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Theoretical Motivation

To deepen understanding of
feature models
To explore the relation between
logics and FMs
To characterize formulæ that are
FMs without leftover constraint
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visualizing constraints.
To support refactoring tools.
To support reverse engineering
FMs from code.
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1. Possibly no models
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Property The root of a feature tree

Test A variable r implied by all the
other variables:

for all i. φ → (fi → r)



Root Feature

Property The root of a feature tree

Test A variable r implied by all the
other variables:

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

body → car, gas → car, . . .



Feature Hierarchy

Property f is an ancestor of g (descendant)

Test Implication from descendant (g) to
ancestor (f)

g → f



Feature Hierarchy

Property f is an ancestor of g (descendant)

Test Implication from descendant (g) to
ancestor (f)

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

body → car, gas → car, . . .



Feature Hierarchy

Property f is an ancestor of g (descendant)

Test Implication from descendant (g) to
ancestor (f)

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

Direct links: transitive reduction



Mandatory Features

Property g is a mandatory subfeature of f

Test Biimplication between variables
corresponding to g and f

f → g



Mandatory Features

Property g is a mandatory subfeature of f

Test Biimplication between variables
corresponding to g and f

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

body → car, car → body, . . .



And Groups

Property g is a mandatory subfeature of f

Test Biimplication between variables
corresponding to g and f
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Or Groups

Recall that for an or-group:

φ → (f → f1 ∨ · · ·∨ fk)

But then also

φ → (f → f1 ∨ · · ·∨ fk ∨ g)

holds for g other than fi.



Or Groups

Implied disjunction can always be
weakened!
All implied disjunctions =
oversized and too-many or-groups
So detect minimal disjunctions

{fi}i=1..k is a prime implicant of f

(see the paper)
Prime implicants are well studied
in fault tolerance analysis
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Or Groups

Property Or-groups of features rooted in f

Test Find prime implicants of f

car
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manual ∧ electric ∧ gas → engine



Algorithm

1 if unstatisfiable then quit
2 remove & report dead features
3 compute implication graph & its

transitive reduction
4 find and-groups by contracting

cliques
5 find all or-groups and xor-groups

candidates



Contents

Motivation
Syntax & Semantics (going there)
Algorithm (going back again)
Concluding remarks



Discussion (I)

Constructs an overapproximation
(add a leftover constraint)
The graph constructed contains
maximum information (complete)

Implemented using BDDs,
algorithm by Coudert&Madre,1992
Efficient and scalable (computing
prime implicants is the bottleneck)
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Discussion (II)

Semantic operations on feature
models become logical operations
on corresponding formulæ

Merge: (φFM1 → r) ∧ (φFM2 → r)

Difference: φFM1 ∧ ¬φFM2

...



Future Work

Generalize the kind of models
extracted beyond FODA
Implement complex refactorings
using logical representations
Experiment with extracting models
from code



Summary

Successful exercise in semantics
Exhibited links between logical &
relational phenomena and FMs

implication graphs, transitive reduction,
cliques, prime implicants

Effective extraction procedure
Implemented
Suggested ideas for future work


