
Feature Diagrams and Logics: There and Back Again

Krzysztof Czarnecki
University of Waterloo, Canada
kczarnec@swen.uwaterloo.ca

Andrzej Wąsowski
IT University of Copenhagen, Denmark

wasowski@itu.dk

Abstract

Feature modeling is a notation and an approach for
modeling commonality and variability in product fami-
lies. In their basic form, feature models contain manda-
tory/optional features, feature groups, and implies and ex-
cludes relationships. It is known that such feature models
can be translated into propositional formulas, which en-
ables the analysis and configuration using existing logic-
based tools. In this paper, we consider the opposite transla-
tion problem, that is, the extraction of feature models from
propositional formulas. We give an automatic and efficient
procedure for computing a feature model from a formula.
As a side effect we characterize a class of logical formulas
equivalent to feature models and identify logical structures
corresponding to their syntactic elements.

While many different feature models can be extracted
from a single formula, the computed model strives to ex-
pose graphically the maximum of the original logical struc-
ture while minimizing redundancies in the representation.
The presented work furthers our understanding of the se-
mantics of feature modeling and its relation to logics, open-
ing avenues for new applications in reverse engineering and
refactoring of feature models.

1 Introduction

Feature modeling is a family of notations and an ap-
proach for modeling commonality and variability in prod-
uct families [15, 11, 4]. In theirbasic form, feature mod-
els contain mandatory/optional features, feature groups,and
implies and excludes relationships [12]. As shown by Ba-
tory [4], such feature models can be translated into propo-
sitional formulas. The translation enables the analysis and
configuration using existing logic-based tools, such as SAT
solvers and Binary-Decision Diagram (BDD) libraries.

In this paper, we consider the problem of opposite trans-
lation, that is, the extraction of feature models from propo-
sitional formulas. We give an automatic and efficient pro-
cedure for computing a feature model from a formula. As a

side effect we characterize a class of logical formulas equiv-
alent to feature models and identify logical structures corre-
sponding to their syntactic elements. While many different
feature models can be extracted from a single formula, the
computed model strives to expose graphically the maximum
of the original logical structure while minimizing redundan-
cies in the representation. The computed model can then be
refactored to take into account additional concerns beyond
the logical structure.

The presented work furthers the understanding of the se-
mantics of feature diagrams and their relation to logic, en-
abling new applications in reverse engineering and refactor-
ing of feature models. The intended audience of this paper
are other researchers working with feature modeling and de-
velopers of feature modeling tools. The former shall benefit
from deepened exploration of the relation between logics
and feature models, the latter can learn a representation of
the semantics of a model that is well suited to guiding the
user during construction and refactoring of models.

We proceed as follows. Section 2 provides background
by describing basic feature models, their translation into
logics, implication graphs and BDDs. In Section 3 we dis-
cuss the requirements and challenges of extracting feature
models from formulas. We present an automatic extraction
procedure in Section 5 and analyze it in Section 6. In Sec-
tion 7 the applicability of the procedure and future work are
discussed. Sections 8–9 survey related work and conclude.

2 Background

2.1 Basic Feature Models

A feature model is a tree of features. An example is
shown in Figure 1. Table 1 summarizes the notation.

The root of the tree represents theroot feature(car). Re-
maining nodes representgrouped features(e.g., electric)
or solitary features(e.g., body). Solitary features can be
mandatory(body) or optional(e.g.,keyless entry). Grouped
features can be contained byxor-groups (e.g.,manualand
automatic) or by or-groups (e.g., electric and gas). Ad-
ditional constraints are specified aspropositional formu-

body

electric gas

engine

manual automatic

gear keyless
entry

power
locks

car

keyless_entry→ power_locks

Figure 1. A sample feature model

Table 1. Syntax of cardinality-based feature
models

Symbol Explanation

f

Solitary feature with cardinality[1..1], i.e.,mandatory
feature

f

Solitary feature with cardinality[0..1], i.e.,optional
feature

f
Grouped feature

Feature group with cardinality〈1–1〉, i.e. xor-group

Feature group with cardinality〈1–k〉, wherek is the
group size, i.e.or-group

las, using∨ (disjunction),∧ (conjunction),⊻ (exclusive-
or), ∧̄ (not-and or nand),→ (implication),↔ (equivalence),
and ·̄ (negation). In our example, we additionally assume
keyless_entry→power_locks.

A feature model represents a set ofconfigurations, each
being a set of features selected from a feature model accord-
ing to its semantics. The set of configurations represented
by a feature model can be described by apropositional for-
mula defined over a set of Boolean variables, where each
variable corresponds to a feature. The propositional formula
can be constructed as a conjunction of (i) implications from
all subnodes to their parents, (ii) additional implications
from parents to all their mandatory features, (iii) implica-
tions from parents to groups, and (iv) any additional con-
straints represented as propositional formulas.1 An impli-
cation from a parent featurep to its subfeaturesf1, . . . , fk

that form an or-group has the following form:

p →

_

i=1,...,k

fi (1)

Similarly, a parent featurep to its subfeaturesf1, . . . , fk

that form an xor-group is defined as follows:

p →

_

i=1,...,k

fi (2)

1We chose not to include the root feature as an additional argument in
the conjunction, i.e., the empty configuration is always a correct one.

As an example, consider a formula corresponding to fea-
ture model of Figure 1. For brevity, we have abbreviated
feature names to single letters, underlined in Figure 1.

qFM =
child-parent: (b → c) ∧

(n→ c) ∧ (e → n) ∧ (g → n) ∧
(r → c) ∧ (m → r) ∧ (a → r) ∧
(k → c) ∧
(p → c) ∧

mandatory: (c → b) ∧ (c → n) ∧ (c → r) ∧
or-group: (n → e ∨ g) ∧
xor-group: (r → m ⊻ a) ∧
additional: (k → p)

(3)

Any assignment of Boolean values to all features that makes
the propositional formula satisfied represents a correct con-
figuration of the feature model.

2.2 Conjunctive Normal Form
and Implication Hypergraphs

A propositional formula is inconjunctive normal form
(CNF) if it is a conjunction ofclauses, which are disjunc-
tions of literals (atoms or their negations). Any nonempty
clause can be converted into an equivalent implication in
one of the following three forms. A clause containing at
least a negative and a positive literal is converted as follows:

f̄1 ∨ . . . ∨ f̄m ∨ fm+1 ∨ . . . ∨ fm+n

≡ f1 ∧ . . . ∧ fm → fm+1 ∨ . . . ∨ fm+n

(4)

A clause with one or more positive literals is converted as:

f1 ∨ . . . ∨ fn ≡ true→ f1 ∨ . . . ∨ fm (5)

Similarly for a clause with one or more negative literals:

f̄1 ∨ . . . ∨ f̄m ≡ f1 ∧ . . . ∧ fm → false (6)

A conjunction of implications of the above form can be vi-
sualized as animplication hypergraph, in which nodes cor-
respond to variables and constants (true or false) while di-
rected hyperedges correspond to the implications. For ev-
ery hyperedge all sources are conjoined together and their
conjunction implies a disjunction of all the targets. As a
special case a binary edge corresponds to the usual binary
implication. Any formula can be visualized as an implica-
tion hypergraph in a sound and complete manner, using the
above translation and the standard translation to CNF.

Figure 2 shows an implication hypergraph for the feature
model of Figure 1, obtained directly from (3). Each implica-
tion of (3) is shown as a directed binary edge. The or-group
implication from (3) corresponds to the hyperedge fromn
to eandg. The xor-group implication is represented by two
hyperedges—observe that an xor-group is an or-group and
a mutual exclusion for every pair of group members. Logi-
cally, mutual exclusion between featuresm anda is repre-
sented using the nand-operatorm∧̄a, which is equivalent to

c

b n r k p

• •

e g m a•

0

Figure 2. An implication hypergraph for the
feature model in Figure 1

m̄ ∨ ā. This, in turn, is represented by a hyperedge fromm
anda to the special node0 representingfalse.

Another useful concept is that of animplication graph,
which is similar to the implication hypergraph except that
it only shows binary edges. More precisely, an implication
graph of a formulaϕ over f1, . . . , fn is a directed graph
G(V,E) such that the set of vertices contains all variables,
and there is an edge from variablefi to variablefj iff fi

impliesfj , assuming formulaϕ. Formally:

V = {f1, . . . , fn} E = {(fi, fj) | ϕ ∧ fi → fj} (7)

2.3 Binary Decision Diagrams

A propositional formulaϕ overn variables represents a
binary function{0, 1}n → {0, 1}. Binary functions can be
efficiently stored, analyzed, and manipulated using a class
of data structures commonly referred to asbinary decision
diagrams(BDDs). BDDs are widely used in hardware syn-
thesis and model checking. Since our algorithm, presented
later, relies on BDDs, we introduce them briefly here. For
more information see, e.g., [8, 3, 17].

Any binary function can be represented using abinary
decision tree(BDT). An example of BDT representing the
binary function described by the formula(k → p)∧(p→ c)
is shown Figure 3. The formula corresponds to the fragment
of the implication hypergraph from Figure 2 involving the
featuresc, k, andp. Each non-terminal node in a BDT has
a low edge(dashed line) and ahigh edge(solid line). Any
variable assignment corresponds to a path from the root to a
terminal node in a BDT. If a given variable is assigned0, the
low edge of the corresponding node is taken. Similarly, if a
variable is assigned1, the high edge is taken. The resulting
value for the assignment is given by the terminal node at the
end of the path, which is either0 or 1. A BDT essentially
represents the entiretruth tableof a binary function and its
size is exponential in the number of variables.

c

p p

k k k k

1 0 0 0 1 0 1 1

Figure 3. A sample BDT for a fragment of the
feature model in Figure 1

Looking at the BDT in Figure 3, we realize two sources
of redundancies, which bloat the representation:

1. Some nodes have no influence on the outcome of the
function; e.g., the value ofk in the rightmost node la-
beled with that variable from the left in Figure 3 has no
influence on the function outcome since both its low
and high edges point to the terminal0.

2. The tree contains many duplicate subtrees; e.g., the
subtrees rooted in the first and the third node labeled
with k from the left are identical; also, the terminal
nodes are duplicated multiple times.

Removing the above redundancies by introducing node
sharing results in the graph shown in Figure 4, which is
an example of areduced ordered binary decision diagram
(ROBDD) [8]. Although several types of BDDs exist,
the termBDD is usually just an abbreviation forROBDD,
which also applies to the rest of this paper.

Thus, a BDD can be thought of as a compressed repre-
sentation of a binary function. While the size of a BDT only
depends on the number of variables, the size of a BDD usu-
ally depends both on the binary function and thevariable
ordering(which isk < p < c in Figure 4) in a rather unpre-
dictable way. Still, the BDD size never (asymptotically) ex-
ceeds the size of the corresponding BDT. While computing
an optimal ordering for a given function is an NP-hard prob-
lem, efficient heuristics exist. As a result, many practically
important boolean functions can be efficiently represented
as BDDs, which has been amply demonstrated in hardware
synthesis, software verification, fault tolerance analysis and
constraint programming.

Canonicity is another important property of BDDs
(shared with BDTs): equivalence of two formulas can be
established by checking that their BDD representations for
a fixed variable ordering are identical. If properly imple-
mented, such check only takes constant time. Checks of
many other properties, such as satisfiability, tautology, or
counting the number of solutions, and many operations like
computing the conjunction or disjunction of two BDDs, can
be performed in at most polynomial time with respect to
the sizes of the BDDs involved. Moreover efficient opti-
mized implementations are provided by off-the-shelf BDD
libraries (e.g. Buddy, JavaBDD, JDD, CUDD).

c

p p

k

0 1

Figure 4. A sample BDD corresponding to the
BDT in Figure 3

3 Feature Model Extraction:
Challenges and Requirements

We have already given semantics to feature diagrams us-
ing boolean logic. Let us now begin discussing challenges
and requirements for the reverse process, namely translation
of formulas to feature diagrams.

The sample feature model in Figure 1 and its implication
hypergraph in Figure 2 have a clear structural correspon-
dence. This correspondence suggests the possibility of ex-
tracting a feature model from a formula by first extracting
an implication hypergraph and then recognizing the various
feature relationships in that hypergraph. For example, an
optional subfeature will have a binary implication edge to
its parent; a mandatory subfeature will have both a binary
implication edge to and from its parent; and each member of
an or-group will have a binary implication edge to its parent,
and all the members will be targets of a single implication
hyperedge from the parent.

The general idea of extracting a feature model from a
formula faces several challenges and these challenges be-
come apparent when we consider the extraction process via
implication hypergraphs.

• Challenge 1: Many different feature models can be ex-
tracted from one formula.As an example, consider
the implication hypergraph in Figure 5(a). Looking at
the graph, we immediately recognize the pattern for
an or-group. As a result, we can draw the equivalent
feature model in Figure 5(b). Since the implication
from b to c cannot be accommodated by the feature
tree, it is shown as an additional constraint. However,
further analysis of this feature model reveals thatc is
part of every correct configuration. Consequently, fea-
ture models in Figures 5(c) and 5(d) are also equivalent
to the implication hypergraph in Figure 5(a).

• Challenge 2: Showing all implied relationships and
groups can be overwhelming to the user.The exam-
ple in Figure 5 demonstrated that we might not want
to show all the groups that are implied by the impli-
cation hypergraph since the same information may al-

ready be visualized by a simple feature model (e.g.,
Figure 5(d)). Similarly, while binary edges in the im-
plication graph may be shown as subfeature relation-
ships in a feature model, the transitivity of implication
results in many more binary edges that we might want
to show in a feature model (e.g., see Figure 6). An
approach to extracting feature models from formulas
will have to be selective about which potential edges
and groups to show.

• Challenge 3: Logical structure is not the only struc-
turing criterion for feature models.While the propo-
sitional formula produced from a feature model as de-
scribed in Section 2.1 captures all the correct feature
configurations of the feature model, it does not con-
tain all the information about the structure of the dia-
gram. For example, since a mandatory feature is log-
ically equivalent to its parent, both the feature model
in Figure 5(c) and the one in Figure 5(d) are logically
equivalent, in the sense of denoting the same set of
configurations. However, we would often insist on a
particular feature being the mandatory subfeature of
another feature in order to convey additional ordering
and grouping information. For example, as bothcar
and body are logically equivalent in Figure 1, either
one could be the parent of the other without affecting
the set of correct configurations. However, we clearly
wantbodyas the subfeature ofcar in order to express
the part-of relationship. Consequently, the automatic
extraction can only be partial in the sense that the user
will likely need to do further restructuring in order to
account for the additional information.

• Challenge 4: Brute force search for an optimal fea-
ture model will not scale.Since there are many equiv-
alent feature models that can be extracted from a for-
mula, the extraction algorithm will need to favor some
form of minimality of the result. The latter is clearly
connected to the problem of minimization of proposi-
tional formulas, which is known to be NP-complete.
Thus, the algorithm will have to be carefully designed
to avoid potential exponential blow-up.

Based on the first three challenges above, we conclude
that a practical approach to feature model extraction from
propositional formulas will have to be a combination of an
automatic procedure and interactive user involvement. In
the following sections, we give an automatic extraction pro-
cedure with the following properties:

• Maximality property: The resulting feature model
graphically exposes maximum of logical structure.For
example, while the feature model in Figure 5(b) still
needs an additional textual constraint, the equivalent
feature model in Figure 5(e) visualizes the complete

a

b c

•

(a)

b c

a

b → c
(b)

b

a

c

(c)

b c

a

(d)

b

a,c

(e)

Figure 5. An implication hypergraph and its
equivalent feature models

a

b c

d e f g

h i j k

Figure 6. A transitively closed implication
graph

logical structure without any additional constraints. In
general, as shown in Section 2.2, additional constraints
may be unavoidable since a feature model expressed in
the notation from Section 2.1 cannot capture all hyper-
edges (only binary edges arranged hierarchically and
the limited forms of hyperedges in groups can be cap-
tured). However, as much logical structure as possible
should be visualized.

• Minimality property: The resulting feature model
avoids redundancy in the representation.For exam-
ple, in Figure 5(d), althoughb andc are clearly in an
or-group relationship with respect toa, showing that
group in addition to what is already in the diagram
would not add any new information.

• Uniqueness property: Logically equivalent formulas
lead to the same feature diagram.We want the proce-
dure to be deterministic in order to minimize surprises.

The automatically produced feature model is intended as
a starting point for further refactoring by the user.

4 Traits of Feature Models in Formulas

Before giving the actual feature model extraction algo-
rithm in Section 5, we discuss the key ideas behind the algo-
rithm. In particular, we describe how to detect the traits of

a

b c

d

(a) Implication graph

a

b c

d

(b) Corresponding feature
model

Figure 7. Node sharing in the generalized no-
tation

feature model syntax, such as the feature hierarchy, manda-
tory and optional features, and or- and xor-groups, given a
logical formulaϕ over variablesf1, . . . , fn.

Existence of configurations Let us begin with a simple
observation that an unsatisfiable formula, or a formula that
describes no legal configurations, cannot possibly be repre-
sented as a feature model. So the most fundamental charac-
teristics of a formulaϕ that can embed a feature diagram is
thatϕ is satisfiable. Any algorithm for extraction of feature
trees fromϕ should establish its satisfiability, as otherwise
it could create an ill-formed feature model that does not al-
low any configurations (not even the empty configuration).

Dead features A given featuref is dead [5] if it is not
present in any configurations of the feature diagram. Dead
features are usually caused by modeling errors and should
not be present in well formed feature models. Dead fea-
tures have their counterpart in the logic formulas—they cor-
respond to variables that are always assigned false:

{f | ϕ→ f̄} (8)

All the variables in the above set should not participate in
any of the well-formed features models derived fromϕ.

Feature hierarchy As we have seen in Section 2.1, a
parent–child relationship in a feature tree corresponds to
a child–parent implication in logics. Consequently the
edges of a feature tree overlap with implications among the
variables ofϕ, while the implication graphG(V,E) of ϕ
(see (7)) overapproximates the edges of a feature diagram
in the sense that a feature tree is its spanning tree. Ifϕ
describes a feature model, thenG will only have onesink
(a vertex with no outgoing edges) and there will be a path
from any feature to this sink. For an arbitrary formula the
graph may be disconnected and may have multiple sinks.
Because of the transitivity of implication,G will have po-
tentially a large number of implied edges, many of which
unlikely candidates for feature tree arcs. Because of this is
the minimality property from Section 3, we will only con-
sider thetransitive reductionof G.

c,b,n,r

e g m a p

k

Figure 8. The reduced implication graph for
the feature model of Figure 1

Furthermore, bothG and its transitive reduction may not
be a tree, but a directed graph, and, thus, the transitively
reduced version ofG may have multiple spanning trees.
Since there is no clear criteria for favoring one spanning tree
over another and because of the desired uniqueness property
(Section 3), we avoid the problem by assuming the entire
transitively reducedG after cycle removal (described in the
next paragraph) to be the feature hierarchy. Consequently,
the feature hierarchy of the computed feature model may
not be a tree, but it is guaranteed to be a directed acyclic
graph (DAG), and thus the original feature modeling nota-
tion from Section 2.1 needs to be slightly generalized by
allowing node sharing. Figure 7 gives an example how an
implication graph being a DAG can be visualized as a fea-
ture model using the generalized notation.

And-groups According to Section 2.1 an and-group with
parentf and childrenf1, . . . fl entails implications from the
parentf to childrenfi and vice-versa. Due to transitivity of
implication we have that for anyi, j = 1 . . l variablefi im-
pliesfj . And-groups thus manifest themselves ascliquesin
the implication graph ofϕ (a clique is a subgraph in which
any two vertices are connected by an edge). Candidates for
maximal and-groups can be found by identifying maximal
cliques. These can then be replaced by and-groups. Figure 8
shows the transitive reduction ofG after cycle removal. The
graph contains one and-group gathering the featuresc, b, n,
andr. Following the convention introduced in Figure 5(e),
an and-group is visualized using a single node.

Mandatory features Mandatory features are logically in-
distinguishable from and-group members. All mandatory
subfeatures of a feature collapse into a single and-group.

Or-groups An or-group with parentf and members
f1, . . . fk gives rise to the implication

f → f1 ∨ · · · ∨ fk (9)

Recall that adding new terms to a disjunction weakens
the formula (the set of solutions increases). Thus, if the
above implication holds, so domanyother implications with
disjunctions comprising supersets off1, . . . , fk enriched

with arbitrary literals, e.g,f → f1 ∨ · · · ∨ fk ∨ fk+1. Con-
sequently, we want to find all theminimal disjunctions of
features implied by a parent.

More precisely, given the parent featuref and all its chil-
dren f1, . . . , fl, we want to find all minimal disjunctions
f1 ∨ · · · ∨ fk of a subset off1, . . . , fl for which the follow-
ing formula is a tautology:

ϕ→ (f → f1 ∨ · · · ∨ fk) (10)

Each of the disjunctions should be minimal in the sense that
removing any literal from the disjunction would invalidate
the above formula. Furthermore,f1, . . . , fl are children of
f in G after cycle removal but before transitive reduction,
so that all potential groups are detected.

It turns out that such minimal disjunctions can be com-
puted by computing so calledprime implicantsof a formula.
An implicant of a formulaϕ′ is a conjunction of literals
l1 ∧ . . . ∧ ln such thatl1 ∧ . . . ∧ ln → ϕ′ is a tautology. A
prime implicant is an implicant that cannot be reduced by
removing literals from it, in the sense that the resulting con-
junction would not be an implicant ofϕ′. As prime impli-
cants are widely used in reliability analysis and in hardware
synthesis, several efficient methods for computing them ex-
ist [10, 16] and can be used in tools to identify or-groups.

In order to see how finding prime implicants identifies
or-groups, consider a slight transformation of formula (10):

ϕ→ (f → f1 ∨ · · · ∨ fk)

≡ ϕ→ (f̄ ∨ f1 ∨ · · · ∨ fk)

≡ ϕ̄ ∨ f̄ ∨ f1 ∨ · · · ∨ fk

≡ f̄1 ∧ · · · ∧ f̄k → ϕ̄ ∨ f̄

(11)

where the last line above is equivalent to

f̄1 ∧ · · · ∧ f̄k → (ϕ→ f̄) (12)

Thus, we can find all (minimal) or-groupsf1, . . . , fk of
f by computing all prime implicants ofϕ → f̄ and select-
ing those that contain only the negated children off . We
additionally need to filter out the prime implicants that are
inconsistent withϕ, i.e., those for which̄f1 ∧ · · · ∧ f̄k ∧ ϕ
is not satisfiable, since they are actually or-groups oftrue.
These groups could also be visualized if we choose to in-
clude an additional node corresponding totrue in the com-
putation of the implication graph.

Since several minimal or-groups implied byϕ can over-
lap and we have no good way to automatically prefer
one over another, the generalized feature notation used for
showing the extracted feature model allows for overlapping
groups (see Figure 9).

Xor-groups Every xor-group is an or-group, which can
be characterized by prime implicants as described above,

a

b c d e

(a) Common parent

a

b c

d e f g

(b) Different parents

Figure 9. Group overlap in the generalized
notation

c,b,n,r

m a e g p

k

Figure 10. Extracted feature model

and that additionally requires that its members are mutually
exclusive. Thus, if a prime implicant identifies an or-group
with membersf1, . . . , fk, and it also holds that

∀i = 1 . . k.∀j = 1 . . k, i 6= j. ϕ→ fi∧̄fj (13)

thenfi’s form an xor-group.

Optional features A featureg is an optional subfeature
of f iff g → f holds andf → g does not.

5 The Algorithm

Characterizations of previous section are used in the al-
gorithm reconstructing feature models from formulas (see
Figure 11). For a formulaϕ over a set of boolean variables
F = {f1, . . . , fn} the algorithm creates an augmented im-
plication graphG over live features inF . This graph com-
bined with a suitable left-over constraint is equivalent toϕ.
If the original formula represented a simple feature model,
then the feature graph is a tree corresponding to the model.

The algorithm follows the scheme of Section 4. We be-
gin with checking satisfiability ofϕ (line 1), and removing
all dead features (2–4). Then an implication graph is con-
structed (5–7). Subsequently cliques in the graph need to be
identified in order to extract the and-groups. In general find-
ing maximal cliques is an NP-hard problem, as a graph can
contain exponentially many of them [19, Section 6.1]. For-
tunately due to transitivity of implication, maximal cliques
are actually strongly connected components in the implica-
tion graph, which can be found efficiently by graph traver-
sal, for example breadth-first search (lines 8-9).

FEATURE-GRAPH(ϕ : formula)

1 if not SAT(ϕ) then quit with an error.

2 � Find and remove all dead features
3 D = {d1, . . . , dm} ← all fi ∈ F such thatϕ→ f̄i

4 ϕ← ∃d1, . . . , dm. ϕ

5 � Compute the implication graphG(E, V)
6 V ← F −D
7 E ← {(u, v) ∈ V × V | ϕ ∧ u→ v}

8 � Compute strongly connected components of G
9 C ← a set of SCCs inG

10 � Contract SCCs inG creating and-groups
11 do for c ∈ C do let f be a fresh node
12 V ← V ∪ {f} − c
13 E ← {(u, v) ∈ E | u /∈ c ∧ v /∈ c} ∪
14 ∪ {(u, f) | ∃v.(u, v) ∈ E} ∪
15 ∪ {(f, v) | ∃u.(u, v) ∈ E}

16 � G is acyclic (a DAG) at this point.
17 � Compute OR-groups and XOR-groups
18 for eachf ∈ V
19 do for eachprime f̄1 ∧ ... ∧ f̄k of ϕ→ f̄
20 do if SAT(f̄1 ∧ · · · ∧ f̄k ∧ ϕ)
21 then Let f be a fresh node
22 V ← V ∪ {f}
23 E ← E ∪ {(f1, f)}
24 ∪ {(f, fi) | i = 1...k}
25 if f2, . . . , fl satisfy (13)
26 then markf as an XOR node

27 Compute the unique transitive reduction ofG.

Figure 11. Extraction of a feature model

In lines 10–15 the connected components are contracted
to single nodes. These new nodes represent groups of fea-
tures that always need to be present together. A tool can
later decide to render such nodes as and-groups.

In lines 16–26 or-group candidates are identified by
searching for prime implicants. For each or-group a fresh
node representing it is created, with implications from par-
ent features to the node and from the node to the group
members. A modeling tool can later decide to render such
nodes as or-groups. All or-group nodes are tested whether
they are not xor-groups and marked accordingly (25–26).

Finally standard transitive reduction techniques [1, 18]
are applied to the graph. The result is uniquely determined
as our graph is acyclic at this point, after the cliques had

been contracted. Even though visualizations of reduced
graphs are much easier to comprehend, this step is optional.
Some non visual tools may need to access all implications.

Figure 8 presents an implication graph for the model of
Figure 1, after the clique contraction, but before or-groups
have been identified. Only a transitive reduction of the
graph is shown, to avoid clutter. Figure 10 shows the final
graph rendered as a feature model.

Observe that there is no need to detect optional features.
All features in singleton groups are optional. Otherwise
they would be identified as parts of cliques and contracted.

5.1 BDD-based Implementation

Our algorithm utilizes several operations on logical for-
mulas: satisfiability and tautology checks, compositions
with basic connectives and the computation of prime im-
plicants. In order to implement it, one needs a representa-
tion for logical formulas that can support these operations
efficiently. Binary decision diagrams, introduced in sec-
tion Section 2.3, are one such representation. Once a for-
mula is translated into a BDD using standard techniques
[8, 3, 17] a SAT and TAUTOLOGY checks can be performed
in constant time. A check whether an implication of a literal
holds takes linear time in the size of the BDD.

On top of the above operations we use two non-standard
algorithms on BDDs to implement lines 3, 7, 19 and 25.
Consider line 7 as an example—finding implications from
every feature. The most direct solution would be to use lin-
ear time to compute BDDs representingϕ∧ fi → fj for all
pairs of variables inF , which would costO(|F |2 · |ϕ|) time.
Instead we construct BDDs representingϕ ∧ fi for each
of the linearly manyfi’s and compute VALID -DOMAINS

[13, 14] for variables in these BDDs.
A valid domainfor a variablef given a formulaϕ is the

set of values thatf can assume in satisfiable assignments of
ϕ. Using the VALID -DOMAINS algorithm we can decide all
the variables that are implied byf by just computing valid
domains ofϕ ∧ f once. All variables whose valid domain
only containstrueare implied byf . For a formula encoded
as a BDD valid domains can be computed in time linear
in the size of the BDD [13]. The entire graph can be built
in O(|F | · |ϕ| + |F |2) time, where|ϕ| denotes the size of
the BDD representingϕ. A similar trick is used to increase
efficiency in lines 3 and 25.

Line 19 is concerned with computing prime implicants.
Already in 1992 Coudert and Madre [10] have proposed
an efficient symbolic algorithm for computing prime impli-
cants of a formula represented as a BDD. This algorithm is
easily modified to only return implicants containing neg-
ative terms. The implicants are themselves stored sym-
bolically in another BDD, which allows the procedure to
terminate even though the number of the implicants could

be prohibitive to represent them explicitly. This is particu-
larly useful for our algorithm as one can compute the BDD
of prime implicants and query it for the number of impli-
cants (this a linear time operation) and only after that de-
cide whether she wants to visualize all of them as potential
or-groups. If the amount of information passed to the user
exceeds certain size limits it is probably wiser not to present
it at all. Obviously this can only happen if the formula we
analyze does not represent a feature model and has a very
complex structure.

The decision to use BDDs in our implementation was
grounded in our previous experience, availability of good
BDD libraries, and easily available literature, andnot in-
herently in the algorithm. Any other representation for for-
mulas supporting the required operations could have been
used instead. Alternatively search-based techniques of SAT-
solving could likely be applied. All our operations, includ-
ing computing prime implicants [16] can in principle be
implemented using a SAT-solver and several standard tech-
niques for manipulating CNF representations. We have not
tried this possibility though, and thus we cannot comment
on difficulty or efficiency of such a solution.

6 Analysis

We have implemented our algorithm using the open
source JavaBDD library and the popular Graphviz package.
Implementation and testing cost less than a week of work of
a full-time programmer. With this prototype we have suc-
cessfully reconstructed several feature models, confirming
practically that the algorithm works and can be used to pro-
duce successful visualizations. In the rest of the section,we
analyze some of the key properties of the algorithm.

Reconstruction of Feature Models Our algorithm suc-
cessfully constructs feature models for formulas that actu-
ally describe them. More precisely it constructs a tree with
additional nodes for feature groups that can be straightfor-
wardly translated into a regular feature model syntax.

If the output of the algorithm is not a feature tree with
semantics equivalent toϕ (but a directed acyclic graph with
semanticsimpliedby ϕ) thenϕ is a formula that cannot be
directly represented as a feature tree. The relation between
feature models and combinatorial logical formulas has been
known for a long time now, but to our best knowledge this
is the first attempt ever to describe a subclass of formulas
directly equivalent to feature diagrams.

The graph constructed by the algorithm has several
pleasant properties itself, and we think that, accompanied
with a BDD, it can in itself be useful as an internal repre-
sentation of the problem in feature modeling and refactor-
ing tools. Having such a graph at hand the tool can propose
refactorings that go beyond the simple catalog of [2].

Quality of the constructed graph The graph constructed
by our algorithm iscompletein the sense that it contains
all and-group, or-group and xor-group candidates. It indi-
cates all possible parent-child relationships and all possible
optional subfeature relationships. Thus a tool using the al-
gorithm can provide a maximum guidance to the user con-
structing a feature tree.

Our graph is also a safe overapproximation of the origi-
nal formula, meaning that it is never ruling out any configu-
rations allowed by satisfiable assignments ofϕ. The graph
can always be constrained further using a propositional con-
straint, so that the resulting graph allows the same amount
of configurations as the feature tree allowed (the translation
of the graph to logics is done using the same rules as for fea-
ture models, mentioned in Section 2.1). This additional for-
mula can be obtained automatically by simplifyingϕ with
respect to a formulaψ resulting from translating the graph
back to logics. One way to obtain this simplification is to
use the algorithm for simplifying BDDs [9, 3], translating
them back to a propositional formula and using a generic
formula simplifier.

Consequently the interactive editor for feature models
can use the computed graph to guide user safely, without
risking that some originally planned configurations are re-
moved. The tool can either synthesize the left-over con-
straintψ automatically or let the user do it, verifying only
whether conjoined with the semantics of the model it is
equivalent to the input formula.

Performance Assume that the formulaϕ is represented
as a BDD of size|ϕ|. In the worst case|ϕ| is exponen-
tially larger than the syntactic representation ofϕ, however
BDDs are known to handle many classes of formulas ex-
tremely well, in particular also those that occur in configu-
ration problems [14]. With BDDs the satisfiability check in
line 1 is constant time [8]. Lines 3-4 can be implemented
in O(|ϕ| + |F |) time using a VALID -DOMAINS algorithm
[13]. We use the same algorithm to compute the implication
graph in line 7–8, obtaining complexity ofO(|F |ϕ+ |F |2)
as described in Section 5. Strongly connected components
are found using graph search, typically inO(|E|+|V |) time,
so in our case at mostO(|F |2) time if the graph is very
dense. Typically product configuration graphs are sparse,
giving an algorithm that is linear in|F |. La Poutré and van
Leeuwen [18] give an incremental algorithm for computing
transitive reduction inO(|E| · |V |) time. Which isO(|F |2)
for sparse graphs.

The most expensive step in our algorithm is the compu-
tation of prime implicants. Coudert and Madre [10] give
two procedures for this problem, labeled IP1 and IP2. IP2
is said to be polynomial in|ϕ|, which allows us to make
a claim that the entire algorithm of Fig. 11can be imple-
mented in time polynomialin |ϕ|. However IP1 is reported

to perform better on practical problems, so our prototype is
actually using it.

7 Suggestions for future work

We see two main categories for future work: (i) appli-
cations of the presented concepts and (ii) extensions of the
concepts.

Applications The original motivation for this work was
the desire to support potentially complex refactorings such
as merging of feature models and extraction of views on a
feature model. During that work we have realized that while
the semantics of refactorings can naturally be captured in
terms of operations on logical formulas, we did not have a
way to translate the results back to feature models. While
the presented work provides a step towards such a support
for refactoring, several challenges remain. In particular,
ways to take additional structuring information such as pre-
ferred feature ordering and grouping into account need to
be investigated.

Another application for this work is reverse engineer-
ing of feature models from formulas that were not obtained
from other feature models, but, for example, reverse engi-
neered from code. At this point however it is unclear how
satisfying the structure computed by the algorithm would be
for the users of such applications. We envision that reverse
engineering tools will need to cast the reconstruction as an
interactive process using the computed graph as a knowl-
edge base for a guidance heuristics.

Also, the combination of the extraction procedure with
the refactorings described in [2] needs to be investigated.

Extensions In this paper, we only consider a basic nota-
tion similar to the original FODA notation [15]. We still
need to investigate how general n-to-m groups can be ef-
ficiently detected. An even more ambitious project would
attempt the treatment of models with feature replication.

8 Related work

The relation between feature models and propositional
logic has been studied by several authors, including Batory
[4], Bontemps et al. [7], and Wei Zhang and colleagues
[21]. The connection between feature models and logic has
led to the application of existing logic-based tools to support
feature configuration and feature model debugging. For ex-
ample, Batory [4] explores the use of SAT solvers for that
purpose. Van der Storm [20] considers BDD packages, and
Benavides with colleagues [6] uses constraint solvers for
the same purpose.

All these consider the translation of feature models into
logic and we are not aware of any work on extracting feature
models from formulas.

9 Conclusion

We have furthered the understanding of the connection
between feature models and logics by studying the problem
of extracting feature models from logical formulas. In par-
ticular, we have identified the challenges of feature model
extraction and presented an algorithm for extracting a fea-
ture model that visualizes the maximum of the formula’s
logical structure while avoiding redundancy. The resulting
feature model is identical for any equivalent formulas. We
have also characterized the limited expressiveness of feature
models compared to propositional logic via the concept of
implication hypergraphs. Finally, we have suggested sev-
eral directions for future work, such as exploring the appli-
cation of the presented concepts in feature model refactor-
ing and reverse engineering, considering additional aspects
beyond logical structure, and treating more general feature
model notations.

References

[1] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive
reduction of a directed graph.SIAM Journal on Computing,
1(2):131–137, 1972.

[2] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and
C. Lucena. Refactoring product lines. InGPCE ’06: Pro-
ceedings of the 5th international conference on Generative
programming and component engineering, pages 201–210.
ACM Press, 2006.

[3] H. R. Andersen. Binary Decision Diagrams. Depart-
ment of Information Technology, Technical University of
Denmark, Lyngby, Denmark, 1997. Lecture notes for
49285 Advanced Algorithms E97,http://www.itu.
dk/people/hra/notes-index.html.

[4] D. S. Batory. Feature models, grammars, and proposi-
tional formulas. InSoftware Product Lines, 9th Interna-
tional Conference, SPLC 2005, Rennes, France, September
26-29, 2005, Proceedings, volume 3714 ofLecture Notes in
Computer Science, pages 7–20. Springer, 2005.

[5] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Segura.
A survey on the automated analyses of feature models.
In J. Riquelme and P. Botella, editors,JISBD 2006: XV
Jornadas de Ingeniería del Software y Bases de Datos,
Barcelon, 2006.

[6] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated
reasoning on feature models. InProceedings of the 17th
Conference on Advanced Information Systems Engineering
(CAiSE’05), Porto, Portugal, 2005, LNCS. Springer, 2005.

[7] Y. Bontemps, P. Heymans, P. Schobbens, and J. Trigaux.
Generic semantics of feature diagrams variants. InFeatures
Interactions in Telecommunications and Software Systems
VIII(ICFI’05) , pages 58–77, Leicester, UK, Jun 2005.

[8] R. E. Bryant. Graph-based algorithms for boolean function
manipulation.IEEE Transactions on Computers, 35(8):677–
691, Aug. 1986.

[9] O. Coudert, C. Berthet, and J. C. Madre. Verification of syn-
chronous sequential machines based on symbolic execution.
In J. Sifakis, editor,Automatic Verification Methods for Fi-
nite State Systems, volume 407 ofLNCS, pages 365–373.
Springer-Verlag, 1989.

[10] O. Coudert and J. C. Madre. Implicit and incremental com-
putation of primes and essential primes of boolean func-
tions. InProceedings of the 29th ACM/IEEE Conference on
Design Automation, pages 36–39. IEEE Computer Society
Press, 1992.

[11] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
cardinality-based feature models and their specialization.
Software Process Improvement and Practice, 10(1), 2005.
Special issue on Software Variability: Process and Manage-
ment, http://swen.uwaterloo.ca/~kczarnec/
spip05a.pdf.

[12] K. Czarnecki, C. H. P. Kim, and K. Kalleberg. Feature mod-
els are views on ontologies. InProceedings of 10th Inter-
national Software Product Line Conference (SPLC 2006),
pages 41–51. IEEE, 2006.

[13] T. Hadzic, R. Jensen, and H. R. Andersen. Notes on cal-
culating valid domains. Manuscript onlinehttp://www.
itu.dk/~tarik/cvd/cvd.pdf, 2006.

[14] T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. Andersen,
J. Møller, and H. Hulgaard. Fast backtrack-free product con-
figuration using a precompiled solution space representa-
tion. In PETO Conference, pages 131–138. DTU-tryk, June
2004.

[15] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study.
Technical Report CMU/SEI-90-TR-21, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, PA,
Nov. 1990.

[16] V. M. Manquinho, P. F. Flores, J. P. M. Silva, and A. L.
Oliveira. Prime implicant computation using satisfiability
algorithms. In9th IEEE International Conference on Tools
with Artificial Intelligence Newport Baach, CA, USA, pages
232–239. IEEE Computer Society, 1997.

[17] C. Meinel and T. Theobald.Algorithms and Data Structures
in VLSI Design. Springer-Verlag, 1998.

[18] J. A. L. Poutré and J. van Leeuwen. Maintanance of transi-
tive closures and transitive reductions of graphs. Technical
Report RUU-CS-87-25, Rijksuniversiteit Utrech, 1987.

[19] G. Valiente. Algorithms on Trees and Graphs. Springer-
Verlag, 2002.

[20] T. van der Storm. Variability and component composition.
In Proceedings of ICSR8, LNCS. Springer, 2004.

[21] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based
method for verification of feature models. In J. Davies,
W. Schulte, and M. Barnett, editors,Formal Methods and
Software Engineering: 6th International Conference on For-
mal Engineering Methods, ICFEM 2004, Seattle, WA, USA,
November 8-12, 2004. Proceedings, volume 3308 ofLec-
ture Notes in Computer Science, pages 115–130, Heidel-
berg, Germany, 2004. Springer-Verlag.

