
Feature Diagrams & Logic
There and Back Again

Krzysztof Czarnecki
University of Waterloo

Andrzej Wąsowski
IT University of Copenhagen



Feature Models

car

Model variability & commonality.
Standard semantics:
φ(car, body, engine, gear, . . . )



Feature Models

car

power-lockskeyless-entrygearenginebody

Model variability & commonality.
Standard semantics:
φ(car, body, engine, gear, . . . )



Feature Models

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

Model variability & commonality.
Standard semantics:
φ(car, body, engine, gear, . . . )



Feature Models

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

Model variability & commonality.
Standard semantics:
φ(car, body, engine, gear, . . . )



Feature Models

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

Model variability & commonality.

Standard semantics:
φ(car, body, engine, gear, . . . )



Feature Models

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

Model variability & commonality.
Standard semantics:
φ(car, body, engine, gear, . . . )



Semantics

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

φ



Reverse Engineering Syntax

? φ



Reverse Engineering Syntax

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

φ



Reverse Engineering Syntax

a → c

a

b c

c

a

b

a

b c

a, c

b φ



Reverse Engineering Syntax

a

b c

φ



Contents

Motivation
Syntax & Semantics (going there)
Algorithm (going back again)
Concluding remarks



Contents

Motivation
Syntax & Semantics (going there)
Algorithm (going back again)
Concluding remarks



Theoretical Motivation

To deepen understanding of
feature models
To explore the relation between
logics and FMs
To characterize formulæ that are
FMs without leftover constraint



Applied Motivation

To visualize variability given as
systems of constraints.

To guide the user interactively in
visualizing constraints.
To support refactoring tools.
To support reverse engineering
FMs from code.



Applied Motivation

To visualize variability given as
systems of constraints.
To guide the user interactively in
visualizing constraints.

To support refactoring tools.
To support reverse engineering
FMs from code.



Applied Motivation

To visualize variability given as
systems of constraints.
To guide the user interactively in
visualizing constraints.
To support refactoring tools.

To support reverse engineering
FMs from code.



Applied Motivation

To visualize variability given as
systems of constraints.
To guide the user interactively in
visualizing constraints.
To support refactoring tools.
To support reverse engineering
FMs from code.



Contents

Motivation
Syntax & Semantics (going there)
Algorithm (going back again)
Concluding remarks



Syntax: Going There
f Solitary [1..1] → mandatory

f Solitary [0..1] → optional

f Solitary [0..1] → grouped

Group [1..1] → xor-group

Group [1..k] → or-group

φ Left-over constraints



Syntax: Going There
f Solitary [1..1] → mandatory

f Solitary [0..1] → optional

f Solitary [0..1] → grouped

Group [1..1] → xor-group

Group [1..k] → or-group

φ Left-over constraints



Syntax: Going There
f Solitary [1..1] → mandatory

f Solitary [0..1] → optional

f Solitary [0..1] → grouped

Group [1..1] → xor-group

Group [1..k] → or-group

φ Left-over constraints



Syntax: Going There
f Solitary [1..1] → mandatory

f Solitary [0..1] → optional

f Solitary [0..1] → grouped

Group [1..1] → xor-group

Group [1..k] → or-group

φ Left-over constraints



Syntax: Going There
f Solitary [1..1] → mandatory

f Solitary [0..1] → optional

f Solitary [0..1] → grouped

Group [1..1] → xor-group

Group [1..k] → or-group

φ Left-over constraints



Syntax: Going There
f Solitary [1..1] → mandatory

f Solitary [0..1] → optional

f Solitary [0..1] → grouped

Group [1..1] → xor-group

Group [1..k] → or-group

φ Left-over constraints



Semantics: Going There
a

b c d

e f

a

b c d

e f

∧

a

c

∨

e f



Semantics: Going There
a

b c d

e f

a

b c d

e f

∧

a

c

∨

e f

a

b c d

∨

e f

An implication (hyper)graph



Contents

Motivation
Syntax & Semantics (going there)
Algorithm (going back again)
Concluding remarks



Why Is It So Hard?
1. Possibly no models

corresponding to φ

2. Possibly many models
corresponding to φ

a → c

a

b c

c

a

b

a

b c

a, c

b

3. Brute-force infeasible



Why Is It So Hard?
1. Possibly no models

corresponding to φ

2. Possibly many models
corresponding to φ

a → c

a

b c

c

a

b

a

b c

a, c

b

3. Brute-force infeasible



Why Is It So Hard?
1. Possibly no models

corresponding to φ

2. Possibly many models
corresponding to φ

a → c

a

b c

c

a

b

a

b c

a, c

b

3. Brute-force infeasible



Root Feature

Property The root of a feature tree

Test A variable r implied by all the
other variables:

for all i. φ → (fi → r)



Root Feature

Property The root of a feature tree

Test A variable r implied by all the
other variables:

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

body → car, gas → car, . . .



Feature Hierarchy

Property f is an ancestor of g (descendant)

Test Implication from descendant (g) to
ancestor (f)

g → f



Feature Hierarchy

Property f is an ancestor of g (descendant)

Test Implication from descendant (g) to
ancestor (f)

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

body → car, gas → car, . . .



Feature Hierarchy

Property f is an ancestor of g (descendant)

Test Implication from descendant (g) to
ancestor (f)

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

Direct links: transitive reduction



Mandatory Features

Property g is a mandatory subfeature of f

Test Biimplication between variables
corresponding to g and f

f → g



Mandatory Features

Property g is a mandatory subfeature of f

Test Biimplication between variables
corresponding to g and f

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

body → car, car → body, . . .



And Groups

Property g is a mandatory subfeature of f

Test Biimplication between variables
corresponding to g and f

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

And-groups: cliques in the graph



Or Groups

Recall that for an or-group:

φ → (f → f1 ∨ · · ·∨ fk)

But then also

φ → (f → f1 ∨ · · ·∨ fk ∨ g)

holds for g other than fi.



Or Groups

Implied disjunction can always be
weakened!
All implied disjunctions =
oversized and too-many or-groups
So detect minimal disjunctions

{fi}i=1..k is a prime implicant of f

(see the paper)
Prime implicants are well studied
in fault tolerance analysis



Or Groups

Implied disjunction can always be
weakened!
All implied disjunctions =
oversized and too-many or-groups
So detect minimal disjunctions

{fi}i=1..k is a prime implicant of f

(see the paper)
Prime implicants are well studied
in fault tolerance analysis



Or Groups

Property Or-groups of features rooted in f

Test Find prime implicants of f

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

electric ∧ gas → engine



Or Groups

Property Or-groups of features rooted in f

Test Find prime implicants of f

car

power-lockskeyless-entrygearenginebody

electric gas manual automatic

keyless-entry→power-locks

manual ∧ electric ∧ gas → engine



Algorithm

1 if unstatisfiable then quit
2 remove & report dead features
3 compute implication graph & its

transitive reduction
4 find and-groups by contracting

cliques
5 find all or-groups and xor-groups

candidates



Contents

Motivation
Syntax & Semantics (going there)
Algorithm (going back again)
Concluding remarks



Discussion (I)

Constructs an overapproximation
(add a leftover constraint)
The graph constructed contains
maximum information (complete)

Implemented using BDDs,
algorithm by Coudert&Madre,1992
Efficient and scalable (computing
prime implicants is the bottleneck)



Discussion (I)

Constructs an overapproximation
(add a leftover constraint)
The graph constructed contains
maximum information (complete)

Implemented using BDDs,
algorithm by Coudert&Madre,1992
Efficient and scalable (computing
prime implicants is the bottleneck)



Discussion (II)

Semantic operations on feature
models become logical operations
on corresponding formulæ

Merge: (φFM1 → r) ∧ (φFM2 → r)

Difference: φFM1 ∧ ¬φFM2

...



Future Work

Generalize the kind of models
extracted beyond FODA
Implement complex refactorings
using logical representations
Experiment with extracting models
from code



Summary

Successful exercise in semantics
Exhibited links between logical &
relational phenomena and FMs

implication graphs, transitive reduction,
cliques, prime implicants

Effective extraction procedure
Implemented
Suggested ideas for future work


