
Model Construction with External Constraints:
An Interactive Journey from Semantics to Syntax

Mikoláš Janota1, Victoria Kuzina2, and Andrzej Wąsowski2

1 Lero, University College Dublin, Ireland
mikolas.janota@ucd.ie

2 IT University of Copenhagen, Denmark
{victoria,wasowski}@itu.dk

Abstract. Mainstream development environments have recently assim-
ilated guidance technologies based on constraint satisfaction. We inves-
tigate one class of such technologies, namely, interactive guided deriva-
tion of models, where the editing system assists a designer by providing
hints about valid editing operations that maintain global correctness.
We provide a semantics-based classification of such guidance systems
and investigate concrete guidance algorithms for two kinds of modeling
languages: a simple subset of class-diagram-like language and for feature
models. Both algorithms are efficient and provide exhaustive guidance.

1 Introduction

Modern modeling and development environments, like Rational R© Software Mod-
eler, Visual Studio R©, and EclipseTM embrace interactive support. They offer
context-sensitive hints of valid editing operations, such as name completion.
These techniques are somewhat limited though. Proposed operations are locally
correct with respect to a syntax definition, a metamodel, or a type system,
but they do not guarantee global correctness, in the sense of satisfying more
complex combinatorial constraints beyond the type system—a need more of-
ten seen in domain specific modeling languages (DSMLs). Recently, new tech-
niques [24,11,22,20] have been proposed that increase adaptivity of guidance and
strengthen the correctness guarantees.

All these techniques recognize the strength of interactive guidance as opposed
to mere validation of constraints or batch synthesis of models without human
intervention. Many constraints cannot be meaningfully validated on incomplete
models. Effectively, validation provides feedback too late, when the model is
ready, the errors are present and substantial revisions might be needed. Batch
synthesis in turn favours purely mechanical constraint satisfaction, failing to un-
cover deep domain knowledge to achieve clarity characteristic to human-made
artifacts. Interactive guidance is the midway path between the batch synthesis
and validation. It is an incremental model transformation [6,19], which by provid-
ing early feedback eliminates the risk of inconsistencies. Still it puts the modeler
in control, who shapes the model herself, striving for clarity and precision.

Fig. 1. Guidance with context menus (a screen from our prototype for feature models)

The aim of our work is twofold: 1) to advance the understanding of interactive
model derivation from the semantics perspective and 2) to develop guidance
algorithms for concrete modeling languages. Our contributions comprise:

– A rigorous definition of interactive model derivation, and a classification of
derivation processes aligned with the conceptual modeling hierarchy.

– Identification of efficient and reliable existing technology supporting sound-
ness preserving instantiation of a nontrivial subset of class diagrams.

– Novel algorithms for completeness-preserving and for semantics-preserving
derivation of feature models. Crucially, our algorithms are terminating, com-
plete and execute efficiently.

– A definiton of expressive power for guided derivation algorithms in general,
and a corresponding evaluation of expressiveness for our new algorithms.

Our primary audience are builders of modeling tools in general and in par-
ticular of platforms for model driven engineering with DSMLs. We believe that
the topic is also relevant for language designers and for researchers studying
semantics of modeling languages and model transformation.

Outline. Section 2 introduces interactive model derivation, and its classifica-
tion. Section 3 discusses soundness preserving derivation for class-diagram-like
DSMLs. In Section 4 we recall basic background about feature models, used
subsequently in Sections 5–6 to study completeness- and semantics-preserving
derivation. We briefly describe our prototype in Section 6.3 and relate to existing
literature in Section 7. We summarize and discuss future work in Section 8.

2 Interactive Model Derivation

Figure 1 shows a screen of our prototype model editor for feature models. A user
has just asked for editing the Engine node and a list of suggestions has opened.
Here, three choices are proposed, namely to create an or-group comprising Elec-
tric and Gas or append any of the features individually as an optional subfeature.
In general, guidance is provided by offering valid editing steps. As the number
of ways to proceed is typically large, the operations that are offered apply to a
context determined by the user, e.g., a feature node, a class, or a state.

Figure 2 shows an overview of the process. The designer queries the editor for
possible valid edit operations, the editor provides a list of such and the designer
chooses one. The editor executes the operation and waits for the next input.

Possible Operations

Analysis

Edit Operation Model

Choice

Perform

Designer

Fig. 2. An overview of the interactive model derivation process

How does the editor know which operations are valid? The operations are
chosen so that they do not violate imposed constraints. The simplest constraints
come from syntax and typing rules (well-formedness), the more intricate ones
from combinatorial aspects of the domain, especially for DSMLs. A reasoning
algorithm translates knowledge from constraints to an accessible form, such as
a list of edit operations. Below we write Valid-Operations to denote such a
reasoning algorithm. Naturally, even though we use a single name for all of them,
the concrete algorithms differ depending on use cases and modeling languages.

Consider a modeling languageM with the syntax defined using a metamodel.
The semantics ofM is given by assigning to each model M :M a logic descrip-
tion denoted JMK. Valid-Operations returns a set of editing operations, which
are mappings from models to models.

Naturally, a transformation applied to a model yields a change in the per-
taining semantics. In this article we focus only on algorithms that identify trans-
formations that refine the model. Semantically, a refinement is characterized by
strengthening the semantics of the model (making the model more restrictive).
Intuitively, any instance of the refined model is also an instance of the original
one. More formally, for each O ∈ Valid-Operations(M) the following impli-
cation holds: JO(M)K→ JMK.

Focusing on refinement is motivated by the goal of a gradual construction
of the model. Hence we will be concerned with sequences of editing operations,
most often with sequences that begin with an empty model and lead to a fully
constructed one. A limit of such sequences of refinements is typically a point be-
yond which refinement is not desirable. For instance, for a model with semantics
expressed as a set, a singleton set is a possible limit.

In general, we aim for guidance algorithms to propose enough operations so
all such limits are attainable, not preventing the user from deriving any useful
models. We will call this property exhaustiveness of advice. In a similar spirit we
will require validity of advice, i.e., that no sequence of operations selected from
the proposed choice is leading to an invalid model.

Apart from the refinement requirement, we also consider a constraint, ϕ, cap-
turing additional domain knowledge. We have identified three different model
derivation scenarios differentiated by what role the constraint ϕ has. The first
scenario is mostly known under the term modeling : instantiation of metamodels.
It aims at constructing a single instance of a metamodel, for example an object
diagram, and can be seen as a gradual narrowing of a set of possible instances to

ϕ !M0" !Mn"!M1"

a. Soundness-preserving.

ϕ!M0" !M1" !Mn"

b. Completeness-preserving.

Fig. 3. Limits of evolution in different classes of model derivation

a single instance of interest. We shall call such a process a soundness-preserving
model derivation. Consider the visualization in 3a. The designer seeks for a par-
ticular instance that satisfies ϕ and each of the transformations brings her closer
to the desired solution. The ellipses represent intermediate models and the goal
instance is depicted as •. A very simple example of soundness-preserving deriva-
tion is interactive configuration [10,14] of feature-models [5], where one specific
product, a configuration, from a domain is selected. Other applications include
instantiation of highly combinatorial DSMLs as seen in [24].

We say that {Oi}i=1..n is a sequence of valid operations and {Mi}i=0..n is its
associated sequence of intermediate models iff Oi ∈Valid-Operations(Mi−1)
and Mi+1 = Oi+1(Mi). For the derivation to be soundness-preserving all the
intermediate models must be within the bounds of the constraint ϕ which repre-
sents the domain (ϕ can amount to a metamodel and a set of OCL constraints).
More specifically, JMiK→ ϕ holds for all i.

In soundness-preserving derivation any Valid-Operations algorithm has
the exhaustive advice property iff it enables deriving all valid instances, i.e., for
any model M respecting the constraints (JMK → ϕ) there exists a sequence of
valid operations and its associated sequence of models {Mi}i=1..n and M = Mn.

The second model derivation scenario takes us from modeling to metamodel-
ing: modeling of domains, as opposed to single artifacts. Here the model deriva-
tion refines the entire universum of models to a subset that describes a certain
domain as precisely as possible in the given language. We shall call such model
derivations completeness-preserving since they focus not on finding a specific
valid instance (as in soundness-preserving), but on removing all unsuitable in-
stances. Figure 3b gives an intuition: The derivation starts with a very loose
model M0 and gradually approaches a model that tightly over-approximates ϕ.

Completeness-preserving model derivation is less common than the soundness-
preserving one, in the same way as metamodeling is a less common activity
than modeling. It can be used to reverse-engineer models from logic descriptions
of constraints—a functionality particularly needed in modeling of non-software
products, where designers are trained in product design but not in the kind of
modeling commonly seen in IT. What is perhaps more interesting, it can be used
to refine existing models of domains on which new constraints are being imposed.
Such constraints may arise from the context of the model. For instance, in our

PrinterKeyboard1

0..1
PC Hub

USB

0..2
device

0..1

port

a. The USB metamodel

printer-2

device

keyboard

hub-2

hub-1PC
device

device

port

port

device printer-1port

port

b. A model of a USB bus

Fig. 4. The USB language and its instance. Inspired by [23]

previous work we have investigated how constraints in an architecture model
propagate to constraints of the feature model [13].

Formally, for any sequence of valid operations {Oi}i=1..n and its sequence of
intermediate models {Mi}i=0..n it holds that ϕ → JMiK for any i. We will say
that a completeness-preserving Valid-Operations algorithm has the exhaus-
tive advice property iff it enables to derive all the models that are weaker than ϕ,
i.e., for any M , such that ϕ→ JMK, there exists a sequence of valid operations
and their associated intermediate models {Mi}i=0..n with M = Mn.

The final scenario is a very well known class of model transformations that
lies in the intersection of semantics- and completeness-preserving cases: the class
of semantics-preserving transformations or refactorings. Any refactoring O has
the property that JO(M)K = JMK and for any sequence of valid refactorings
{Oi}i = 1..n with the intermediate models {Mi}i=0..n we have that JMiK =
JMi+1K. We easily see that sequences of operations that satisfy this condition
are both semantics- and completeness preserving.

Below we detail interactive derivation algorithms for concrete languages and
corresponding use cases, one for each class out of the three defined above.

3 Soundness-Preserving Model Derivation

We have characterized soundness-preserving model derivation as an editing pro-
cess proceeding via a sequence of models with decreasing space of possible com-
pletions, so that for any Mi we have that JMiK → ϕ. Below we consider an
instance of this problem for a DSML describing USB buses, defined by the meta-
model in Fig. 4a. Each model in this language describes a USB bus comprising
a PC to which a hub is connected. Each hub has two ports. Each port can be
used as a socket to which another USB device is connected; either another hub,
or a keyboard, or a printer. Figure 4b shows a simple model.

As it is often the case, the metamodel as such cannot fully express the syntac-
tic restrictions on the model, so it is accompanied by a set of constraints. The
constraints are typically formalized, but for the sake of simplicity we express
them in plain English here: (C1) each model must contain exactly one instance
of PC, (C2) every USB device is connected to a port or to the PC instance, and
(C3) every bus has a keyboard connected or a free port to connect one. We want
to assist the designer in creating USB models satisfying these constraints.

PC hub-1

device hub-2

hub-1PC

port

device printer-1

device hub-2

hub-1PC

port

port

PC

3. 4. 5.

2.

1.

device hub-2

hub-1PC

device

port

device printer-1port

port

printer-2

Fig. 5. Stages of editing the example from 4b.

Out of many derivation processes possible, in this work we focus on syntac-
tically monotonic ones, i.e., beginning with an empty model and refining the
model syntactically by adding new elements step by step. The new elements
must be added to the existing ones, which means that whenever we instantiate
a new device on the bus, we need to connect it to one of the existing ports.

Figure 5 shows a derivation of a simple model. We start with an empty dia-
gram. As a consequence of (C1) and (C2), the editor3 proposes a single possible
edit step: the instantiation of a PC node. Constraint (C2) yields a possible set
of choices in the second step: instantiate and connect a hub (step 2). In step 3
the tool suggests instantiating and connecting a USB device object to any of the
two ports of hub-1. All three types of devices are offered (a hub, a keyboard, and
a printer). We choose the hub, and then similarly two printers in steps 4–5. The
final step of the example is perhaps the most interesting one. We are in a state,
in which only one port is free, in the hub-1 object. Possible edit steps for this
port are to instantiate either a hub or a keyboard. Observe that a printer ob-
ject cannot be suggested at this point as connecting a printer would exclude the
possibility of connecting any other device to the bus. Consequently constraint
(C3) would be violated. Selecting a hub is safe as it still leaves the possibility of
connecting a keyboard later. Select a keyboard to obtaining the model in Fig. 4b.

3.1 Soundness-Preserving Derivation as Modular Configuration

Our USB language is in fact an instance of the modular configuration problem.
In [23] algorithms for monotonic syntactic derivation of instances of these prob-
lems are presented, guaranteeing validity and exhaustiveness of advice.

Modular configuration problems can be equated to a decidable class of object-
diagram-like languages with propositional constraints interpreted over associa-
tions. More precisely, a constraint associated with a class is interpreted sepa-
rately for each of its objects, and can refer only to variables of the object itself,
and to variables of objects directly reachable via a navigation step from that
object. No quantification or iteration is allowed in constraints, and all associa-
tions have bounded multiplicity. While the metamodels can contain cycles, only
acyclic and connected instances are allowed. As the constraints are interpreted
over instantiations of associations they can encode many inductive properties
normally reserved for first order logics—like having a keyboard on each bus.
3 Such an editor is feasible, as [23] demonstrates.

Feature

Root FeatureGrouped
Feature

Solitary
Feature

Group

2..*

1

0..*

Sub-feature
Relation Type

Mandatory
Sub-feature

Optional
Sub-featureXOR-groupOR-group

1

10..*

is
su

b-
fe

at
ur

e

a. The metamodel

gas electric

engine

car

car-body

manual automatic

gearshiftpower-locks

Root Feature

Mandatory
Sub-feature

Optional
Sub-feature

or-group

xor-group

b. An example of a feature diagram, inspired by [7]

Fig. 6. The Language of Propositional Feature Diagrams

4 Background: Propositional Feature Models

Let us recall the language of feature models, exploited as an example in the
upcoming sections. Feature models [15] are used to systematically describe vari-
ability and commonality in product line engineering [4]. In a nutshell, a feature
corresponds to a specific functionality of a system. A feature model records
available features, together with constraints and dependencies relating them.

A variety of feature diagram languages is found in the literature, mostly with
propositional semantics [21]. We should note, however, that other semantics ex-
ist, for instance using grammars [2], higher-order [12] and probabilistic [8] logic.
In this article we operate on the combinatorial core of feature models, the propo-
sitional models [7]. A propositional feature model comprises a feature diagram
and a constraint. The diagram is the centerpiece. It records the features and
dependencies in a graph-based notation. An additional constraint is appended
if it cannot be expressed in the diagrammatic language itself.

A feature diagram organizes features in a tree, containing a node for each
feature. A child node, or a sub-feature, is either optional, mandatory, or grouped.
A grouped feature belongs either to an or-group or an xor-group with other
sub-features of the same parent. Fig. 6a shows the metamodel of this language.

Apart from hierarchically organizing the features, the purpose of the diagram
is to determine which combinations of features, so-called feature configurations,
are permitted. The root feature must be present in all configurations. A sub-
feature must not be selected into a configuration not containing its parent. A
mandatory feature is required by its parent, whereas an optional one is not. From
features grouped in an or-group (resp. xor-group) at least one (resp. exactly one)
must be selected whenever the parent is selected. The feature diagram in Fig. 6b
describes possible configurations of a car. Each car must have a body, gearshift,
and engine; an engine is electric or gas (selecting both corresponds to a hybrid
engine); a gearshift is either automatic or manual.

The semantics J·K of a propositional feature diagram is defined as the set of
permitted configurations. Symbolically such a set is identified with the set of
satisfiable assignments of its characteristic formula in propositional logic. The
formula is created by binding a single variable to each feature, and translating the
syntax of a feature diagram in a natural manner. More specifically, the formula
is a conjunction of the formulas yielded by the individual constructs, which are
defined as follows. The root r is always selected, hence yields the formula r.
Features f1, . . . , fn grouped in an or-group under the parent p yield the formula
f1∨· · ·∨fn ↔ p. An xor-group f1, . . . , fn yields f1∨· · ·∨fn ↔ p and additionally
mutually disables the grouped features:

∧
i6=j ¬(fi ∧ fj). Finally, each optional

feature c with the parent p yields the formula c→ p and each mandatory feature
m yields m↔ p. The formula representing the semantics of the model in Fig. 6b
is: c∧ (p→ c)∧ (b↔ c)∧ (g ↔ c)∧ (e↔ c)∧ (g ↔ m xor a)∧ (e↔ s∨ l). In order
to obtain semantics of the entire feature model (M,ψ) we lift the semantics of
the feature diagram M and conjoin it with the constraint ψ: J(M,ψ)K = JMK∧ψ.

Some authors extend the diagram language with excludes and requires edges
that may cross the tree hierarchy. Such extended diagrams are technically fully
expressive, in the sense that they can encode any propositional formula [21].
However, when it comes to expressiveness, there is little difference between the
use of an explicit constraint (ψ) and the two additional constructs. Indeed, our
results from Sections 5–6 can easily be extended to account for the two.

5 Completeness-Preserving Model Derivation

Section 2 characterizes completeness-preserving derivation as a sequence of trans-
formations in which the semantics of intermediate models covers the given con-
straint at all times, so ϕ → JMiK for all intermediate Mi. In this section we
develop a completeness-preserving Valid-Operations algorithm for a specific
case—derivation of feature diagrams, or feature models without the constraint.

5.1 Analysis

Consider a scenario in which instead of a feature model of a car we are given a
collection of constraints; for example that a car cannot have both manual and
automatic gearshift. Let ϕ be a conjunction of such constraints. The constraints
are proposed by various stakeholders involved in car development. Now a modeler
needs to construct a feature diagram that faithfully captures ϕ.

How do we characterize a diagram that faithfully captures a constraint? On
the one hand, the desired feature diagram should not be more restrictive than
ϕ — otherwise it would have ruled out configurations that do not violate the
constraints. On the other hand, the diagram should capture as much of the
constraints as possible, ideally precisely those that are configurations of ϕ. In
general, since a propositional feature diagram alone is not expressive enough to
capture arbitrary constraints, we strive for capturing strongest possible overap-
proximations of ϕ, hoping that these would most clearly represent the intrinsic

Valid-Operations(M,n, ϕ) : set of operations

� M is a (partially constructed) feature diagram
� n is a node in M , present iff M is nonempty

1 if M is empty then return {Root(r) | ϕ,M |= r}
2 solitary ← {Mandatory(n, c) | ϕ,M |= c↔ n and c not instantiated in M}

∪ {Optional(n, c) | ϕ,M |= c→ n and c not instantiated in M}
3 groups ← {OrGroup(n,m1 . . .mk) | n↔ ϕ,M |=

W
i∈1...k mi,

k > 1 and all mi are not instantiated in M}
∪ {XorGroup(n,m1 . . .mk) | ϕ,M |= n↔

W
i∈1...k mi ∧

V
i6=j ¬(mi ∧mj),

k > 1 and all mi are not instantiated in M}
4 refine ← {RefineOR-group(n,m1, . . . ,mk) |

{m1, . . . ,mk} is an or-group of p in M and ϕ,M |=
V

i 6=j ¬(mi ∧mj)}
∪ {RefineOptional(n) | n is an optional child of p in M, and ϕ,M |= n→ p}

5 return solitary ∪ groups ∪ refine

Fig. 7. Computing completeness-preserving operations for propositional feature models

combinatorial structure of ϕ. So we seek for a diagram M that conforms to
the metamodel (Fig. 6a) and whose semantics is weaker than the provided con-
straints, so: ϕ→ JMK, and which is refined as much as possible.

In another use case, a new constraint should to be imposed on an already
existing feature model. Consider again the example of Fig. 6b. The designer adds
a feature keyless-entry which requires power-locks. So an additional constraint
keyless-entry→ power-locks arises. The editor computes that the keyless-entry
can be a sub-feature of power-locks and if the user opts for this operation, the
implication can be removed. The editor also computes that keyless-entry can be
made a sub-feature of car, due to transitivity of implication. However, if the user
chooses this operation, the formula keyless-entry → power-locks is not captured
in the diagram and must be appended as a new constraint to the model.

Similarly as in Sect. 3 we choose to work with syntactically monotonic deriva-
tions. For feature diagrams it means that our editing steps add new syntactic con-
structs to existing parts of the diagram, as opposed to modifying them. Strictly
speaking, we do supply a few simple non-monotonic steps for usability reasons.
These extensions however do not influence the expressiveness of the available
transformations when it comes to validity and exhaustiveness of advice.

5.2 Completeness-Preserving Derivation of Feature Diagrams

The process starts with a feature diagram M satisfying ϕ→ JMK. The al-
gorithm Valid-Operations (see Fig. 7) suggests editing operations. As we do
not want to overwhelm the user with an inundation of possible operations, the
algorithm provides editing operations for a specific node, denoted n in Fig. 7.

For the sake of clarity, let us first assume that we have a magic oracle deter-
mining queries of the form ϕ,M |= ψ, meaning that assuming the constraint ϕ

and the semantics of diagram M , the proposition ψ holds: ϕ ∧ JMK→ ψ. The
algorithm mirrors, in a sense, the semantics of feature diagrams. For a given
node n, it needs to find all possible mandatory sub-features, i.e., features c that
are not in the diagram yet and for which the bi-implication n↔ c holds (line 2).
Other primitives of the diagram meta-model are covered analogously.

Line 4 is somewhat different from the preceding ones. Whereas the previous
lines add to the diagram, this one modifies the existing constructs. Any or-group
may be refined to an xor-group if a sufficient constraint is provided, i.e., mutual
exclusion of the grouped features. Analogously for the optional feature.

An implementation of the oracle ϕ,M |= ψ is actually presented in [7], where
a technique is developed for compiling a boolean formula into a so-called feature
graph. When using a feature graph as an oracle, necessary queries can be evalu-
ated in time polynomial in the number of features. Indeed, most of the queries
used in the above algorithm can be established during a single traversal of the
feature graph, which makes this algorithm very efficient. All this despite that
most of the queries would require solving NP-complete problems, when applied
to a textual representation of ϕ. Efficiency during derivation is possible, because
the hardness of the problem is shifted to a startup phase, when the feature
graph is generated (generation is NP-hard). The generation runs only once per
an editing session (as opposed to at every editing step) and it can be efficiently
implemented using binary decision diagrams [3].

Valid advice. The algorithm of Fig. 7 suggests only the operations that are
completeness-preserving. More specifically, for any returned operation O and
a model M s.t. ϕ → JMK it holds that ϕ → JO(M)K. The proof of this fact
proceeds by comparing the algorithm to the semantics defined in Sect. 4.

Exhaustive advice. This algorithm provides exhaustive advice, meaning that any
feature diagram weaker than ϕ can be derived from the empty diagram in a finite
number of steps by solely applying operations suggested by the algorithm. For
the lack of space we do not provide the whole proof, but only illustrate the basic
idea. Assume that an adversary gives us a diagram M and a constraint ϕ such
that ϕ→ JMK. Our goal is to re-construct M using the editor. We start at the
root and descend towards the leaves. First, let us look at the root r: Because it
is a root and JMK is weaker than ϕ, we have ϕ → JMK and JMK ≡ r ∧ ψ for
some ψ (see the definition of J·K in Sect. 4). Together this yields that ϕ→ r, so
r will be offered to the user (Line 1) as an option when she starts editing.

Let c be any optional sub-feature that has not been reconstructed so far and
p be a re-constructed parent of c. We have JMK ≡ (c→ p)∧ψ and hence by the
same reasoning as before (ϕ∧p)→ c, therefore c will be offered to the user as an
optional child of p. The rest of the proof is carried out in an analogous fashion.

On the side, note that the algorithm enables us to start the derivation from
an arbitrary diagram, not necessarily an empty one. Hence a stronger form of
the exhaustive advice property can be shown for it: any diagram M ′ such that
(JMK ∧ ϕ)→ JM ′K and that respects the parent-child relation imposed by M ,
can be derived from M using the suggested steps.

(M,ψ) //

J·K ''N
NN

NN
N

(M ′, ψ′)

J·Kwwoo
oo
oo
o

ϕ

Fig. 8. A refactoring step for a feature model (M,ψ): JM ′K→ JMK, JψK→ Jψ′K

6 Semantics-preserving Editing Feature Models

Recall that a propositional feature model comprises a diagram and a boolean
formula. The semantics of this pair is defined as a conjunction of the semantics of
the diagram and the formula. For feature models, semantics-preserving transfor-
mations are those that preserve the satisfying assignments of that conjunction.
One may imagine an amplitude of transformations that are semantic-preserving.
Below we describe the type of transformation that we have targeted in our work.

6.1 Feature Diagram Refinement by Model Refactoring

Let us replay the scenario from Sect. 5.1, this time considering both a diagram
and a constraint. As previously, the goal is to approximate the given constraint ϕ
with a feature diagram, which is not likely to capture the constraint completely
leaving a remainder in the second component of the model.

The editing process starts with the empty diagram and ϕ as the constraint
component. The constraint is weakened gradually, whenever the diagram is
refined. The semantics of the entire model is preserved throughout. Figure 8
schematically depicts what we expect from each single editing operation.

The algorithm in Sect. 5.2 lets us assist the user with refining the diagram
while keeping its semantics weaker than ϕ. In here, the editor should also provide
for automatic transformation of the constraint. For instance, if the constraint
contains the formula c→ p and the user makes c to be an optional sub-feature of
p, one would predict that the formula in question will be removed from the con-
straints as the sub-feature relation already captures the implication (see Sect. 4).
These simplifications are important for the user as they give her an intuition of
how much of the left-over constraint is alread incorporated into the diagram.

We should note that there is no single obvious notion of simplification. Sim-
plification cannot be defined as weakening. Changing x ∧ y to x weakens and
arguably simplifies, whereas changing x to x ∨ y weakens but hardly classifies
as simplification. Hence, by simplification we mean an operation that reduces
the size of the syntactic representation of the formula and keeps as much of the
original structure as possible while preserving the pertaining semantics.

6.2 Adapting Constraint for Diagram Refinement

The diagram is refined by the user by choosing an operation from a set suggested
by Valid-Operations (see Fig. 7). It is clear how these operations affect the
diagram. Here we explain how to adapt the left-over constraint.

Our prototype accepts the input in the Conjunctive Normal Form (CNF)
with enhancements that enable writing for instance IFF f1 f2 for the two clauses
¬f1 ∨ f2 and ¬f2 ∨¬f1. Each editing operation results in a set of clauses C that
represents the constraints and a boolean formula ψ that corresponds to the
semantics of the current feature diagram. Hence, the problem now is to simplify
C under the assumption that ψ holds.

The first simplification we perform reduces C to such form that no clause
c ∈ C is implied by the conjunct of the rest of the clauses and ψ, i.e., there
is no c ∈ C such that

∧
d∈C\{c}(d ∧ ψ) → c. This reduction is implemented by

repeatedly choosing and removing a clause that violates this property until no
such clause exists4. Binary Decision Diagrams (BDDs) [3] are used to decide the
individual implications but a SAT solver could be used as well.

Apart from performing the operations suggested by the algorithm Valid-
Operations (Fig. 7), the user chooses the root of the feature diagram when the
derivation process begins. A feature r can be chosen as a root if it is implied by
all the other features while assuming ϕ. The choice of the root r corresponds
to setting r to true. That lets us simplify C by repeatedly using the tautologies
(true ∨ C)↔ true and (false ∨ C)↔ C, a technique known as unit propagation.

Our motivation for using CNF was that it enables performing simplifications
in a rather uniform manner while it is still fully expressive. Many useful con-
structs, e.g., f1 excludes f2, map directly to their clausal form (¬f1∨¬f2 in this
case). Nevertheless, both types of simplification could be extended to operate
on a general boolean form. Instead of operating on a set of clauses, one would
operate on a set of boolean expressions. Then, the reduction of this set (first
simplification) can be done in the same fashion. The unit propagation of the
root would be replaced by substituting true for the root in each expression and
subsequently applying standard boolean tautologies, such as (a ∧ true)↔ a.

6.3 Implementation

We have embedded the algorithmValid-Operations (see Fig. 7) into an Eclipse
plug-in that lets the user load a file with a constraint and derive the desired fea-
ture diagram. The editing process follows the principles described in Sect. 2 and
the simplification of the constraint is performed as described in Sect. 6.2. The
constraint, in Conjunctive Normal Form, is translated to a BDD representation
that is further used to compute the feature graph — a structure that answers
queries for Valid-Operations (see [7] for details).

We have applied the implementation to models described in the literature,
including the largest publicly available example known to us, a model of an
ecommerce system from [18], for which the editor responded with imperceptible
time delays. Details in [17]. The main bottleneck of our solution lies in the
algorithm of [7], and its prime implicants computation. Preliminary experiments
indicate that on typical formulae this algorithm scales up to 200-300 variables.

4 Heuristics could be used for deciding which clauses should be removed first. For
instance, one could start with the longer ones.

7 Related Work

The algorithm that compiles propositional constraints to a feature graph, which
is used as an oracle in Sect. 5.2, originates in our previous work [7]. The present
paper really completes the agenda of loc. cit.

Our work shares many goals with [24,11,22,20]. Still it differs significantly
in several respects. First, they mostly focus on algorithms for concrete prob-
lems, while we also try to understand problems in a more general framework
of preservation classes and advice properties. Second, the practical part of our
work focuses on efficient terminating algorithms, with a particular performance
gain in use of the offline compilation phase. In contrast, [24,11,22] rely on on-
line query execution using Prolog, which does not even guarantee termination.
We admit though that all report efficient execution times in practice, for the
constraints they consider.

Third, we achieve exhaustiveness of advice, while the quality of advice is
hard to assess in loc. cit. SmartEMF [11] provides a weak form of exhaustive
advice, given that it terminates. The algorithm of Sen and coauthors [22] is
a very good example of a solution which does not guarantee exhaustiveness of
advice. In fact the latter algorithm has very little control over the kind of advice.
It only provides a fixed number of hints, computed by running a Prolog engine
several times on a constraint system representing valid choices. The constraints
are permuted randomly in order to allow for finding different solutions.

Concrete modeling languages used in these works differ. While [24,11] focus
on class diagram-like metamodels (e.g. Eclipse Modeling Framework), we work
with modular configuration problems and feature models. The two languages we
have chosen are less expressive than these in some sense, but this is what enables
us to provide support that is more robust and automated. In [22] languages
expressible using hyperedge replacement grammars are targeted.

SmartEMF [11] does not consider guidance beyond attributes. In particular,
there are no hints given about the need to instantiate new objects in the model,
which constitute most of the operations in our derivation processes.

Alves et al. [1] discuss refactorings of feature models, introducing a measure
of quality for them. While we strongly disagree with this definition (which is
basically a weakening relation) we state that semantics-preserving feature model
derivation, as presented in here, falls under their definition of refactoring. In [1]
a catalog of refactorings is proposed, but no firm claims of its exhaustiveness are
made. In that sense our results are stronger, as we have argued that any models
can be derived with our editing operations (exhaustiveness of advice). Being
incremental, our operations do not enable refactoring any model to any model
though. Such goal would require a mixture of both weakening and strengthening
steps. We intend to explore this possibility in future.

Massoni et al. [19] have investigated refactorings that are done in two tiers:
at the program (code) level and the object model level. The need for such refac-
torings arises in the evolution of projects developed under the model-driven
paradigm. As in our work, the authors recognize the importance of formally
sound refactorings and aim to establish such.

8 Summary and Future Work

Interactive model derivation is a process of constructing models and meta-
models in the presence of automatic adaptive guidance on possible modeling
steps. We have classified uses of model derivation into soundness-preserving,
completeness-preserving and semantics-preserving, relating these classes to mod-
eling and metamodeling activities. Then we have proposed guidance algorithms
for two kinds of languages (pointing to existing work in one case). Our devel-
opment was rigorous, exploiting logic constraints and reasoning algorithms. We
have demonstrated the feasibility of such approaches by implementing a proto-
type for feature models and by testing it on existing examples.

While mainstream tools adopt interactive support technologies, the ultimate
open problem in the field remains to be: how to generically and robustly provide
exhaustive and valid guidance for an arbitrary language defined by a metamodel
(for example in MOF or EMF) and a set of reasonably expressive constraints
(like a large decidable subset of OCL). While others approached this problem
by retaining an expressive language, but relying on a potentially nonterminating
search, we have taken a different route. We considered simpler languages, but
also more robust algorithms. In future we intend to investigate possibilities of
supporting richer languages.

Even though we emphasize the importance of interactive support, in some
cases it is still useful to automatically perform multiple editing operations. This
desire poses several interesting problems ranging from HCI issues (how to present
a choice of sequences of operations?) to optimization issues (how to efficiently
discover sequences of interest?).

Acknowledgements. We thank Steven She for sharing with us the results of his
scalability experiments with the algorithm presented in [7]. We also thank anony-
mous reviewers for constructive and invaluable feedback. This work is partially
supported by Science Foundation Ireland under grant no. 03/CE2/I303 1.

References

1. Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba, and Carlos
José Pereira de Lucena. Refactoring product lines. In S. Jarzabek, D. C. Schmidt,
and T. L. Veldhuizen, editors, GPCE, pages 201–210. ACM, 2006.

2. Don Batory. Feature models, grammars, and propositional formulas. In H. Obbink
and K. Pohl, editors, SPLC ’05, LNCS. Springer-Verlag, 2005.

3. Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, 35(8), 1986.

4. Paul Clements and Linda Northrop. Software Product Lines: Practices and Pat-
terns. Addison–Wesley Publishing Company, 2002.

5. Krzysztof Czarnecki, Michal Antkiewicz, Chang Hwan Peter Kim, Sean Lau, and
Krzysztof Pietroszek. fmp and fmp2rsm: eclipse plug-ins for modeling features
using model templates. In OOPSLA ’05: Companion to the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 200–201, New York, NY, USA, 2005. ACM.

6. Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration
using feature models. In R. L. Nord, editor, SPLC ’04, volume 3154 of LNCS.
Springer-Verlag, August 2004.

7. Krzysztof Czarnecki and Andrzej Wąsowski. Feature diagrams and logics: There
and back again. In Kellenberger [16].

8. Krzysztof Czarnecki and Andrzej Wąsowski. Sample spaces and feature models:
There and back again. In Proceedings of the 12th International Software Product
Line Conference, SPLC ’08. IEEE Computer Society, 2007.

9. Fundamental Approaches to Software Engineering, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2008.

10. T. Hadzic, R. Jensen, and H. Reif Andersen. Notes on calculating valid domains.
Manuscript online http://www.itu.dk/~tarik/cvd/cvd.pdf, 2006.

11. Anders Hessellund, Krzysztof Czarnecki, and Andrzej Wąsowski. Guided develop-
ment with multiple domain-specific languages. In G. Engels, B. Opdyke, D. C.
Schmidt, and F. Weil, editors, MoDELS, volume 4735 of LNCS, pages 46–60.
Springer, 2007.

12. Mikoláš Janota and Joseph Kiniry. Reasoning about feature models in higher-order
logic. In Kellenberger [16].

13. Mikoláš Janota and Goetz Botterweck. Formal approach to integrating feature
and architecture models. In FASE ’08 [9].

14. Ulrich Junker. Configuration. In F. Rossi, P. van Beek, and T. Walsh, editors,
Handbook of Constraint Programming. Elsevier Science Inc., 2006.

15. Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-oriented domain analysis (FODA), feasibility study. Technical
Report CMU/SEI-90-TR-021, SEI, Carnegie Mellon University, November 1990.

16. P. Kellenberger, editor. Software Product Lines. IEEE Computer Society, 2007.
17. Victoria Kuzina. Interactive derivation of feature diagrams. Master’s thesis, IT

University of Copenhagen, 2008. To appear.
18. Sean Quan Lau. Domain analysis of e-commerce systems using feature-based model

templates. Master’s thesis, Dept. Electrical and Computer Engineering, Univer-
sity of Waterloo, Canada, 2006. Available at: http://gp.uwaterloo.ca/files/
2006-lau-masc-thesis.pdf.

19. Tiago Massoni, Rohit Gheyi, and Paulo Borba. Formal model-driven program
refactoring. In FASE ’08 [9].

20. Steffen Mazanek, Sonja Meier, and Mark Minas. Auto-completion for diagram
editors based on graph grammars. In IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE Computer Society, 2008.

21. Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. Feature
diagrams: A survey and a formal semantics. In Proceeding of 14th IEEE Interna-
tional Requirements Engineering Conference (RE). IEEE Computer Society, 2006.

22. Sagar Sen, Benoit Baudry, and Hans Vangheluwe. Domain-specific model editors
with model completion. In P. J. Mosterman, T. Levandowszky, and J. de Lara,
editors, The 2nd International Workshop on Multi-Paradigm Modeling, 2007.

23. Erik Roland van der Meer, Andrzej Wąsowski, and Henrik Reif Andersen. Effi-
cient interactive configuration of unbounded modular systems. In Hisham Haddad,
editor, SAC, pages 409–414. ACM, 2006.

24. Jules White, Douglas Schmidt, Andrey Nechypurenko, and Egon Wuchner.
Domain-Specific Intelligence Frameworks for Assisting Modelers in Combinator-
ically Challenging Domains. In GPCE4QoS, October 2006.

http://www.itu.dk/~tarik/cvd/cvd.pdf
http://gp.uwaterloo.ca/files/2006-lau-masc-thesis.pdf
http://gp.uwaterloo.ca/files/2006-lau-masc-thesis.pdf

