mathcal{B} \subseteq \mathcal{P}(states_S)$ is a strong consistency relation iff for all $a \in act$ and $\sigma \in \mathcal{B}$:

$$\forall s \in \sigma. \ s \xrightarrow{\alpha} s' \ \exists \sigma' \in \mathcal{B}.$$
$$\sigma \xrightarrow{\alpha \mid S \mid} \sigma' \ \text{and} \ \sigma \xrightarrow{\alpha \mid S \mid} \sigma' \ \text{and} \ s' \in \sigma'.$$

Thm. A state S is (strongly) consistent iff there exists a consistency relation with a class σ_s such that $S \in \sigma_s$.

Thm. Establishing strong consistency is NP-hard.

Proof. Reduction from 3-CNF-SAT.

Thm. A state S is (strongly) consistent iff there exists a consistency relation with a class σ_s such that $S \in \sigma_s$.

Thm. Establishing strong consistency is NP-hard.

Proof. Reduction from 3-CNF-SAT.

Consistency Results

Refinement	Lower bound	Upper bound
syntactic	linear	linear
strong	NP-hard	exp-time
weak	NP-hard	exp-time
may-weak	NP-hard	exp-time

Epilogue

Conjectures

- All consistencies are most likely PSPACE-complete (we have a proof sketch for the strong one).
- Establishing implementation inclusion is PSPACE-complete (currently working on this).

Summary

- Modal refinement is incomplete with respect to the implementation inclusion.
- Implementation inclusion is co-NP hard to establish.
- Characterized 4 consistencies
- All, but the syntactic one, are NP-hard.