
Guided Development with Multiple
Domain-Specific Languages

Anders Hessellund1, Krzysztof Czarnecki2, and Andrzej Wąsowski1

1 IT University of Copenhagen, Denmark
{hessellund,wasowski}@itu.dk

2 University of Waterloo, Canada
kczarnec@swen.uwaterloo.ca

Abstract. We study the Apache Open for Business (OFBiz), an
industrial-strength platform for enterprise applications. OFBiz is an
example of a substantial project using model-driven development with
multiple domain-specific languages (DSLs). We identify consistency
management as one of its key challenges. To address this challenge, we
present SmartEMF, which is an extension of the Eclipse Modeling Frame-
work that provides support for representing, checking, and maintaining
constraints in the context of multiple loosely-coupled DSLs. SmartEMF
provides a simple form of user guidance by computing the valid set of
editing operations that are available in a given context. We evaluate the
prototype by applying it to the OFBiz project.

1 Introduction

Successful development and customization of ever more complex enterprise
systems depends on effective collaboration between several stakeholders as
well as on a flexible and coherent conceptualization of the problem domain.
Among the different approaches towards tackling this challenge, domain-specific
modeling seems especially promising. Domain-specific modeling can be defined
as the systematic application of domain-specific languages (DSLs) in the design
and programming phases of a development project. In complex projects, multiple
DSLs are usually necessary in order to cope with different concerns. This
requirement raises the need to manage the consistency among several models
in multiple DSLs, which is the focus of this paper.
We give an example of an industrial-strength enterprise application frame-

work that uses multiple DSLs, namely Apache Open for Business (OFBiz) [1].
We analyze the use of multiple DSLs in OFBiz applications by studying the
OFBiz documentation, issue tracking system, developer forums, and the OFBiz
implementation artifacts. We identify consistency management, and in particular
ensuring referential integrity across models, as one of the key challenges of
multi-DSL development. We want to address these challenges in a non-invasive
way that can be incorporated in an existing development process and system
architecture.

To address the problems identified in the OFBiz study, we introduce
SmartEMF, which is an extension of the Eclipse Modeling Framework (EMF)
[2]. SmartEMF provides support for representing, checking, and maintaining
constraints using Prolog. SmartEMF can represent and check four kinds of
constraints that we identified in OFBiz DSLs. Furthermore, it provides a simple
form of user guidance by computing the valid set of editing operations that can
be applied in a given context based on the current state of all models.
We believe that our study of OFBiz offers a valuable example of how multiple

DSLs are used in industry today and the challenges that arise from such use. We
are not aware of other quantitative studies of using multiple DSLs to describe
a single system. Furthermore, although Prolog has been previously used to
represent models and provide constraint checking and editing guidance, three
aspects of SmartEMF are novel: (i) the use of Prolog to compute multiple valid
operations; (ii) the exposition of how Prolog’s higher-order queries can elegantly
support constraint checking and the computation of valid operations; (iii) the
support for loosely coupled DSLs by defining the valid target domain for name-
based references through an annotation mechanism. The last capability makes
it possible for SmartEMF to automatically support existing DSLs represented
as XML Schemas that use name-based references to cross-link elements of
individual models without the need to create a single, integrated metamodel.
The paper is structured as follows. Section 2 introduces OFBiz—our case

study. Section 3 elaborates on issues in the typical process of developing
applications in OFBiz. Section 4 describe the different kinds of consistency
constraints that we have identified in OFBiz. Section 5 presents our tool
SmartEMF, which addresses the issues by guided development with multiple
DSLs. Section 6 discusses the solution and examines possible alternative
approaches. Section 7 describes the related work and finally, section 8 concludes
the paper and suggests possible future work.

2 Motivating Example: Apache Open for Business

The Apache Open for Business (OFBiz) framework [1] is an open source plat-
form for building enterprise automation software, such as Enterprise Resource
Planning (ERP), Content Management System (CMS), Customer Relationship
Management (CRM), and Electronic Commerce systems. OFBiz is a top-level
project at the Apache Foundation. Its users include both large companies, such
as British Telecom and United Airlines [3], and a range of small and medium-
sized ones. The framework is an excellent example of state-of-the-art, industrial-
strength application development with multiple DSLs.
From a technical viewpoint, OFBiz is a J2EE framework that delivers

a service-oriented architecture with persistent business objects, its own web
application framework, and support for business rules, workflow, role-based
security, and localization. OFBiz based applications are expressed using multiple
DSLs. The core of OFBiz is an engine that can load and interpret more than
fifteen DSLs (Figure 1). Each DSL covers a different aspect of application

2

Table 1. Overview of the OFBiz DSLs

No. of
Tier DSL Description Elements

Data Entity Model Define business objects, attributes, and relations 23
Fieldtype Model Define attribute types 3
Entity Config Configure data sources, files, and transactions 19
Entity Group Configure active models and entities 2
Entity ECA Define events, conditions, and actions for entities 5

Service Service Def. Define service interfaces and permissions 18
Service Group Configure active models and services 3
Service Config Configure security, threading, and service engine 13
Service ECA Define events, conditions, and actions for services 6
Minilang Implement services 154
XPDL Define workflows 89

UI Screen Implement screens and layout 65
Form Implement user forms and data binding 57
Menu Implement menus 27
Tree Implement visual tree structures and data

binding
38

WWW Site Config Define web controller behaviour 15
Regions Def. Define screen regions 3

development such as defining business objects, services, graphical user interfaces,
and workflows. Each DSL is defined using an XML Schema, and individual
models are represented simply as XML documents. Table 1 provides a list of
the DSLs. The table also specifies the number of elements in the schema of each
DSL as an estimate of its size.

OFBiz applications are implemented as modules on

Fig. 1. The architecture

top of the engine and the DSL layer (Figure 1).
Each module typically consists of 20 to 60 models
expressed in different DSLs and sometimes also
custom Java code. The framework includes prede-
fined modules such as Inventory, Customer Service,
Product Catalogs, Order Entry, Accounting, and
other ERP functions. Table 2 lists the artifacts
constituting two of the predefined modules, includ-
ing artifact sizes and numbers of cross-references
among the artifacts. The framework is highly ex-

tensible allowing custom modules to be build on existing ones.

3 Application Development with Multiple DSLs in OFBiz

To understand how multiple DSLs are used in OFBiz, we analyzed the
freely available documentation, including tutorials, Wiki sites, user forums, the
project’s issue tracking system [4], and the actual source code (stable build,
September 2, 2006).

3

Table 2. DSL usage statistics for selected OFBiz modules

DSLs in No. of No. of No. of
’Accounting’ module Models Elements Cross-refs

Entity Model 2 2105 723
Entity Group 1 140 138
Service Def. 18 1726 433
Service Group 1 15 10
Service ECA 2 59 57
Minilang 16 2127 277
Form 11 2400 1141
Site Config 1 1087 228
Screen 11 1889 648
Tree 1 25 4
Menu 2 268 45

DSLs in No. of No. of No. of
’Content’ module Models Elements Cross-refs

Entity Model 1 1005 271
Entity Group 1 71 70
Service Def. 6 1334 389
Service ECA 1 10 9
Minilang 9 2718 506
Form 13 3487 1699
Site Config 1 1443 284
Screen 12 2303 796
Tree 2 122 11
Menu 9 366 107

Table 3. Summary of a sample OFBiz customization

Reference OFBIZ-93: Support BillingAcct & PaymentMethod for Payment

Link http://issues.apache.org/jira/browse/OFBIZ-93

Module Accounting

Problem
The requirement is that a customer be able to use a billing account plus another form
of payment, such as a credit card, for a payment on an order. The billing account is
to be used first.

Solution

• New service declaration captureBillingAccountPayment
• Java implementation of this service
• An extra parameter in the calcBillingAccountBalance service definition
• Minor changes to 3 existing service implementations and a few utility methods
• Minor changes to a single screen definition

The recommended OFBiz application development process involves a bottom-
up development of new models or customization of existing ones according to the
tiered architecture of OFBiz [5]. The first step is to define business objects and
data models using the data-tier DSLs (Table 1). Then services are defined using
the service-tier DSLs and, in complex cases, also Java and scripting languages.
The third step is to implement the user interface using the user interface DSLs
and possibly HTML/CSS code. A particular customization employs one or more
of these steps depending on its purpose and requirements.
Multiple DSLs are involved not only in the development of complete OFBiz

applications, but even in small customizations of the existing ones. Descriptions
of customizations are available in the OFBiz issue tracking system. In our study
we have selected a sample set of eleven completed customizations of predefined
applications, all categorized as new features or improvement requests. Table 3
shows an example of such a customization. The number of affected artifacts for
each of the eleven customizations are listed in Table 4. The average number
of affected artifacts in the selected set was five, which approximates well the
number of DSLs used in an average customization.

4

Table 4. Number of affected artifacts per customization

No. of
Issue Affected modules artifacts

OFBIZ-16 ECommerce 3
OFBIZ-93 Accounting 13
OFBIZ-113 Order 1
OFBIZ-188 ECommerce 2
OFBIZ-338 Manufacturing 7
OFBIZ-339 WorkEffort 6

No. of
Issue Affected modules artifacts

OFBIZ-361 Webtools 5
OFBIZ-435 Marketing 4
OFBIZ-540 WorkEffort, Catalog, Product 14
OFBIZ-557 Product 4
OFBIZ-580 WorkEffort 6

We have examined the discussions in the OFBiz issue forum [4] related
to the issues in Table 4 and have found that the customizations typically
required several iterations of changes to the involved artifacts before they
were correctly implemented. A very common problem is inconsistency among
the new or modified artifacts and the existing artifacts, mainly caused by
dangling references. Currently developers use ordinary XML and Java editors
to implement their customizations. These tools offer little help to keep the
artifacts consistent. To check for inconsistencies, the developers start up the
application and run test scenarios, which is time-consuming and error-prone.
According to the OFBiz forum [6], one of the main future tool requirements is
better consistency checks and editing guidance that could visualize how different
artifacts are related.

4 Consistency Constraints in OFBiz

Our survey has revealed that inconsistency was one of the main development
problems. We will now illustrate this problem with some concrete examples
taken from the OFBiz framework. We cover both the problem of consistency
within a single artifact and consistency among multiple artifacts. On the surface,
these cases do not seem to differ: in either the goals are to avoid dangling
references, to enforce typing, and to satisfy other constraints. In practice, the
mechanisms for expressing references and enforcing constraints within and across
artifacts are likely to differ. Different artifacts need to support independent
editing and storage and also may belong to different technical spaces, e.g., XML
and Java. In the following we identify four kinds of constraints that need to be
maintained in application development. Unfortunately, the current OFBiz tools
cannot represent, check, and maintain these constraints.

(1) Well-formedness of individual artifacts. Currently, all OFBiz DSLs are
XML-based, which means that well-formedness can be established by checking
whether a model conforms to its schema. Unfortunately, XML Schemas have
serious limitations. In particular, element and attribute declarations are context
insensitive and therefore cannot express whether their presence depends on the
presence of other elements or attributes in their context [7, Sec 4.3-4.4]. However,
OFBiz requires expressing such constraints. For example, according to the OFBiz

5

Fig. 2. Simplified excerpt from the metamodels of two DSLs

documentation, if the alias element in the Entity DSL contains the group-by
attribute, it should also contain the function attribute.

(2) Simple referential integrity across artifacts. A serious and frequent problem is
that of referential integrity across models. Multiple DSLs often refer to each other
because they represent different views of the same system. We have identified
more than 50 such references across the OFBiz DSLs. For example, each Service
in the Service Definition language needs to refer to an Entity in the Entity
Model language since services operate on entities. In OFBiz, as illustrated in
Figure 2, all such references across DSLs are name-based : the value of the
default-entity-name attribute in Service should match the name attribute
of the corresponding Entity. Sadly, there is no mechanism in XML Schema to
enforce this. Observe that typed references, absent from XML Schema, would
offer only a partial solution to the problem since name-based references between
XML and Java still need to be enforced. Cross-model name references are used
also in other approaches, e.g., in Microsoft DSL Software Factories [8].

(3) References with additional constraints. One can also find more complex
constraints imposed on references among OFBiz models, for example, between
models expressed in the Form and the Entity languages. A typical Form on a
webpage possesses fields linked to attributes of some Entity. A Registration
form may, for instance, have fields Firstname, Lastname and Password gener-
ated using a reference to a Person. However, it is sometimes necessary to override
these generated fields. We may want to create a password text widget instead of
the default textfield for the Password field. In this case, the reference from the
Registration form to the Person entity has the additional constraint that the
overridden field must correspond to an attribute on the entity. More generally,
all overriden form fields should correspond to attributes on the entity that the
form refers to. If this constraint is violated, the engine will not be able to render
the overriden form fields correctly since it can not determine their origin in the
entity layer.

(4) Style constraints. A fourth class of constraints suitable for OFBiz instal-
lations are style constraints. Enforcement of such constraints is not necessary
to execute OFBiz applications but facilitates maintenance in the long run. For
instance, the OFBiz designers have consciously adopted typical J2EE design
patterns. An example of a style constraint is to require that entity models
conform to the ObjectRole pattern as discussed in the OFBiz forums [9]: all

6

entities with a name that ends with Role should connect entities that do not
end with Role. This constraint ensures that relationships in the entity layer are
only specified between entities and not between relationships.

5 SmartEMF

SmartEMF is an extension of the Eclipse Modeling Framework (EMF) [2] that
aims at addressing the consistency management challenges identified in the
previous sections. SmartEMF provides support for (i) representing, (ii) checking,
and (iii) maintaining constraints of the four categories identified in Section 4.
SmartEMF builds on EMF—an implementation of an essential subset of

the Meta Object Facility [10]. EMF is a platform for defining DSLs that
has several advantages over XML. In contrast to XML, EMF supports typed
references, proper many-to-many relationships, and a standard cross-model
reference mechanism. EMF has an editing and rendering API with a command
framework and an adapter layer for integration with model editors. A generator
of tree-based editors is included, while graphical editors are supported via
the Graphical Modeling Framework. In contrast to the string-based Document
Object Model (DOM) of XML, the EMF editing API is strongly typed.
SmartEMF achieves constraint checking and editing guidance using a logical

representation of EMF models. The logical representation is maintained in
parallel to the model. Constraints are expressed as Prolog rules and a Prolog
inference engine is used to evaluate them. For a given model a set of valid
operations is inferred and presented, guiding the user to select valid targets for
references. The following sections explain each of these aspects.

5.1 Ecore-to-Prolog Mapping

SmartEMF assumes that a metamodel of each DSL is given in EMF’s Ecore
notation, which closely resembles MOF [10]. EMF offers bi-directional bridges
between Ecore and other technical spaces, such as XML and Java. In particular,
XML Schema Definition (XSD) files of OFBiz DSLs and the corresponding
XML documents can be automatically imported into EMF, which makes them
accessible as Ecore models and instances.
Figure 3 shows an excerpt of the mapping from Ecore to Prolog for a fragment

of the Entity model from Figure 2. The mapping is directly inspired by the GEMS
project [11]. Similar to GEMS, all elements of an Ecore model representing the
DSL metamodel and all elements of an Ecore model instance representing a
concrete model in the DSL are declared as facts in the fact base. For example,
an Ecore class is represented as a fact using the eclass predicate with a unique
identifier of the class as an argument. N-ary predicates are used to assert relations
such as between an attribute and its containing class or between an integer
attribute and its upper bound.
Upon startup, our prototype initializes the fact base by traversing and

asserting model elements from Ecore, EMF’s embedded XML metamodel, and

7

Fig. 3. Mapping from Ecore to Prolog

all relevant DSLs and their instances. The resulting fact base then serves as the
underlying representation of a reflective Ecore editor, which manipulates and
queries both the EMF object model and the fact base. SmartEMF extends the
standard EMF editing commands, such as add, set, and delete, to propagate
changes of the model to the Prolog fact base.

5.2 Representing Constraints

Consistency constraints from all of the categories discussed in Section 4 can be
represented as Prolog rules. Since all the DSLs and models are represented in the
Prolog fact base, constraints spanning one or more DSLs are expressed naturally.
A simple example of a well-formedness constraint (1) is required value present :

every mandatory feature should have a value. Every constraint consist of two
parts: a name (required value present) and a rule. The rule expresses a
negation of the constraint, so that the rule is satisfied whenever the constraint
is violated. In our example this happens if a mandatory feature, i.e., a feature
with a lower bound of 1, has value id UNSET. As shown below such constraints
are relatively simple to read and write.

% name
constraint(required_value_present) .
% rule representing the negation of the constraint
required_value_present(Object, Feature) :-
lower_bound(Feature, 1) ,
(attrvalue(Object, Feature, id_UNSET) ;
refvalue(Object, Feature, id_UNSET)) .

Another class of constraints (2) considers consistency relations across distinct
DSLs. A DSL can refer to another one in two ways. Either by using types from
the other language or by name-based references.

8

Fig. 4. Name-based reference from the Services DSL to the Entitymodel DSL

Typed references are natively supported by Ecore and our mapping to Prolog.
However, name-based references require additional information in the Ecore
model, which SmartEMF supports with the modelref annotation. Figure 4 shows
how the sample reference from Service to Entity from Figure 2 is represented
using the annotation. The annotation consists of two key/value pairs: a model
key which denotes the target DSL by its namespace and an xpath key which is
an XPath query that identifies the target element in that DSL. Provided with
the corresponding values of the two keys in the modelref annotation, SmartEMF
can determine the set of legal values (a valid domain) of an annotated model
element. In the example, the annotation on the defaultEntityName attribute of
the service shows that the valid values for this attribute are names of entities in
the Entitymodel DSL. The rule expressing the negation of this constraint follows:

% name
constraint(no_dangling_modelrefs).
% rule
no_dangling_modelrefs(Object, AnnotatedFeature) :-
modelref(AnnotatedFeature, DomainFeature) ,
attrvalue(Object, AnnotatedFeature, Value) ,
not(attrvalue(_ , DomainFeature, Value)) .

5.3 Constraint Checking Using Higher-Order Queries

Constraint checking utilizes Prolog’s support for higher-order queries. The meta-
logical call predicate facilitates such queries. The call predicate invokes
a goal with an optional set of extra arguments. Since all our constraints
are declared using the custom constraint predicate, we can easily compute
the set of all constraints in the fact base. By using the call predicate,
we can then determine which constraints are violated, i.e., evaluate to true
for a given binding of their variables. The check rule states this query:

9

check(Object, Violations) :-
findall([Goal, Object, Feature] ,
(constraint(Goal) ,
call(Goal, Object, Feature)) ,
ViolationsUnsorted) ,
sort(ViolationsUnsorted, Violations) .

If the check predicate is evaluated with the Object variable bound to an object
then the result is a binding of the Violations variable to an empty list in case of
no constraint violations or a list of tuples. In the latter case each tuple consists
of the violated constraint (a goal), the concrete object, and the feature of that
object. If the check predicate is evaluated with two variables, the query produces
all constraint violations in the entire fact base in one shot.

5.4 Preconditions of Editing Operations

Simple editing guidance can be offered by computing the set of editing
operations (and possibly some or all of their arguments) that are available in
a given context based on the current state of the fact base. This facility is
achieved by representing the preconditions of editing operations such as add,
set, and delete as Prolog rules and querying them using a higher-order query.

% name
operation(add) .
% rule
add(Object, Feature, AddableTypes) :-
instance(Object) ,
is_a(Object, ObjectType) ,
containment(ObjectType, Feature) ,
upper_bound(Feature, Upper),
refvalue(Object, Feature, CurrentValues) ,
not(length(CurrentValues, Upper)) ,
is_a(Feature, AddableTypes) .

The above listing shows a declaration of the add operation, which adds a
child element to a containment reference. Similarly to constraints declarations,
the precondition consists of a fact declaring the rule name and the rule. The
rule states that only the instances of the feature’s type can be added and only
as long as the number of instances in the containment list does not exceed the
upper bound. Similar preconditions are declared for other operations.

We determine valid editing operations in a context by using the higher-order
query operations shown below. Depending on whether the Object and/or the
Feature variables are bound, we can either determine all valid operations, all
valid operations for a given object, or all valid values for a given feature.

10

Fig. 5. SmartEMF’s reflective editor

operations(Object, Feature, Operations) :-
findall([Goal, Object, Feature, Value] ,
(operation(Goal) ,
call(Goal, Object, Feature, Value)) ,
OperationsUnsorted) ,
sort(OperationsUnsorted, Operations) .

5.5 Reflective Editor

SmartEMF provides a reflective editor that exploits the underlying represen-
tation and previously described queries. It is a form-based editor implemented
as an Eclipse EMF plugin (Figure 5). It enables users to access and modify
instances of different DSLs in a uniform way. Each DSL is represented in a tab
containing three columns. The first column lists different models in the selected
DSL. The second column contains a hierarchical view of the model elements
in the currently selected model. The third column displays the features of a
selected model element. All objects and feature values can be loaded, edited,
and serialized respecting the individual file formats of their DSLs. Specifically,
in the OFBiz case, every modified model is saved in XML conforming to the
original DSL-defining XSDs.
The editor uses reflective capabilities of the regular EMF object model in

order to structure the user interface. When the user selects an object or a
feature, the framework queries the underlying representation for valid editing
operations using the operations predicate from Section 5.4. The resulting tuples
are presented in the form of various visual or textual hints as shown in Figure 6.
Since the framework simultaneously queries the representation using the check
predicate, a list of inconsistencies is available, which is both shown in the bottom
as well as using other visual hints.

11

Fig. 6. Guidance and consistency management in the SmartEMF editor

The reflective nature of the SmartEMF editor is one of its main advantages.
Most EMF editors are generated and hence customized for a particular set of
models. In contrast, the SmartEMF editor allows the user to quickly include
new DSLs, new instances, and new constraints just by changing the loading
configuration of the editor. Upon loading, the editor automatically adapts to
the current selection of DSLs while still providing guidance and consistency
management. Of course, the query facilities of SmartEMF could also be used
from specialized and generated editors.

6 Discussion and Suggestions for Future Work

Experience in applying SmartEMF to OFBiz. OFBiz applications are tradition-
ally developed using built-in XML and Java editors of IDEs like Eclipse. As
described in the previous section, these tools do not offer any cross-language
support or editing guidance. In our experiments, we annotated the Entity,
Service definition, and Form languages and loaded all models in these
languages from the accounting module. The setup comprised 31 models with
a total of 6231 model elements and 2297 potentially broken cross-references.
We implemented a set of simple customizations, such as extending an entity,
revising a service, and displaying the results in the user interface, experiencing
no performance problems with checking and guidance.
We have not yet performed any user studies apart from the customizations

that we ourselves have done. We do, however, expect a significant drop in
undetected inconsistencies when SmartEMF is systematically applied to OFBiz
projects. The guidance facilities should also speed up development since they

12

provide very concrete hints on how to complete the models in a given installation.
Empirical studies need to be performed in order to validate these claims.

Applicability to other DSL-based infrastructures. A growing number of XML-
based infrastructures (e.g., Struts and Spring) use similar mechanisms as
OFBiz and we expect that these infrastructures could benefit equally well from
SmartEMF’s guidance and consistency management facilities. Also, we wish to
examine how Java-customizations can be related to DSL artifacts. One possible
approach would be to extract Ecore-based models from Java code as it has been
done in framework-specific modeling languages [12].

Prolog as a constraint language. An object-oriented language such as OCL, which
supports a concise expression of constraints and navigation, would seem to be
a better choice than Prolog. Alternatively an approach based on a relational
database and SQL queries could have been adopted. While both solutions are
more elegant than a pure Java approach, they do not offer the advantages of
Prolog. The main advantages of Prolog are: (i) the ability to infer possible
solutions by using free variables in a query, (ii) higher-order predicates such
as call, which support highly concise and expressive global queries and (iii) an
implicit representation of the solution space (unlike in databases).

More advanced guidance. Extending SmartEMF to provide guidance for more
complex (composite) operations, e.g., refactorings, and for sequences of opera-
tions are interesting future work items. For operation sequencing, both pre- and
post-conditions of operations need to be considered. Finally, an extra layer of
guidance could be to prescribe the order in which model elements are actually
created. This layer could be achieved by introducing modeling workflows or
instantiation plans in the manner suggested by Lahtinen et al. [13].

7 Related Work

Consistency management. Tracking inconsistencies between models is not a
new research field. The ViewPoint method [14] is one of the best treatments
of the subject. Recently several authors have addressed the problem, also
considering repairs. Mens et al. [15] propose a graph-based approach where
different models are represented as a single graph. The graph can be searched
for erroneous patterns. Each pattern has a corresponding repair that can be
applied to the graph. Similarly, other approaches support repairs by annotating
OCL-constraints with repair actions [16] or even generating repair actions
automatically [17]. More advanced repairs and diagnostics may be offered by
implementing model checks as transformations as suggested by Bézivin and
Jouault [18]. The checking aspect of all these approaches is impressive, but the
guidance is limited to the predefined repairs. SmartEMF’s ability to search for
possible editing operations is not present in any of these.

Mapping models to a logical fact base. We have adopted the idea of mapping
an Ecore-based model to Prolog from the GEMS project [11]. The primary
emphasis in the GEMS project is on creating a graphical, guided editor for

13

one or more DSLs based on a single, thightly-integrated meta-metamodel and
allowing automatic configuration of models. SmartEMF draws on this approach,
but uses pure Ecore as its meta-metamodel rather than a custom Ecore-based
meta-metamodel. This choice allows SmartEMF to leverage existing languages
by loading, editing, and saving different models in a schema-conformant way.
Furthermore, in the case of multiple DSLs, GEMS would require a composite
metamodel with multiple aspects, or views. SmartEMF handles this case by using
a generic editor which can display both regular cross-model references as well as
name-based references. Another Prolog-based approach is the Design Critiquing
facility of the ArgoUML tool described by Robbins et al. [19]. This approach is
focused on critiquing rather than suggesting possible edits as SmartEMF.

Multiple DSL development. Development scenarios with multiple DSL is sparsely
described in the existing literature. One of the best empirical studies of DSL
usage to date is Tolvanen and Kelly’s work [20], which is primarily concerned
with single DSLs. There are, as far as we know, no comprehensive empirical
studies of industrial instances of multiple DSL applications like OFBiz. An early
theoretical reference is the DRACO system [21], which contains a systematic
approach for dealing with multiple DSLs. Recently, Warmer and Kleppe [8] have
described an approach based on multiple DSLs, but that work does not provide
empirical data such as the size of the involved DSLs and the number of cross-
references among them.

Partial models and name-based references. Warmer and Kleppe [8] advocate
the use of loosely coupled, partial models. Name-based references are used to
integrate multiple DSLs. Their approach uses a consistency checking mechanism
tailored to a specific set of languages.

8 Conclusion

We have examined the problem of working with multiple DSLs in domain-
specific modeling. Our main contributions are: (i) a qualitative study of the
architecture and development problems of an industrial-strength, multiple DSL
application, OFBiz, and (ii) SmartEMF—an EMF-based framework offering
consistency checking and editing guidance. We have tested our prototype within
OFBiz development scenarios, applying it to the problems that were identified
in the study as common issues in OFBiz development. Preliminary experiments
suggest that a guidance tool can significantly help in maintaining consistency
during development with multiple DSLs.

References

1. The Apache Software Foundation: The Apache Open for Business Project.
http://ofbiz.apache.org/ (2007) Seen March 8, 2007.

2. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework: a Developer’s Guide. Addison-Wesley (2004)

14

3. Chen, S.: Opening Up Enterprise Software: Why Enterprises are Adopting Open
Source Applications (2006) http://www.opensourcestrategies.com/slides/.

4. The Apache Software Foundation: The Open for Business Project. Issue Tracking
System. https://issues.apache.org/jira/browse/OFBIZ (seen 2007/03/22)

5. Undersun Consulting LLC: OFBiz Framework Quick Reference Book, ver. 1.5.1.
http://bigfiles.ofbiz.org/FrameworkIntro/01MainDiagram.pdf (2004) Seen
2007/03/26.

6. Jones, D.E.: Requirements for an OFBiz IDE. http://www.nabble.com/Re%
3A-requirements-for-an-OFBiz-IDE-p8066093.html. (2006) Seen 2007/03/27.

7. Møller, A., Schwartzbach, M.I.: An Introduction to XML and Web Technologies.
Addison-Wesley (2006)

8. Warmer, J., Kleppe, A.: Building a Flexible Software Factory Using Partial
Domain Specific Models. Proc. of The 6th OOPSLAWorkshop on Domain-Specific
Modeling (2006) http://www.dsmforum.org/events/DSM06/.

9. Howe, C.: Party Relationship Best Practices. http://www.nabble.com/Party-
Relationship-Best-Practices-p5453154.html (2006) Seen 2007/03/27.

10. Object Management Group: Meta-Object Facility. http://www.omg.org/mof/
(2007) Seen March 12, 2007.

11. White, J., Schmidt, D., Nechypurenko, A., Wuchner, E.: Domain-Specific
Intelligence Frameworks for Assisting Modelers in Combinatorically Challenging
Domains. In: GPCE4QoS. (2006)

12. Antkiewicz, M., Czarnecki, K.: Framework-Specific Modeling Languages with
Round-Trip Engineering. In: Proc. Int’l Conf. MoDELS 2006. Volume 4199 of
LNCS., Springer-Verlag (2006) 200–214

13. Lahtinen, S., Peltonen, J., Hammouda, I., Koskimies, K.: Guided Model Creation:
A Task-Driven Approach. In: VLHCC ’06: Proc. of the Visual Languages and
Human-Centric Computing. (2006) 89–94

14. Nuseibeh, B., Kramer, J., Finkelstein, A.: Expressing the relationships between
multiple views in requirements specification. In: ICSE ’93: Proc. of the 15th Int’l
Conf. on Software Engineering. (1993) 187–196

15. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and Resolving Model
Inconsistencies Using Transformation Dependency Analysis. In: Proc. Int’l Conf.
MoDELS 2006. Volume 4199 of LNCS., Springer-Verlag (2006) 200–214

16. Kolovos, D.S., Paige, R.F., Polack, F.A.: On the Evolution of OCL for Capturing
Structural Constraints in Modelling Languages. In: Proc. Dagstuhl Workshop on
Rigorous Methods for Software Construction and Analysis. (2007)

17. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency Management with
Repair Actions. In: Proc. of the 25th Int’l Conf. on Software Engineering, May
3-10, 2003, Portland, Oregon, USA. (2003) 455–464

18. Bézivin, J., Jouault, F.: Using ATL for Checking Models. In: GraMoT workshop,
4th Int’l Conf. on Generative Programming and Component Engineering. (2005)

19. Robbins, J.E., Hilbert, D.M., Redmiles, D.F.: Software Architecture Critics in
Argo. In: IUI ’98: Proc. of the 3rd Int’l Conf. on Intelligent User Interfaces, New
York, NY, USA, ACM Press (1998) 141–144

20. Tolvanen, J.P., Kelly, S.: Defining Domain-Specific Modeling Languages to
Automate Product Derivation: Collected Experiences. In: Proc. of Int’l Conf.
SPLC’05, Rennes, France. (2005) 198–209

21. Neighbors, J.M.: Software Construction using Components. PhD thesis, UC Irvine
(1980) Tech. Report UCI-ICS-TR-160.

15

