
Interfaces and Metainterfaces
for Models and Metamodels

Anders Hessellund and Andrzej Wąsowski

IT University of Copenhagen, Denmark
{hessellund,wasowski}@itu.dk

Abstract. Evolution and customization of component-based systems
require an explicit understanding of component inter-dependencies. Im-
plicit assumptions, poor documentation and hidden dependencies turn
even simple changes into challenges. The problem is exacerbated in XML-
intensive projects due to the use of soft references and the lack of infor-
mation hiding. We address this with dependency tracking interface types
for models and metamodels. We provide automatic compatibility checks
and a heuristic inference procedure for our interfaces, which allows easy
and incremental adoption of our technique even in mature projects. We
have implemented a prototype and applied it to two large cases: an en-
terprise resource planning system and a healthcare information system.

1 Introduction

The challenge of evolving and customizing component-based systems is well-
known in both academia and industry. The solution strategies devised by com-
puter scientists, however, often fail to deliver due to an underlying misconception
of what a component is. As Bosch [1, p.14] points out, the classic academic view
is that a component is a small black-box asset with a narrow interface and a
single point of access. The industrial view, on the other hand, is that compo-
nents are large assets with no encapsulation and no distinction between interface
and non-interface entities. A large class of model-driven systems exacerbates this
problem by relying on XML-based domain-specific languages (DSLs) which use
soft references—untyped, string-based references between XML documents.

XML-based DSLs are often used in a significant class of model-driven sys-
tems following an approach which we term interpretative. These systems use
models expressed in XML as first-class artifacts. The models are not used by
code generators in the development phase but rather by interpreters at load- or
runtime. The DSLs are defined by an XML Schema and cover a range of con-
cerns from simple configuration to full-blown programming. Typically, multiple
such languages are used in concert, as described in [2], to address different con-
cerns of an individual application. Components in such systems are often large,
have blurred boundaries, and consist of a mixture of models conforming to var-
ious schemas, and of code snippets in a general-purpose language for custom
functionality.

The main advantage of using an XML-based language is the availability of
generic tools for parsing and checking for schema conformance. However, there
are also some serious problems. One of the most important of these problems is
the use of soft references to tie together different XML models (possibly conform-
ing to different metamodels). In order to refer to elements in other XML models,
simple strings are used. The string references can not be checked by a standard
schema conformance checker but rather by special tools such as SmartEMF [2]
or Xlinkit [3] that require manual specification of every single reference in ad-
vance. Furthermore, since XML lacks an information hiding construct, there is
no explicit definition of an interface between different XML models. To reveal
dependencies between components implemented in such languages, one has to
track every single reference instance, i.e., check every single XML model.

This paper presents an automatic, compositional approach to dependency
tracking based on use of interfaces. The approach is applicable to a large class
of model-driven systems, specifically interpretative systems using XML-based
DSLs. Using a simple set of heuristics, we can infer interfaces for models and
metainterfaces for metamodels. We discuss composition rules for model inter-
faces such that interfaces can be composed to create descriptions of larger units,
like entire components. The approach is intended to be lightweight and easy to
adopt. To validate this hypothesis, we have tested our approach on two exist-
ing industrial cases, an enterprise resource planning system [4] and a healthcare
information system [5], and the results are promising. Our contributions are:

– A compositional approach to tracking soft dependencies based on interfaces
– An interface language for specification of interfaces and metainterfaces
– A notion of component interfaces via composition of model interfaces
– A lightweight bootstrapping procedure via inference for easy adoption
– An empirical evaluation in the form of two industrial case studies

Outline. A motivating problem selected from a case study is examined in Sect. 2.
Sections 3–4 introduce interfaces for models and metamodels. Section 5 describes
the interface inference implemented in our prototype, and Sect. 6 reports results
of empirical validation. We address limitations and open problems in Sect. 7,
and the related work in Sect. 8.

2 Dependencies and Soft References in OFBiz

We begin by demonstrating how hidden dependencies and soft references among
models appear in actual systems. The Apache Open For Business (OFBiz)
project [4], described in greater detail in Sect. 6, uses 17 different DSLs to define
and implement various parts of its functionality. Two examples of these are: the
Screen Language used to define user interface screens, and the Entity Language
used to define business objects, their attributes and associations. A screen model
usually refers to an entity model to render a business object in the user interface.

Figure 1 shows actual screen and entity models from the OFBiz project. The
ViewFXConversions screen is located in the Accounting component and is used

 . . .

2 1 < s c r e e n s >

 . . .

5 4 < s c r e e n n a m e = " L i s t C o m p a n i e s >

 . . .

9 4 < / s c r e e n >

2 5 4 < s c r e e n n a m e =

 " V i e w F X C o n v e r s i o n s " >

2 5 5 < s e c t i o n >

2 5 6 < a c t i o n s >

 . . .

2 6 5 < e n t i t y - c o n d i t i o n

 e n t i t y - n a m e = " U o m C o n v e r s i o n D a t e d "

 l i s t - n a m e = " c o n v e r s i o n s " / >

 . . .

2 6 9 < / e n t i t y - c o n d i t i o n >

2 7 0 < / a c t i o n s >

 . . .

3 0 5 < / s e c t i o n >

3 0 6 < / s c r e e n >

 . . .

9 8 1 < / s c r e e n s >

 . .

2 1 < e n t i t y m o d e l >

 . . .

4 4 9 < e n t i t y e n t i t y - n a m e =

 " U o m C o n v e r s i o n D a t e d " . . >

4 5 2 < f i e l d n a m e = " u o m I d "

 t y p e = " i d - n e " / >

 . . .

4 6 0 < p r i m - k e y

 f i e l d = " u o m I d " / >

 . . .

4 7 2 < / e n t i t y >

 . . .

5 1 9 < / e n t i t y m o d e l >

G l S e t u p S c r e e n s . x m l e n t i t y m o d e l . x m l

A c c o u n t i n g c o m p o n e n t C o m m o n c o m p o n e n t

Fig. 1. TheGlSetupScreens.xml contains general ledger screens, such as ListCompanies
and ViewFXConversions, from the accounting component in OFBiz. The
ViewFXConversions screen has a soft reference to the common component since it
needs to render the UomConversionDated business object from the entitymodel.xml.

to display rates for foreign exchange conversions. The concept of a conversion
rate is encapsulated in the UomConversionDated business object defined in the
Common component. The entity-name attribute in the screen model is a reference
to the entity model. When the interpreter encounters this attribute, it performs a
lookup in the entity models and, in this case, renders the UomConversionDated
object on the ViewFXConversions screen. This is a soft reference. Borrowing
vocabulary from programming language theory, we call the attribute in the entity
model the name declaration and the attribute in the screen model the name use.
The reference must point to either an entity or a view-entity in the Entity
Language but this is not checked until calltime when the screen is rendered.
Developers must take care to manually update all references when they change
the name declaration of a business object.

OFBiz is partitioned into a set of different components, such as Accounting
and Inventory. In the example, the screen is defined in the Accounting compo-
nent and the business object is defined in the Common component (that contains
a library of basic, reusable objects and services). Since the screen refers to the
entity model, the Accounting component has an implicit dependency on the
Common component. XML does not have any language constructs for informa-
tion hiding, so it is impossible to specify which elements of an XML model can
be referred to. In other words, we can not state that the Common component
provides entity and view-entity objects.

This means that replacing or updating an existing model or component in
OFBiz requires a lot of work since every dependency must be revealed and

checked manually. A previous study of OFBiz has shown that this is a significant
cause of errors and a concern of the developers [2]. We address these difficulties
by introducing an interface concept stating the provisions and requirements on
three levels: First, on the metamodel level, we state which names are provided, i.e.
declared for public access, and which external names are used in a metamodel,
i.e. are required to exists. Second, on the model level, we state which exact
(attribute instance,value)-pairs are provided and required. Third, a component
is a collection of models, so on the component level, model interfaces should be
composed to establish what a component requires and provides.

3 Interface Theory for Soft References

An interface is an abstract description of the way in which a component com-
municates with its context ; It serves as a requirements specification for the de-
veloper of the component, a use specification for the user of the component,
and a correctness specification for automatic verification. Our components are
models stored in XML files at two levels of the modeling hierarchy: models and
metamodels to which these models conform. A context for a model may be other
models in the project. In this paper we restrict the communication between the
model and a context to an ability to refer to, or being referred from, the context
objects by means of soft references.

Since our interface theory for models only tracks soft references, our view of
XML is grossly simplified. We define an attribute instance to be a fully quali-
fied path to an attribute occurrence in an XML file, identifiable by an XPath
expression. An attribute instance in a schema file is its conceptual counterpart.
It corresponds to the xs:attribute notion in the XML Schema Specification.
In our perspective, attribute instances, whether in XML files, or in schema files,
are just abstract, distinct atomic units.

XML and schema files are just collections of attribute instances. For an XML
file att1 and a corresponding schema att2 a many-to-one implementation relation
R(att1 : att2) ⊆ att1 × att2 relates every attribute instance in att1 to a single
attribute instance in att2. R is established by the standard XSD semantics.

Each model can potentially appear in multiple contexts. Since contexts are
just sets of attribute instances from sets of model files, it seems natural to model
them as unions of models. But a union of sets containing attribute instances is
itself a set of attribute instances. So we define a context to be a set of attribute
instances. Again in practice we distinguish contexts for models (other models)
and contexts for meta models (other schema), but in our abstract view they are
all just sets of distinguishable items. The interpretation is that if an attribute
instance a is in some context ctx, so a ∈ ctx, then ctx declares a, and it can
be referred from other files using a soft reference. Such a generic treatment of
contexts allows us to use interfaces both in small scale, where context can be
fragments of models or entire models, and in the large, for collections of models,
i.e., components.

Definition 1 (Interface). An interface is a quadruple I = (use, decl, req, pro)
where use and decl are disjoint sets of attribute instances, req is a consistent
propositional logic formula over use, and pro is a formula over use∪ decl. More-
over for every context ctx ⊆ use we have that (req→ pro)ctx is consistent.

Expression (ϕ)ctx denotes a specialization of ϕ in the context ctx. Each occurrence
in ϕ of a name v ∈ use is substituted with true if v ∈ ctx and with false otherwise.

Intuitively, the req formula expresses the necessary condition for a component
to deliver its functionality; reqmust be formulated in terms of attribute instances
that are found in the use set. In simple interfaces req just requires one attribute
instance to exist. When a component refers to two or more attribute instances,
then req is a conjunction of them. A reference to an abstract concept can be
modeled as a disjunction of several references.

Consider the example in Table 1. On top, the signature (use and decl) of the
interface is stated: four names might be used, and two might be guaranteed to
be declared in this interface. The signature merely limits the symbols used in
the remaining part of the interface. The requires block, which corresponds to
req in Definition 1, states that this interface refers to an instance of attribute
entity-name with value ’UomConversionDated’, which can be either provided
by an entity or a viewentity. A sum of the two XML scopes (entity and
view-entity) effectively constitutes an abstract scope here, which is modeled by
a disjunction in the interface. Similarly, this interface also requires an entity or
a view-entity named ’PartyRole’ that is referenced from the ListCompanies
screen. This entity has not been shown in Figure 1 for space reasons.

The formula pro, of Definition 1, describes ways in which the model can sat-
isfy the interface. In the most common form of an interface pro is formulated in
terms of declared names found in the decl set, and is just a simple conjunction,
as in Table 1. In more sophisticated cases, general expressions can be used to
express abstract interfaces—for example to summarize several similar compo-
nents that differ slightly in what they provide. We allow use of names from use
in the requires part in order to be able to express these more nuanced interfaces,

Table 1. An interface for GlSetupScreens.xml (Ofbiz’s general ledger UI)

names declared: /screens/screen[@name=’ViewFXConversions’]
/screens/screen[@name=’ListCompanies’]

names used: /entitymodel/entity[@entity-name=’UomConversionDated’]
/entitymodel/view-entity[@entity-name=’UomConversionDated’]
/entitymodel/entity[@entity-name=’PartyRole’]
/entitymodel/view-entity[@entity-name=’PartyRole’]

requires: (/entitymodel/entity[@entity-name=’UomConversionDated’]
xor /entitymodel/view-entity[@entity-name=’UomConversionDated’])

and (/entitymodel/entity[@entity-name=’PartyRole’]
xor /entitymodel/view-entity[@entity-name=’PartyRole’])

provides: /screens/screen[@name=’ViewFXConversions’]
and /screens/screen[@name=’ListCompanies’]

names declared: /entitymodel/entity[@entity-name=’UomConversionDated’]
requires: true
provides: /entitymodel/entity[@entity-name=’UomConversionDated’]

Table 2. An interface for EntitityModel.xml

for example when a part of the functionality is only available given a certain
precondition. This generalization creates a potential problem: we might write a
provides block that is inconsistent with the associated requires block (for exam-
ple require a and guarantee ¬a). Since such interfaces are obviously not useful,
we restrict ourselves to well formed interfaces in the last sentence of Def. 1.

There are several kinds of verification to be considered in the presence of
interfaces. First, a conformance procedure checks if a model obeys its own inter-
face. Second, refinement or subtyping means that one interface properly strength-
ens another one, without breaking any other models, which might be using it.
Third, the most central of these, compatibility of interfaces, means that for any
two interfaces their composition models the composition of any two components
implementing them in such a way that if the interfaces are compatible then there
exist contexts that can use these two components combined.

The subtyping question is contravariant in nature: a subtype of an interface
may relax the assumptions, and may strengthen the guarantees. Formally:

Definition 2 (Subtyping). For two interfaces I1 = (use1, decl1, req1, pro1) and
I2 = (use2, decl2, req2, pro2) say that I1 is a subtype of I2, written I1 � I2, iff

– use1 ⊆ use2 and decl1 ⊇ decl2,
– and formulas (req2 → req1) and (pro1 → pro2) are valid.
– and (req1 → pro1)→ (

∨
decl2−decl1 req2 → pro2) is valid.1

Recall that reqi are interpreted as constraints on the contexts in which Ii may
be used. The implication req2 → req1 means that I1 constrains the environment
no more than I2 does. Similarly proi are interpreted as resources guaranteed by
Ii, so pro1 → pro2 means that any guarantee given by I1 must be stronger than
the one given by I2. The final formula states that the interface refinement is
conservative: it should not change the guarantees already specified in the part
being refined. The refining interface can freely introduce constraints on new
variables though.

Interface theories take an existential approach to compatibility: two interfaces
are compatible if there exists a context in which they can be legally used.

Definition 3 (Compatibility). Two interfaces I1 = (use1, decl1, req1, pro1)
and I2 = (use2, decl2, req2, pro2) are compatible iff decl2 ∩ decl1 = ∅ and there
exists a context ctx ⊆ use = (use1 ∪ use2)− (decl1 ∪ decl2) such that the formula
[(req1 ∨ req2) ∧ (req1 → pro1) ∧ (req2 → pro2)]ctx is consistent.

1 Notation
W

V ϕ means elimination of variables in V from ϕ in propositional logic (a
form of finite existential quantification): for one variable

W
v ϕ ≡ ϕ[0/v] ∨ ϕ[1/v].

Let us elaborate on the above definition. First of all two compatible interfaces
need to have disjoint sets of declared attribute instances, as otherwise it would
be impossible to resolve soft references to any shared name. Second, there must
exists a context in which the composition can be legally used. Third, in this
context one must be able to satisfy an assumption of one or the other of the
interfaces (or both) while still being able to fulfill their obligations. Mind that
a context ctx turns all the variables in use into constants, so satisfiability of
the last two terms implies that it is possible to assign declared variables in
decl = decl1 ∪ decl2 so that the original constraint of both interfaces is fulfilled.

Any two compatible interfaces can be composed, and we give rules to syn-
thesize the interface for the composition. Assume names as in Definition 3. Then
the result of composing I1 and I2 is an interface I = (use, decl, req, pro), where
decl = decl1 ∪ decl2, req :=

∨
decl .(req1 ∨ req2) ∧ (req1 → pro1) ∧ (req2 → pro2),

and pro = (req1 → pro1) ∧ (req2 → pro2).
Example 1. Consider a composition of the interface from Table 1 with the entity
interface in Table 2. The entity interface fulfills the first assumption in the screen
interface, but the second one remains to be pending. The two interfaces are
compatible in the sense of Definition 3. The resulting composed interface is:
names declared: /screens/screen[@name=’ViewFXConversions’]

/screens/screen[@name=’ListCompanies’]
/entitymodel/entity[@entity-name=’UomConversionDated’]

names used: /entitymodel/view-entity[@entity-name=’UomConversionDated’]
/entitymodel/entity[@entity-name=’PartyRole’]
/entitymodel/view-entity[@entity-name=’PartyRole’]

requires: (not /entitymodel/view-entity[@entity-name=’UomConversionDated’])
or (/entitymodel/entity[@entity-name=’PartyRole’]
xor /entitymodel/view-entity[@entity-name=’PartyRole’])

provides: /entitymodel/entity[@entity-name=’UomConversionDated’]
and ((not /entitymodel/view-entity[@entity-name=’UomConversionDated’]

and (/entitymodel/entity[@entity-name=’PartyRole’]
xor /entitymodel/view-entity[@entity-name=’PartyRole’]))

implies (/screens/screen[@name=’ViewFXConversions’]
and /screens/screen[@name=’ListCompanies’]))

We encourage the reader to perform the calculation herself. In practice, this syn-
thesis can be performed using binary decision diagrams (BDDs) or a theorem
prover, and further compatibility checking can also be automated. Observe that
the synthesized interface promises to deliver the entity named ’UomConversion-
Dated’ unconditionally. However delivery of ’ViewFxCompanies’ and ’ListCom-
panies’ depends on absence of a view named ’UomConversionDated’ (as this
conflicts with the entity present in the interface), and availability of either an
entity or a view named ’PartyRole’. In order to use this interface (the requires
section) you need to either refrain from providing the conflicting view, or make
’PartyRole’ available. Otherwise there is nothing this component can offer.

Other interesting uses of composition are possible. For example, an interface
for a complicated file, can be created by treating parts of the file as separate

models, specifying interfaces for them individually, and automatically synthesiz-
ing the interface for the entire file by applying the above composition rule. If you
want to know what needs to be guaranteed to safely access ’ListCompanies’,
you can use the composition algorithm to get the answer, namely that ’UomCon-
versionDated’ should be provided. Simply compose the interface that provides
’ListCompanies’, with another one that requires it.

We admit that the synthesised interfaces are complex, even unsuitable to be
read by humans. We should reiterate that these are not to be written manually,
but synthesized and checked for compatibility automatically. In the long run
the framework should incorporate an interactive exploration tool, which allows
the user to investigate combinatorial spaces in the spirit of interactive product
configuration [6]—without reading the specifications .

Last but not least, as any typical interface theory, ours also offers substi-
tutability by design: for any two compatible interfaces I and J , if I ′ � I and
J ′ � J then I ′ and J ′ are compatible, allowing to safely substitute I ′ in place
of I and, J in place of J ′ without introducing any obligation to recheck com-
patibility, as long as I ′ and J ′ do not declare any new names, which are already
used in I or J . This crucial property means that a developer can substitute
a model without rechecking compatibility as long as the original and the new
model implement the same interface.

4 Metainterfaces

Known interface theories do not explicitly distinguish between the meta level and
the model level. They typically treat implementations uniformly, as completely
refined specifications. Such interface frameworks are simpler to implement, and
simpler to reason about. However since in development with DSLs, both models
and metamodels are first-class artifacts that are being developed and evolved,
it makes sense to exploit their co-existence and the special relation between the
two kinds of models to obtain a more precise interface inference with less burden
on users.

In Sect. 3, we have defined the schemas and XML files to be just sets of
attribute instances at the two levels. Consequently the framework presented
therein applies just as well to schemas as to the models, and all the definitions
and claims are still valid (interfaces, subtyping, compatibility, composition, and
substitutability). Even though at the metalevel we model associations between
elements, as opposed to references between objects, at the plain logical level
there is no difference between composing models and composing metamodels.

We show how metainterfaces together with metamodels can be useful in
establishing conformance of models to interfaces. The correctness of a model is
established in two steps: first the conformance of the XML file to its schema
is checked using regular XML technology. Then the conformance of the XML
file to its interface is checked, involving the schema interface. Why involve the
schema? Ideally we would like to claim that if a model conforms to an interface,
then it declares all the required names and does not use any names that are not

mentioned in the requires block. While the former can be robustly checked, the
latter cannot due to lack of information. Any attribute instance in the XML file
can be a soft reference, but we do not know whether it is one and, if so, which
attribute it uses. To provide a check for this conformance we enrich interfaces
used for metamodels with additional information—links between the used names
and the attribute instances (xs:attribute) that use them. This information,
specified once per metamodel, can be efficiently reused for all conforming models.

Consider the example of a metainterface in Table 3. Note that the syntax is
essentially the same, except that the names no longer include particular values,
and we add by clauses to indicate the internal attributes responsible for the use.
A formal definition of the metainterface follows.

Definition 4 (Metainterface). A metainterface is a 6-tuple I = (use, decl, req,
pro, int, by) where (use, decl, req, pro) is an interface and int is a set of internal
attribute instances disjoint with both use and decl, while by ∈ int 7→ use maps
internal attribute instances to external ones.

An XML file att1 conforms to its interface I1, iff

att1

att2

I1

a="softId"

a names used
b by a

names used
b="softId"

I2

R

:

:

Fig. 2. Checking confor-
mance of name uses

(i) att1 actually contains the attribute instances
that are provided in I1 and (ii) the interface I1
declares the use of all the attribute instances used
in att1. Since (ii) cannot be checked automatically
we approximate it using a metainterface. See the
overview in Fig. 2. For every attribute instance a ∈
att1 (here a is a = ”softId”) detect whether a makes
an external reference by checking whether the cor-
responding attribute (here a) is mentioned in the
metainterface I2, in a by clause. If so, we require that the corresponding used
name, seen in the metainterface (here b), is declared as used in the interface with
the same value as a (here softId).

Definition 5 (Conformance). Let att1 be an XML file, att2 be a schema file to
which att1 conforms, and R be an implementation relation between the two. Let
I1= (use1, decl1, req1, pro1), and I2= (use2, decl2, req2, pro2, int2, by) be the corre-
sponding interface and metainterface. We say that att1 conforms to I1, written
att1 : I1, iff (req1 → pro1)att1 is a valid formula and for every attribute instance
a ∈ att1 such that R(a) ∈ att2 and by is defined for R(a) in I2, we have that
by(R(a)) = value(a) and (req1)att1→ by(R(a))

Let us summarize the ingredients of our framework. We provide interfaces
and meta-interfaces for models and metamodels, with algorithms for checking
compatibility and subtyping and for computing compositions. For models we also
allow conformance checking. Complete conformance checking for metamodels
is impossible due to lack of knowledge on which attributes are soft references
(unless a metametamodel is available). We do not think this is a large problem.
Metainterfaces tend to be much simpler and smaller than interfaces and are
specified by DSL designers. At the same time, interfaces, are used and written
by regular users of DSLs, for whom the automatic support is much more valuable.

5 Interface Inference

We have seen how interfaces are specified, verified and composed. If this technol-
ogy is to be useful in realistic development projects, we need to address another
pressing question: how to easily specify a large number of interfaces? Below we
propose a heuristic technique to automatically infer interfaces reflecting the cur-
rent dependencies in a project. In Sect. 6, we evaluate the technique by applying
its implementation to two large development projects.

The central idea is to discover associations between metamodels by heuristi-
cally mining all references between attribute instances in the available collection
of models. Once metainterfaces are in place, a refinement procedure is applied
to generate model interfaces. Our hypothesis is that this bootstrapping process,
given a sufficiently large number of models, results in fairly precise approxima-
tions of the interfaces.

The inferred interfaces explicitly represent combinatorial dependencies, ad-
dressing the problems described in Sect. 1–2, allowing for safer evolution and
customization of model-based components. Since we do not require any special
conventions from the systems under analysis, the technique can be applied in-
crementally and for a large class of systems. Optional configuration files allow
us to cater for domain-specific heuristics and coding conventions.

Identifying Potential Soft References. We begin with identifying all soft reference
candidates in the models. A soft reference consists of a name declaration and
a name use that are attributes with the same value. An attribute is a potential
name declaration if it always takes unique values (so it can be used as a primary
key). An attribute is a potential name use if all values it takes are a subset
of the values taken by some potential name declaration attribute. Formally if
ref and key are two different attributes, and ref 1 and key1 their corresponding
nonempty instance sets there is a potential simple soft reference with ref being
the name use and key its name declaration if ref 1 ⊆ key1.

In the example of Sect. 2, attribute entity-name on the entity-condition
element refers to either an entity or a view-entity. This is because both
entity and view-entity are subtypes of some implicit abstraction. The above
simple inclusion check fails in such cases because the name declaration of a poten-
tial soft reference is really a union of all names participating in the abstraction;

Table 3. Metainterface for widget-screens.xsd, metamodel of GlSetupScreens.xml

names declared: /screens/screen[@name]
names used: /entitymodel/entity[@entity-name]

by (/screens/screen/actions/entity-condition[@entity-name])
/entitymodel/view-entity[@entity-name]
by (/screens/screen/actions/entity-condition[@entity-name])

requires: /entitymodel/entity[@entity-name]
or /entitymodel/view-entity[@entity-name]

provides: /screens/screen[@name]

here entity and view-entity. The values of a name use referring to such an
abstraction will be a subset of this union and not of any of the individual sets.
Mining uses of such abstractions is similar to mining for class hierarchies.

Let ref be an attribute, keys be a set of attributes from the same metamodel,
and ref 1 and key1..n be their corresponding, non-empty pairwise disjoint instance
sets. We identify a potential soft reference to an abstraction with ref as its name
use and an abstraction over keys as its name declaration, if for each i we have
that ref 6⊆ key i while ref ⊆

⋃n
i=1 keyi.

Our prototype loads and parses all XML files in a
/ / e n t i t y - c o n d i t i o n [@ e n t i t y - n a m e]

a b s t r a c t i o n

/ / e n t i t y [@ e n t i t y - n a m e]

/ / v i e w - e n t i t y [@ e n t i t y - n a m e]

S c r e e n D S L

E n t i t y D S L

Fig. 3. A excerpt of the
graph from the example.

project, identifying potential simple references and
references to abstractions as defined above. After
that a graph representing potential references is
created. Every vertex in the graph represents ei-
ther an attribute or an abstraction over attributes.
There is an edge between every potential declara-
tion and use, and between every abstraction and its
members. Figure 3 shows a small fragment of the
graph created for the example of Sect. 2 where an
abstraction is created over entity and view-entity in the entity model. The
entity-condition[@entity-name] attribute is shown to be a possible name use
of a soft reference between itself and this newly formed abstraction. Effectively
edges in this graph visualise cross-model references.

As the last step, all incoming edges of non-abstract vertices with both a
positive in- and out-degree are removed, assuming that it is unlikely that an
attribute can serve as both name declaration and name use at the same time.

Synthesize interfaces for metamodels. The next step in the process is the synthe-
sis of an interface for each metamodel. The graph created above contains all the
necessary information. For each metamodel, we simply have to locate vertices in
the graph that corresponds to attributes or abstractions from that metamodel.
For each of these vertices, we create an entry in the interface description of the
metamodel. A vertex with an incoming edge results in a provides clause and
a vertex with any outgoing edges results in a requires clause in the interface
description. Synthesizing an interface for entity language based solely on the
graph in figure 3 will give the following result:
names declared: n/a
requires: true
provides: /entitymodel/entity[@entity-name]

/entitymodel/view-entity[@entity-name]

In other words, a metamodel provides a set of attributes that are name decla-
rations of soft references. Similarly, a metamodel requires a set attributes that
are name uses for each soft reference that originates in this metamodel. Inter-
estingly, for abstractions we synthesize disjunctions in the metamodel where the
name use is located. This is, for instance, shown in the requires clause of Table 3.

Refine interfaces from metamodels to models. We shall now generate interfaces
for the models that were used to synthesize the graph and the metainterfaces.
The synthesis forgoes by refining the metainterfaces.

Each entry in the interface description of a metamodel has a corresponding
XPath expression. Evaluating such an XPath expressions results in a set of
attribute instances. These instances are either name declarations or name uses of
soft references as specified in the metamodel interface. The model interface entry
is synthesized by taking an entry from the metamodel interface description and
adding the concrete value of the attribute instance. Models do not just provide
and require attributes but also attribute values. If two models are composed
then not only must the correct attributes be present but these must also have
specific values in order for the model interfaces to be compatible.

6 Empirical Report

In order to validate our claims we have tested the prototype on two industrial
case studies—two interpretative, model-driven systems heavily relying on XML-
based DSLs. We describe the nature of the two case studies now, before delving
into a discussion of the results of experiments and limitations of our analysis.

Our main requirement when choosing the cases was to allow easy good access
to code, so that our claims can be independently validated. Each case should fur-
thermore be implemented in an interpretative, model-driven manner with XML
based primary modeling languages. We selected one case which actually uses
models more than regular code and another case which has the more common
approach of using a 1:5 ratio between models and code.

The first case study is the Apache Open For Business (OFBiz) project [4].
OFBiz is an open source enterprise resource planning (ERP) system. It consist of
a set of modules with basic ERP functionality such as accounting, manufacturing,
e-commerce, inventory etc. It has been deployed in a large number of medium-
sized companies. Larger users include United Airlines and British Telecom [7].
The implementation is in J2EE and XML and as a rough estimate of the size:
the out-of-the-box solution consists of approximately 180 000 lines of Java code
and 195 000 lines of XML.

The second case study is the District Health Information System (DHIS) [5]
which is developed under the Health Information Systems Programme (HISP).
DHIS is an open source healthcare information system which is developed as a
joint project between participants in Cape Town and Oslo. It has been deployed
in several African and Asian countries such as Mozambique, Malawi, Ethiopia,
Nigeria, Vietnam and India. The implementation is in Java and XML and has
a size of roughly 51 000 lines of Java code and 11 500 lines of XML.

We have implemented our approach in a Java-based program and tested it
on the two cases. For each case, we ran a test with and without heuristic rules
in order to see how performance and results were affected. We were interested
in finding the number of inclusions and abstractions to see how many soft refer-
ence candidates were identified by our initial algorithm. Finally, the prototype

Table 4. Results of testing the prototype on OFBiz and DHIS with and without
heuristics. Columns, #inclusions and #abstractions, are the number of potentiel simple
references and potential references to abstractions. The edges column corresponds to
the final number of potential soft reference candidates after running all checks. The
rightmost column, result, indicates the ratio between true and false positives for a
sample language

Setup time #models #m.models #inclusions #abstractions #edges result

OFBiz, 8 rules 80.5s 609 14 61 12 46 29:1

OFBiz, 0 rules 81.3s 609 14 1112 39 391 n/a

DHIS, 3 rules 32.3s 176 6 58 7 73 8:1

DHIS, 0 rules 24.3s 176 6 245 8 106 n/a

cleans up the graph as described in section 5 and produces a set of edges which
form the basis for the synthesized interfaces. Table 4 shows the results of these
experiments2.

The heuristics that we have used are typically rather simple and fairly applica-
tion-specific. For the OFBiz case, we were, as table 4 shows, able to reduce the
number of edges, i.e., soft reference candidates, from 391 to 46 by 8 simple heuris-
tics. An example of such heuristic is: ignore all attributes from any metamodel
if the value of an instance of this attribute contains the character sequence ’${’.
The reasoning behind this heuristic is that the character sequence ’${’ indicates
a reference to a java properties file as used in most localization schemes. The
heuristics were devised in an incremental manner by looking at the produced
graph and then writing heuristics to capture detected false positives. Table 4
clearly shows how especially the number of inclusions and edges decrease after
the introduction of heuristics.

To evaluate our findings, we would ideally have to manually inspect all edges
and check them against the documentation of the 20 DSLs involved in the exper-
iment. This exercise would give us an exact ratio between false and true positives
in the two experiments. Instead we have chosen a more limited evaluation where
we approximate these figures by manually inspecting 1 sample language from
each experiment. We used the Spring Beans Configuration language for DHIS
and the Entity language for OFBiz, the results can be seen in the rightmost
column in table 4. Further inspection of the remaining 18 DSLs will of course
be necessary in order to completely ascertain the value of the approach. We do,
however, claim that ratios 8:1 and 29:1 between true and false positives in the
two case studies are very convincing results.

7 Discussion and Future Work

Identifying abstractions. Mining abstractions from attribute instances by means
of searching for a partition built of all overlapping attribute instance sets was

2 We excluded Minilang, entityconfig and serviceconfig DSLs from the setup for OFBiz

well-suited for our case studies (see Sect. 5). In general, the partition of the
reference value might be realized by a selection of overlapping sets, as opposed
to all of them. A more general mining algorithm for abstractions could be devised
by solving vertex cover problems [8, ch.6.3]. We have not attempted this so far.

Identifying false negatives. One of limitations of our approach is that results
depend on the kinds of models that serve as input. If none of the models use a
certain language feature, e.g., such as a soft reference, then this reference will
not be detected. In terms of the evaluation that we described in section 6, these
undetected soft references can be categorized as false negatives. An evaluation
of the number of false negatives in the two cases remains future work.

Applicability to other systems. We assert that this approach is widely applica-
ble to interpretative model-driven systems. Two XML-based DSLs, particularly
interesting as test cases, are the XML User Interface Language (XUL) from the
Mozilla Foundation and the Extensible Application Markup Language (XAML)
from Microsoft. Both use a variant of soft references. On top of that XUL em-
beds JavaScript that poses an additional (static analysis) challenge, which we
would have to address. Then using our prototype one could synthesize interfaces
for libraries of user interface components in both languages in order to support
evolution and upgrade of applications relying on such libraries.

8 Related Work

Our interfaces are mildly inspired by assume/guarantee interfaces of Alfaro and
Henzinger [9], adapted to tracking soft references between models. Interface the-
ories [9–13] have been so far developed using small scale case studies in embedded
systems [14, 15] and reliability engineering [16], but not in development of large
scale software intensive systems. We are not aware of any attempts of interface
inference in the interfaces community, or of exploitation of the relation between
interfaces and metainterfaces.

The study of usage of multiple domain-specific languages in a single ap-
plication has gained more interest in recent years. Work on static checking of
models that span multiple DSLs can be found in tools such as Xlinkit [3] and
SmartEMF [2]. These tools do, however, require manual specification rather than
automatic extraction of the soft references before they can be checked.

Our approach can be seen as an attempt to uncover types in a set of untyped
models similar to soft types in Scheme [17], JavaScript [18], and embedded DSLs
in Java [19]. Our approach is different since our soft types are extracted through
the automatic bootstrapping process described in Sect. 5.

9 Conclusion

We have offered a compositional approach to tracking soft dependencies based
on interfaces. Using a new language for interfaces and metainterfaces, we can

express complex dependencies and describe compositions of models into compo-
nents. Our approach is lightweight and can be used to infer interfaces for existing
systems. We have demonstrated this by implementing a prototype and applying
it to two cases: an enterprise resource planning system and a healthcare infor-
mation system. The approach and prototype are highly configurable and could
be applied to a larger class of similar systems.

References

1. Bosch, J.: Design & Use of Software Architectures - Adopting and evolving a
product-line approach. Addison Wesley (2000)

2. Hessellund, A., Czarnecki, K., Wasowski, A.: Guided development with multiple
domain-specific languages. In Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.,
eds.: MoDELS. Volume 4735 of LNCS., Springer (2007) 46–60

3. Nentwich, C., Emmerich, W., Finkelstein, A.: Static consistency checking for dis-
tributed specifications. In: ASE, IEEE Computer Society (2001) 115–

4. The Apache Software Foundation: The Open For Business Project (OFBiz). http:
//ofbiz.apache.org/ (2008) Seen May 7th, 2008.

5. Health Information Systems Programme (HISP): District Health Information Soft-
ware (DHIS). http://www.hisp.info/ (2008) Seen May 7th, 2008.

6. Junker, U.: Configuration. In Rossi, F., van Beek, P., Walsh, T., eds.: Handbook
of Constraint Programming. Elsevier Science Inc., New York, NY, USA (2006)

7. Chen, S.: Opening Up Enterprise Software: Why Enterprises are Adopting Open
Source Applications (2006) http://www.opensourcestrategies.com/slides/.

8. Valiente, G.: Algorithms on Trees and Graphs. Springer (2002)
9. Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In

Henzinger, T.A., Kirsch, C.M., eds.: EMSOFT. Volume 2211 of LNCS. (2001)
10. Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In Sangiovanni-

Vincentelli, A.L., Sifakis, J., eds.: EMSOFT. Volume 2491 of LNCS. (2002)
11. Alfaro, L., Henzinger, T.A.: Interface automata. In: 9th Annual Symposium on

Foundations of Software Engineering (FSE), ACM Press (2001) 109–120
12. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and

product line theories. In Nicola, R.D., ed.: ESOP. Volume 4421 of LNCS. (2007)
13. Larsen, K.G., Nyman, U., Wąsowski, A.: Interface input/output automata. In

Misra, J., Nipkow, T., Sekerinski, E., eds.: FM. Volume 4085 of LNCS. (2006)
14. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces.

In Alur, R., Lee, I., eds.: EMSOFT. Volume 2855 of LNCS. (2003)
15. Easwaran, A., Lee, I., Sokolsky, O.: Interface algebra for analysis of hierarchical

real-time systems. In: Foundations of Interface Technologies (FIT). (2008)
16. Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.: Rich inter-

faces for dependability: Compositional methods for dynamic fault trees and Arcade
models. In: Foundations of Interface Technologies (FIT). (2008)

17. Wright, A.K., Cartwright, R.: A practical soft type system for scheme. In: LISP
and Functional Programming. (1994) 250–262

18. Thiemann, P.: Towards a type system for analyzing javascript programs. In Sagiv,
S., ed.: ESOP. Volume 3444 of LNCS., Springer (2005) 408–422

19. Hessellund, A., Sestoft, P.: Flow analysis of code customizations. In Vitek, J.,
ed.: ECOOP. Volume 5142 of Lecture Notes in Computer Science., Springer (2008)
285–308

20. Michail, A.: Data mining library reuse patterns using generalized association rules.
icse 00 (2000) 167

21. Michail, A.: Data mining library reuse patterns in user-selected applications. ase
0 (1999) 24

A The Formal Interface Theory

In general in the following the view of context is as characteristic functions of
sets (as used in the main paper). This is a small technical difference, but useful
to have in the feature. This way the context also carries its scope with it.

The following is an equivalent (and more formal) definition of well-formedness
of interfaces than the one in the text. Well in fact we add one thing, which is
only implicit in the main text, namely that an interface should be usable (so we
rules out vacuous well-formedness).

Definition 6 (Well-formedness). An interface I = (use, decl, req, pro) is well
formed if (i) for every context ctx ⊆ use we have that (req→ pro)ctx is consistent,
and (ii) (req)ctx is consistent itself.

The first claim to prove is that a result of a composition of two compatible
well-formed interfaces is itself well-formed.

Lemma 1. Let I1 = (use1, decl1, req1, pro1) and I2 = (use2, decl2, req2, pro2) be
two compatible interfaces. Then the result of composing I1 and I2, the interface
I = I1|I2 is well-formed.

Proof. Consider an arbitrary context ctx ⊆ use = use1 ∪ use2 − (decl1 ∪ decl2).
Let decl = decl1 ∪ decl2 = {d1, . . . , dk}, req :=

∨
d1
· · ·

∨
dk

(req1 ∨ req2) ∧ (req1 →
pro1)∧ (req2 → pro2), and pro = (req1 → pro1)∧ (req2 → pro2). We need to show
that (req→ pro)ctx is satisfiable, so that[∨

d1

· · ·
∨
dk

(req1 ∨ req2) ∧ (req1 → pro1) ∧ (req2 → pro2)

]
→ ((req1 → pro1) ∧ (req2 → pro2)) (1)

is consistent (which is obvious). Then we also need to argue that req itself is
consistent, so that∨

d1

· · ·
∨
dk

(req1 ∨ req2) ∧ (req1 → pro1) ∧ (req2 → pro2) (2)

is satisfiable. This however follows directly from compatibility of I1 and I2. ut

In the paper we have claimed substitutability by design. Let us restate it here
as a theorem. Observe a small but an important detail, that we require the new,
stronger interface do not have any clashes of newly introduced names. This is a
usual additional requirement, as subtyping usually does not track name clashes
with yet unknown components.

Theorem 1. For any two compatible interfaces I1 and I2, if I ′1 � I1 and I ′2 �
I2 and decl′1 ∩ decl

′
2 = ∅, (decl′1 − decl1) ∩ use2 = ∅, (decl′2 − decl2) ∩ use1 = ∅

then I ′1 and I ′2 are compatible.

It is quite clear that the following simpler lemma suffices to prove the above:

Lemma 2. For any two compatible interfaces I1 and I2, if I ′1 � I1 and decl′1 ∩
decl2 = ∅, (decl′1 − decl1) ∩ use2 = ∅ then I ′1 and I2 are compatible.

The condition that use2∩(decl′1−decl1) = ∅ above, corresponds to usual static
binding assumption. If I2 is linked against something implementing I1 then any
refinement of I1 should not provide other names that I2 needs – normally the
linking mechanism would search for these names in the environment for the
composed component. This is a side effect of introducing stating typing into a
dynamic mechanism. Perhaps we could do better, and lift it for dynamic cases
like soft refs in XML, but this requires more research.

Proof. Consider a complete context ctx be such that:

[(req1 ∨ req2) ∧ (req1 → pro1) ∧ (req2 → pro2)]ctx = 1 (3)

We know that such a context exists due to compatibility of I1 and I2. We shall
find a context ctx′ that satisfies the corresponding compatibility requirement
between I ′1 and I2, so that:

[(req′1 ∨ req2) ∧ (req′1 → pro′1) ∧ (req2 → pro2)]ctx′ = 1 (4)

is consistent.
Observe that ctx is exhaustive for (3), so its scope includes almost all variables

in Figure 4 (more precisely it does not include variables declared afresh in I ′1 —
the gray area in the figure).
1◦ Assume that [req′1]ctx|use1= 0. Then also [req1]ctx|use1= 0 (by the first condition
of subtyping), and [req1]ctx= 0. Consequently, since ctx satisfies (3), we get that
it also satisfies (4). The satisfaction of the two outer clauses carries over from
(3), while the middle clause is satisfied vacuously as per the previous sentence.
2◦ Assume that [req′1]ctx|use1 = 1 and that [req1]ctx = 1 (otherwise we proceed like
in step 1◦). Then by well-formedness of I ′1 we have that [pro′1]ctx|use1 is consistent.
Moreover it is consistent even for [pro′1]ctx|use1∪decl1 because of the third condition
of subtyping (that refinement introduces no changes in the combinatorics of the
refined interface).

The only variables missing in ctx|use1∪decl1 are those in the gray area in Fig-
ure 4, but these are exactly the variables that do not occur in ctx at all, so they
are free. We thus extend ctx to ctx′ by assigning variables from decl′1 − decl1 in
a way which makes [pro′1]ctx′ = 1 (we do exploit the fact that the intersection of
use2 and decl′1 is empty) . Since ctx′ agrees with ctx on all other variables we get
that the last clause of (4) is satisfied in ctx′ (by transfer from (3)). The middle
clause is satisfied since we have argued that [req′1 ∧ pro′1]ctx′ = 1. The last one
follows form [req′1]ctx′ = 1. ut

use1

use′1

decl2

use2

decl′1

decl1

Fig. 4. Possible intersections between sets of variables (sorts) involving I1, I′
1, and I2

as in the assumptions of Theorem 1.

B Varia

Richness of the Interface Language. Such structure of interfaces allows us to
express combinatorial constraints in interfaces, which is particularly useful in
components that allow several different use cases. One could argue that our
interfaces are too rich in that they detail not only the required and provided
part, but the also expose which of the internal model parts refer to the required
objects. This seemingly excessive information, is instrumental in automatic syn-
thesis of interfaces for the model level. Consider the following example of a model
level interface synthesized from the model and the metamodel-interface used in
the example above.

Automatically generated keys. Our implementation works well for manually writ-
ten named based references, it is very easy to incorporate into mature software
development projects. Initial interfaces are generated efficiently, and they can
be easily adapted by developers to contain more fine grained information. The
weakness is that the initial interfaces are all singleton: they have a uniform set of
assumptions, and make one global guarantee. The algorithm attempts no guesses
at the internal semantic meaning of the XML file, which would be needed in order
to offer more fine grained interfaces, where parts of the guarantees only require
part of the assumptions.

Our interface language, and the conformance and compatibility checking al-
gorithms are suitable to work with references of various kinds, including machine
generated identifiers (such like consecutive integers). However the inference al-
gorithm assumes that identifiers are unique within the project (not just within
a type). This assumption normally holds for human created models, and it was
no problem in the projects we have used for evaluation.

– ref to class diagram mining [20, 21]
– impose in configuration file
– association mining - why we haven’t used it [after a second thought AW

thinks that itemset mining with data mining techniques is so much different
that it should not even be mentioned to avoid confusion]

– XAML component libraries
– XUL

