
Color-blind Specifications for Transformations

of Reactive Synchronous Programs

Kim G. Larsen1, Ulrik Larsen1, and Andrzej Wasowski2

1 CISS, Aalborg University, Denmark, {kgl,ulrikl}@cs.aau.dk
2 IT University of Copenhagen, Denmark, wasowski@itu.dk

Abstract. Execution environments are used as specifications for spe-
cialization of input-output programs in the derivation of product lines.
These environments, formalized as color-blind I/O-alternating transition
systems, are tolerant to mutations in a given program’s outputs. Exe-
cution environments enable new compiler optimizations, vastly exceed-
ing usual reductions. We propose a notion of context-dependent refine-
ment for I/O-alternating transition systems, which supports composition
and hierarchical reuse. The framework is demonstrated by discussing
adaptations to realistic design languages and by presenting an example
of a product line.

1 Introduction

Modern software becomes increasingly customizable. This especially affects em-
bedded software, since embedded devices are typically produced in multiple
variants. Our long-term goal is to provide a theoretical foundation, tools, and
methodology for maintaining a family of software for reactive synchronous sys-
tems. In the present work we focus on the theoretical basis for specifying cor-
rectness of transformations used in automatic derivation of family members.

A single general model is used as a description of all available functionality.
Hierarchically organized specifications of environments define the family mem-
bers by restricting input and output abilities of the general model. I/O alter-
nating transition systems are used to model the semantics of both environments
and the general model. Our environments are novel in that they not only restrict
possible input traces, but also exhibit inabilities in distinguishing output traces.
Some outputs are indistinguishable for a given environment in the same way as a
color-blind person cannot distinguish some colors. Color-blindness can be used to
model surprisingly many aspects of realistic environments (for example causality
between the firing and timing-out of a stop-watch, boolean memory flags, or the
use of a single actuator in place of two). The general model can be transformed
according to the behavior of a specific environment, and individually optimized
for that particular environment and purpose.

Section 2 motivates our work using a popular reactive language. I/O alternat-
ing transition systems are introduced in section 3, color-blindness in section 4,
and composition operators in section 5. Remaining sections focus on practical
applications: adaptation to realistic design languages (section 6) and an example
of a product line (section 7). Sections 8-9 refer the related work and conclude.



armed fired delayed
alarmTO/

beepOn

snoozeTO/
beepOnbeepOff

alarm/

snooze/
beepOff

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snoozeTO ∧ delayed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

∨snoozeTO ∧ delayed/lightOn

snooze ∨ alarmTO ∧ armed
off

bright/
lightOff

dark

/glow

backlight

day night
dark

brightsensor

Fig. 1. Initial state/event model C0

armed fired delayed
alarmTO/

beepOn

snoozeTO/
beepOnbeepOff

alarm/

snooze/
beepOff

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snoozeTO ∧ delayed/lightOn

onglowing

∨snoozeTO ∧ delayed/lightOn

alarmTO ∧ armed
off

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

dark

/glow

bright/
lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

snooze

snooze

backlight

day night
dark

brightsensor

Fig. 2. The specialized model C1

2 State/Event Systems

Let Event and Action be finite sets of environment stimuli and system outputs
respectively. A state/event machine Mi = (Si, s

0
i , Ti) is a triple comprising a set

of local states Si, the initial state s0
i ∈ Si and a set of syntactic transitions Ti.

A state/event system consists of n machines M = {M1, . . . , Mn} with mutually
disjoint sets of states. A global state of the system is a tuple of local states:
State = S1×S2×· · ·×Sn. Transitions in Ti ⊆ Si ×Event ×Guard ×Action×Si

describe reactions undertaken by Mi in reply to a given event, in a given local and
global state. Global states are described by transition guards: simple Boolean
expressions over activity of states, which can be evaluated in any given global
state, giving rise to a natural satisfaction relation � ⊆ State × Guard .

State/event systems are input-enabled : the local transition relation includes
not only the syntactical transitions but also self loops for all configurations for
which reactions are not specified. We write s e o

−−−→i s′i, meaning that the reaction
of machine Mi to arrival of event e in global state s is, to change the local state
to s′i and generate the set of actions o:

s
e {a}
−−−−−→i s′i iff ∃g. (πi(s), e, g, a, s′i) ∈ Ti ∧ s � g

s e ∅
−−−→i πi(s) otherwise (where πi(s) denotes the i’th projection of s)

The global transition relation T ⊆ State ×Event ×P(Action)× State subsumes
all local reactions: s e o

−−−→ s′ ⇔def ∀i.s e oi−−−−→i πi(s
′) where o = o1 ∪ . . . ∪ on.

Fig. 1 depicts a state/event model C0 of an alarm clock. The essentials of the
alarm clock are handled by the timer machine. If the timer is in the armed state
and the hardware sends an alarm time-out event (alarmTO) then the beeper is
turned on. The user can postpone the alarm by pressing the snooze button (event
snooze), which allows him to continue sleeping until the snooze timer times out
(snoozeTO). Releasing the button sends a snoozeR event to the model. The
backlight machine controls the built-in lamps. Only a faint light is displayed in
the glowing state, such that the display can be read in the dark. The full light is
on while the alarm is beeping or the snooze button is being pressed. The sensor
machine models the current external light level. Proper events (dark, bright) are
generated by the sensor driver whenever the ambient light passes some threshold.



We would like to support automatic derivation of variants for discrete control
systems like the alarm clock. One such variant C1, which does not activate the
backlight in reaction to the snooze button, is depicted on Fig. 2. Note the sim-
plification of guards and the two new transitions in the backlight state machine.
What is the relation between the two models? Both models are indistinguishable
for some execution environment, namely the one, which becomes blind for the
lightOn action immediately after producing the snooze event.

3 I/O Alternating Transition Systems

The reactive synchronous paradigm seems to be predominant in development of
embedded software. The state/event systems of the previous section [17, 11] are
just an example chosen from a multitude of available formalisms, like Esterel [2],
statecharts [7], or Java Card [24]. A common assumption about these systems is
that they react to any input event at any time. Each reaction occurs infinitely
fast, so that the system is always able to observe the arrival of the next event.
Such semantics is conveniently captured by I/O-alternating transition systems:

Definition 1. An I/O-alternating transition system, or IOATS, is a tuple (In,

Out ,Gen,Obs , !
−→,

?
−→, s0), where In and Out are sets of inputs and outputs,

Gen and Obs are finite sets of generators and observers,
!
−→ ⊆ Gen × Out × Obs is a generation relation, ?

−→ ⊆ Obs × In × Gen is an
observation relation, and s0 ∈ Gen ∪ Obs is the initial state.

We have distinguished two transition relations: !
−→ is a generation relation ad-

vancing from a generator to an observer, while ?
−→ is an observation relation

advancing from an observer to a generator. This alternation is inherent to the
way synchronous systems operate. We write S

o!
−−→s, instead of (S, o, s) ∈ !

−→ and
s

i?
−−→S instead of (s, i, S) ∈ ?

−→. Small letters are used for observers and capital
letters for generators. In addition observers are required to be input-enabled:

∀s ∈ Obs. ∀i ∈ In. ∃S, o, s′. s
i?
−−→S ∧ S

o!
−−→s′ (1)

With these assumptions we can propose a simulation based refinement relation:

Definition 2. Let S1 = (In ,Out,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1) and S2 = (In,Out ,

Gen2,Obs2,
!
−→2,

?
−→2, s

0
2) be IOATSs. A binary relation R ∈ Obs1 × Obs2 con-

stitutes a simulation on observers of S1 and S2 iff (s1, s2) ∈ R implies that:

whenever s1
i?
−−→S1∧S1

o!
−−→s′1 then also s2

i?
−−→S2∧S2

o!
−−→s′2 and (s′1, s

′
2) ∈ R .

Let R be the largest of such relations ordered by inclusion. An observer s2 sim-
ulates an observer s1, written s16s2, iff (s1, s2) ∈ R. Finally S2 simulates S1,
written S16S2, iff s0

16s0
2.

We distinguish the actual systems from the environments, in which they oper-
ate. Environments are free in choice of inputs, while systems independently deter-
mine the outputs. A system S = (InS ,OutS ,GenS ,ObsS ,

!
−→S ,

?
−→S , sS) oper-

ates embedded in some environment E = (InE ,OutE ,GenE ,ObsE ,
!
−→E ,

?
−→E , sE).



Systems always begin execution in an observer state, so sS ∈ ObsS . Environ-
ments always begin execution in a generator state, so sE ∈ GenE . System S is
compatible with the environment E if InS = OutE and OutS = InE . Composi-
tion of a system S with a compatible environment E is defined in the usual way,
by synchronization on identical labels (and complimentary transition types).
The initial observer of the system is composed with the initial generator of the
environment. Due to the compatibility requirement and input-enabledness of ob-
servers, the closed system is able to advance for any input that can be generated
by the environment. For a closed system it is known, which of its states cannot
be exercised by the environment. A given environment may not be able to dis-
tinguish two systems from each other, even though they are not identical. We
capture this with a notion of relativized simulation:

Definition 3. Consider three IOATSs: an environment E = (Out , In,Gen,Obs ,
!
−→,

?
−→, E0) and two systems: S1 = (In ,Out,Gen1,Obs1,

!
−→1,

?
−→1, s

0
1) and S2 =

(In,Out ,Gen2,Obs2,
!
−→2,

?
−→2, s

0
2). A Gen-indexed family of binary relations

R :Gen→P(Obs1×Obs2) is a relativized simulation iff (s1, s2) ∈ RE implies that:

whenever E
i!
−−→e ∧ e

o?
−−→E′

then whenever s1
i?
−−→S1 ∧ S1

o!
−−→s′1

then also s2
i?
−−→S2 ∧ S2

o!
−−→s′2 and (s′1, s

′
2) ∈ RE′ .

Let R be the largest of such families ordered by component-wise inclusion. We
say that an observer s2 simulates an observer s1 in the generator E, written
s16Es2, iff (s1, s2) ∈ RE. The system S2 simulates S1 in the context of E, written
S16ES2, iff s0

16E0s0
2.

The choice of simulation as the preorder underlying our methodology is some-
what arbitrary. Most other behavioral preorders of the linear-time/branching-
time hierarchy of van Glabbeek [6] would be adequate, such as testing preorder,
2/

3
bisimulation (ready simulation) and bisimulation. What is important is that

the particular preorder preserves properties of interest and that the preorder
may be relativized with respect to environmental restrictions.

4 Color-blind I/O-alternating Transition Systems

In the previous section we were able to state that two systems are in a refinement
relation with respect to a certain context if this context cannot activate their in-
compatible parts. However, in industrial development, it often happens that the
environment cannot distinguish two systems, not because it makes incompatible
parts unreachable, but because its ability to distinguish the different outputs it
observes might be limited depending on its actual state. A variant of the alarm
clock may have only one physical lamp installed, which should be lit whenever
the backlight is on or glowing. The environment, being a model of the hard-
ware in this case, will treat the two outputs glow and lightOn as being identical,
allowing for powerful optimizations when generating code for this specific type



of hardware. For this particular example, the distinguishing capability of the
environment is clearly static and hence the specification of code optimization
is realizable using simple process algebraic operations such as relabelling and
hiding. However, environmental restrictions can be dynamically changing as was
the case for the environment leading to the specialized model C1 (Fig. 2). Here
the environment only becomes blind for the lightOn action after the production
of the snooze event. To give a proper treatment of such situations we relax the
equivalence of labels in relativized simulation and label observation transitions
of environments with sets of inputs called observation classes. Such transitions
can be taken in the presence of any of the inputs in their observation class.

Definition 4. A color-blind IOATS is a tuple E = (In,Out ,Gen,Obs , !
−→,

?
−→, E0), where In and Out are sets of inputs and outputs, Gen and Obs are
finite sets of generators and color-blind observers, !

−→ ⊆ Gen × Out × Obs is a
generation relation, ?

−→ ⊆ Obs ×P(In) ×Gen is a color-blind observation rela-
tion, and E0 ∈ Gen is the initial state.

A color-blind environment E = (InE ,OutE ,GenE ,ObsE ,
!
−→E ,

?
−→E , E) and a

usual IOATS S = (InS ,OutS ,GenS ,ObsS ,
!
−→S ,

?
−→S , s) are compatible if their

signatures match: InE = OutS ∧ OutE = InS . Since we only consider compatible
systems and environments, we fix the meaning of the input and output, choosing
the system’s perspective. We denote the set of inputs of the system by In (which
is also the set of outputs of the environment). Similarly Out is the set of outputs
of the system (but the set of inputs for the environment). A single input will be
denoted by i, single output by o, and classes of outputs by capital O. We still
write E

i!
−−→e instead of (E, i, e) ∈ !

−→ and e
O?
−−−→E instead of (e, O, E) ∈ ?

−→.
We require that the observers in color-blind IOATS are deterministic and

input enabled, so that the observation classes on the transitions outgoing from a
single state form a partitioning of the inputs into equivalence classes. Formally:

∀e ∈ ObsE .∀O1, O2 ⊆ Out .∀E1, E2 ∈ GenE . e
O1?
−−−→E1 ∧ e

O2?
−−−→E2

⇒ O1 ∩ O2 = ∅ ∨ (O1 = O2 ∧ E1 = E2)

∀e ∈ ObsE .∀o ∈ Out .∃O ⊆ Out .∃E ∈ GenE .e
O?
−−−→E ∧ o ∈ O. (2)

The generation relation should also be deterministic: ∀E ∈ GenE . ∀i ∈ In.

∀e1, e2 ∈ ObsE .E
i!
−−→e1 ∧ E

i!
−−→e2 ⇒ e1 = e2. Note that determinism in this

sense does not limit the freedom of the environment in choosing inputs, but
means that each input choice uniquely determines the target state.

Consider a blind environment B with two states, a generator B and an ob-
server b. Intuitively B can execute all parts of the system, but does not care about
the responses it gets: ∀i ∈ In. B

i!
−−→b and b

Out?
−−−−→B. Dually, a perfect vision

environment V observes all the outputs: ∀i ∈ In.V
i!
−−→v and ∀o ∈ Out .v

{o}?
−−−−→V.

A compatible environment–system pair forms a closed system, advancing in
lock-steps. However, now the generation transition of the system, synchronizes
with the observation transition of the environment, whenever the output pro-
duced falls into the right observation class. We enrich our previous definition of
relativized simulation to accommodate this new synchronization principle:



F1:I: F2:M:

{o4}? {o1, o2}?

i2!
{o3}?i1!

i3?
i1?i2?

o1! o4! {o4}? {o2}?

i2! {o1}?
{o3}?i1!

i3?
i2? i1?

o3!

o2! o4!

Fig. 3. Systems M and I and compatible environments F1, F2

Definition 5. Let E=(Out , In,Gen,Obs, !
−→,

?
−→, E0) be a color-blind environ-

ment IOATS and S1=(In,Out ,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1), S2=(In,Out,Gen2,

Obs2,
!
−→2,

?
−→2, s

0
2) be two system IOATSs. A Gen-indexed family of relations

R :Gen→P(Obs1×Obs2) is a relativized simulation iff (s1, s2)∈RE implies that:

whenever E
i!
−−→e ∧ e

O?
−−−→E′

then whenever s1
i?
−−→S1 ∧ S1

o1!−−−→s′1 ∧ o1 ∈ O

then also s2
i?
−−→S2 ∧ S2

o2!−−−→s′2 ∧ o2 ∈ O and (s′1, s
′
2) ∈ RE′ .

Let R be the largest of such families ordered by component-wise inclusion. An ob-
server s2 simulates an observer s1 in the context of generator E, written s16Es2,
iff (s1, s2) ∈ RE. An IOATS S2 simulates another IOATS S1 in the context of
a compatible color-blind IOATS E, written S16ES2, iff s0

16E0s0
2. Finally S1 is

equivalent to S2 in the context of E, written S1 ≶E S2, iff S16ES2 and S26ES1.

Even though we have initially postulated that most of the execution con-
texts do not exercise all possible traces of the system, we shall now require that
environments can always produce any of the inputs in In. This requirement sur-
prisingly does not defeat our initial goal. We can direct all transitions producing
impossible inputs to the observer b and embed the blind environment B in every
environment. Instead of specifying that the environment cannot produce i, we
state that i can be produced, but the subsequent system behavior is irrelevant.
Proposition 1 states this formally:

Proposition 1. For any two observers S1, S2 of the same IOATS S16BS2.

Fig. 3 presents two systems and two compatible color-blind environments.
Environment transitions from generators to the blind observer b have been omit-
ted. There is one such transition for each input–generator pair, for which the
transition is not drawn. Observe that the system M simulates I in the envi-
ronment F1 (I6F1

M) not due to the fact that F1 is not able to exercise the
differing parts of the two systems, but because F1 cannot distinguish between
the outputs (o1, o2) produced by I and M. The F2 environment distinguishes I
and M, by observing the outputs o1 and o2 with two separate transitions.

Relativized simulation is a weaker notion than usual simulation and the per-
fect vision environment V is the most discriminating environment:

Proposition 2. For any two systems S1, S2 and for any compatible color-blind
environment E it holds that S16S2 ⇒ S16ES2 and S16S2 ⇐⇒ S16VS2.

With the above propositions we have hinted at the notion of discrimination—
the ability of environment to distinguish systems from each other:



Definition 6. A color-blind IOATS F is more discriminating than E, written
E⊑F , iff F distinguishes more processes: E⊑F iff ∀S1,S2.S16FS2 ⇒ S16ES2.

The blind environment B is the least discriminating—it cannot distinguish
any two systems from each other (proposition 1). By proposition 2 the perfect
vision environment V is the most discriminating one.

The notion of discrimination will soon prove fundamental for our develop-
ments. We shall use it to design composition operators for behavioral properties,
facilitating hierarchical modeling of product lines. Unfortunately the definition of
the discrimination is rather abstract. The quantification over all systems, makes
it infeasible for mechanical treatment. To remedy this obstacle we introduce a
new preorder on environments: a simulation for color-blind IOATSs.

Definition 7. Let E=(Out, In,GenE ,ObsE ,
!
−→E ,

?
−→E , E0) and F = (Out , In,

GenF ,ObsF ,
!
−→F ,

?
−→F , F 0) be color-blind environments. A pair of binary re-

lations, R1 ⊆ GenE × GenF and R2 ⊆ ObsF × ObsE , constitutes a simulation
between states of color-blind IOATSs iff (E, F ) ∈ R1 implies that

whenever E
i!
−−→e then also F

i!
−−→f and (f, e) ∈ R2 ,

and (f, e) ∈ R2 implies that whenever f
Of ?

−−−→F

then also e
Oe?
−−−→E and Of ⊆ Oe and (E, F ) ∈ R1 .

Let (R1, R2) be the largest such pair of relations (ordered by point-wise inclu-
sion). A generator F simulates a generator E, written E6F , iff (E, F ) ∈ R1.
An observer e simulates an observer f , written f6e, iff (f, e) ∈ R2. An environ-
ment F simulates E, written E6F , iff E06F 0.

The simulation preorder can be established mechanically for finite state sys-
tems using state exploration techniques [3]. Thanks to the following central re-
sult, these techniques can also be used to verify discrimination properties:

Theorem 1. For any two color-blind environments E and F : E⊑F iff E6F .

5 Composition of Behavioral Properties

Typical code generators do not use any context information, assuming that the
model is combined with the perfect vision environment V . Another extreme
would be a program synthesis tool requiring a precise environment model, im-
posing a significant burden on engineers. We propose light-weight, composable,
partial specifications of environments in the form of behavioral properties like:
that certain events always come interleaved (e.g. on/off switch), or that there is
causality between an input and an output (e.g. a timer only timeouts after it has
been started). Each property can be expressed as a simple color-blind IOATS.
In this section we consider ways of composing such properties.

As said before, every observer e of a color-blind IOATS induces a partitioning
of Out into observation classes. Let us denote this partitioning by Pe. The set of



all equivalence relations (and hence the set of all partitionings) over Out , ordered
by inclusion, forms a complete lattice. Consequently for any set of partitionings
{Pk}k∈L there exist the greatest lower bound

d
k∈L Pk, which is the coarsest

partitioning finer than any of Pk and the least upper bound
⊔

k∈L Pk, which is
the finest partitioning coarser than all Pk.

The composition is defined for environments with the same I/O signatures.
We consider two kinds of composition: a sum and a product. Sums intuitively
correspond to disjunction of properties (or sums in CCS [19]). Products corre-
spond to conjunctions (or synchronous composition in CSP [9]).

E1
i!

−−→e1 . . . En
i!

−−→en

n
P

k=1

Ek

i!
−−→

n
Q

k=1

ek

(SG)

O∈
n
F

k=1

Pek
E = {E|∃1≤k≤n.∃O′ ⊆ O.ek

O
′
?

−−−→E}

n
P

k=1

ek

O?
−−−→

Q

E

(SO)

E1
i!

−−→e1 . . . En
i!

−−→en

n
Q

k=1

Ek

i!
−−→

n
P

k=1

ek

(PG)

O∈
nd

k=1

Pek
E={E|∃1≤k≤n.∃O′⊆Out .ek

O
′
?

−−−→E ∧ O⊆O′}

n
Q

k=1

ek

O?
−−−→

P

E

(PO)

The result of a composition is a well-formed color-blind IOATS. The rules for the
sum of generators (SG) and for the product of generators (PG) are very simple,
due to the determinism and input-enabledness of our generators. The composi-
tion is synchronous: all composed generators take identical steps simultaneously.
From the system’s perspective a single input is generated. The observer rules are
more complex, due to the embedding of determinisation. Consider the product
of observers (PO) first. The observation classes O of the composed environment
will be finer than observation classes of any of the composed processes. When-
ever any o is observed by the result of the composition we advance to the state E

composed of states reachable by o from all ek’s. Since O is finer than some class
in any of these observers there is always exactly n such reachable generators.
Dually in the sum (SO) observational classes are coarser than classes of any of
the composed observers. The transition relation follows to those generators that
can be reached by any output belonging to such an extended class. The size of
E can exceed the number of original observers n.

Our compositions enjoy the following essential property:

Theorem 2.
∑n

k=1
{Ek} is the least environment, which simulates all summands,

while
∏n

k=1
{Ek} is the greatest environment, which is simulated by all the factors.

Since discrimination and simulation coincide (Thm. 1) ⊑ can replace 6 in
the above theorem: The sum of environments is the least discriminating environ-
ment, more discriminating than each of the summands. The product is the most
discriminating environment, less discriminating than each of the factors. These
in turn are standard expectations about conjunction and disjunction. A conjunc-
tion (product) of two properties expressing inability to observe two behaviors,
will result in a property expressing inability to observe either. Disjunction (sum)
of two properties expressing ability to observe something, results in a property
expressing the ability to observe both. See example on Fig. 4.



{
o
4
}
?

i 3
!

i2!

i1!

{
o
4
}
?

i 3
!

{
o
3
}
?

{
o
2
}
?

{
o
1
}
?

{
o
3
}
?

{
o
2
}
?

{
o
1
}
?

i1!

{o3}?

{o1, o2}?

{o4}?

i2!

i3!

{o4}?

i3!

{o3}?

{o1, o2}?

{o4}?

i3!

{o3}?

{o1, o2}?

i
2
!

i
1
!

{
o
4
}
?

{
o
3
}
?

{
o
2
}
?

{
o
1
}
?

i 3
!

{
o
1
}
?

{
o
2
}
?

{
o
3
}
?

{
o
4
}
?

i 3
!

i1!

i2!

i1!

i2!

{o4}?

{o3}?

{o1, o2}?

i1!

i2!

i3!

(a) (b) (c) (d)

Fig. 4. Environments Interleave i1 i2 (a) and Equiv o1 o2 (b), their product (c) and
sum (d) (In = {i1, i2, i3}, Out = {o1, . . . , o4}). Transitions to the b observer are sup-
pressed. The product only generates what both of the factors could generate. It can
distinguish only what both of them could. The sum can generate what any of the sum-
mands could observe, and it observers what any of them could. In particular o1 and o2

are distinguished in the traces for which the Interleave property is preserved and not
otherwise.

6 Toward Realistic Design Languages

Until now we have assumed that outputs of systems are atomic. This assump-
tion however often does not hold for realistic languages, which typically support
structured output: sets, multisets, sequences or even sequences of sets of atomic
actions produced in a single step. We have successfully applied our framework
to the semantics of languages producing sets (state/event systems of section 2,
Harel’s statecharts [7], synchronous languages [2]) and sequences (Java Card
[24], UML state diagrams [21]). We describe some intricacies of the latter here,
while simpler set-based environments are demonstrated by example in section 7.

Let Event and Action be finite sets of atomic events and actions respectively.
Each observation transition of the system awaits a single input from Event , while
each generation transition produces an output which is a finite sequence of ac-
tions from Action: In = Event and Out = Action∗. The first step in adapting the
theory is linking the concrete states of models (for example state configurations
in statecharts, or variable store in Java Card) to abstract states of the IOATS.
This can normally be done in a direct way (at least for finite state models). Sub-
sequently the observation and generation relations must be extracted from the
semantics of the language in question. Observation classes on the environment
side (color-blind) become sets of sequences of actions. Partitioning of Action∗

into classes that are regular languages can be described by a finite automaton.

Definition 8. A classifier DFA over alphabet A is a quadruple c = (S, A, s,−→),
where S is a finite set of states, A is a finite set of symbols, s ∈ S is an initial
state and −→∈S→A→ S is an input-enabled transition function, meaning that
for every s∈S function −→(s) is defined for each element of its domain A. We
usually write s

a
−→s′ instead of −→(s)(a) = s′.

A classifier DFA consecutively applies −→ to a state and the head of the
input sequence obtaining a new state and input sequence. An execution over a
list of symbols s

a1−−→s1
a2−−→ . . .

an−−→sn is abbreviated with s
a1...an−−−−−→∗sn.



E : F : E + F : E × F :

a2

e1!

?

?

e2!

a1

a2

a1

a1

e1!

?

?

e2! a2

a2

a1

e1!

?

e2!

a1

a1

?

a2

a2

a2

? ?

a1

a1

a2

a1

e1!

?

e2!

a2

Fig. 5. Environments E and F observing sequences, their sum and product.

Definition 9. Let c=(S, A, s,−→) be a classifier. Sequences σ1, σ2∈A∗ are equiv-
alent with respect to c if both advance c to the same state: ∃s′.s

σ1−−→∗s′∧s
σ2−−→∗s′.

The equivalence with respect to a classifier is an equivalence relation and parti-
tions A∗ into a finite set of classes, isomorphic with the reachable states.

For a classifier e = (Se,Action, se,−→e) consider a mapping of its states to
generators γe : Se → Gen . Each observer of the environment comprises a classi-
fier and a generator mapping. Environments advance from an observer (e, γe) to
a generator γe(s) if it observes a sequence σ advancing the classifier to a state s:

(e, γe)
{σ | se

σ
−−→∗s} ?

−−−−−−−−−−−−−→γe(s) .

Fig. 5 shows two color-blind IOATSs E and F of signature: Event = {e1, e2}
and Action = {a1, a2}. E distinguishes reactions containing at least one occur-
rence of a1 from those not containing a1 at all. Similarly F distinguishes be-
tween sequences containing at least one a2 from those not containing a2 at all.
Observers are drawn as boxes containing classifier DFAs. Classifier transitions
are represented as dotted arrows to distinguish them from IOATS transitions.

The product of classifiers is a central construction in computing products of
observers, supporting composition of environments:

Definition 10. Let e = (Se, A, se,−→e) and f = (Sf , A, sf ,−→f ) be classifiers.
A product of e and f is a classifier e ⊗ f = (Se × Sf , A, (se, sf ),−→), where
(se, sf ) a

−→(s′e, s
′
f ) if se

a
−→s′e and sf

a
−→s′f .

Proposition 3. Let ∼e and ∼f be two equivalences on Action∗ induced by clas-
sifiers e and f . Their greatest lower bound ∼e ⊓ ∼f exists and is induced by e⊗f .

Figure 5 presents the sum E + F obtained by application of operational rules
of section 5 (SG,PO) and the above proposition. E + F distinguishes four classes
of outputs: an empty sequence, sequences consisting of occurrences of a1, con-
sisting of occurrences of a2, and containing occurrences of both a1 and a2.

The least upper bound of two partitionings ∼e ⊔ ∼f is usually computed
using a Union-Find algorithm, which unifies any two overlapping classes, until
all classes are disjoint. In our case classes are represented by states in the clas-
sifiers e and f . We need to apply the algorithm to states of e and f , ultimately
producing a classifier, whose states are sets of states of f and e. The two classes
s1 and s2 overlap, whenever there is an output sequence, that can advance one
classifier to a state in s1, and the other classifier to a state in s2. The initial set
of classes is given by reachable states of the product classifier e ⊗ f :



i. S := {{ei, fj} | (ei, fj) is reachable in e ⊗ f}.
ii. If there exist s1, s2 ∈ S such that s1∩s2 6= ∅ then S := S\{s1, s2}∪{s1∪s2}.
iii. Repeat (ii) until no more classes can be unified.

The final value of S is the set of states of the new classifier DFA. The ini-
tial state is the class that contains initial states of e and f (note that both of
them will be in the same class). The transition function −→ is a sum of tran-
sition functions −→e and −→f lifted to sets of states. For s1, s2 ∈ S: s1

a
−→s2 if

∃.p1 ∈ S1.∃p2 ∈ S2.p1
a
−→e p2 ∨ p1

a
−→f p2. The following proposition claims that

this function is well-defined, deterministic and input-enabled:

Proposition 4. Let s1, s2 ∈ S be any two of the sets of states (not necessarily
distinct) constructed with the above algorithm. Then for any states p1, p2 ∈ s1,
p′1, p

′
2 ∈ s2 of the original classifiers and any symbol a: p1

a
−→1 p′1 and p′1 ∈ s2 iff

p2
a
−→2 p′2 and s′2 ∈ s2, where −→i denotes −→e if si ∈ Se or −→f if si ∈ Sf .

It follows that the classifier g = (S, A, s,−→) constructed above is a well
defined classifier DFA. Moreover, the observation classes that it induces are
coarser than any class of ∼e and ∼f . Due to the properties of the union-find
algorithm, ∼g is actually the least equivalence encompassing both ∼e and ∼f :

Proposition 5. Let ∼e and ∼f be equivalences over Action∗, induced by clas-
sifiers e = (Se,Action, se,−→e) and f = (Sf ,Action, sf ,−→f ). The equivalence
∼e ⊔ ∼f is induced by a classifier g such that its states are computed applying
the Union-Find algorithm to the set { {ei, fj} | (ei, fj) reachable in e ⊗ f },
where two sets s1,s2 are unifiable if s1 ∩ s2 is not empty. The union operation is
a set union, the initial state is the set containing initial states of e and f , and
the transition function is a sum of transition functions lifted to sets of states.

The rightmost IOATS on Fig. 5 is a product of E and F obtained by applica-
tion of the composition rules from section 5 (PG,SO) and the above algorithm.
This product gives rise to the observer which does not distinguish any sequences.

7 Environment Driven Specialization

We shall now broaden the meaning of a model of a system to encompass a family
of systems, and let it represent functionality, which in its entire richness may
not be present in any of the actual members being produced. Particular family
members will be specified using models of environments, and derived by trans-
formations preserving relativized equivalence in a given color-blind environment.
We shall informally demonstrate a product line derivation scenario, hinting at
what techniques could be used to make such automatic derivation viable.

Our family will consist of several state/event systems. The transition relation
of state/event systems (see section 2) produces sets of actions during a single
reaction step. In such a setting the observational classes of environments become
sets of sets (powersets) of actions.



armed fired
alarmTO/

beepOn

beepOff

alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed ∨ snooze/lightOn

onglowing

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

/lightOn

snooze ∨ alarmTO ∧ armed
off

bright/
lightOff

dark

/glow

(alarm ∧ fired ∨ snoozeR)
∧night / glow

backlight

day night
dark

brightsensor

C2

(a)

armed fired
alarmTO/

beepOn

beepOff

alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed/lightOn

on

((alarm ∧ fired) ∨ snoozeR)/lightOff

off/glowing

snooze

backlight

C4

(c)

armed fired
alarmTO/

beepOn

beepOff

alarm/

idle
alarm

alarm

timer

alarmTO ∧ armed/lightOn

onglowing

/lightOn

alarmTO ∧ armed
off

((alarm ∧ fired) ∨ snoozeR) ∧ day/lightOff

dark

/glow

bright/
lightOff

(alarm ∧ fired ∨ snoozeR)
∧night / glow

snooze

snooze

backlight

day night
dark

brightsensor

C3

(b)

C2

C0

C3

C4

E0

E3

E4

E2 C1E1

E1 E2

E4

E3

E3

(d) (e)

Fig. 6. Specialized models C2 (a), C3 (b) and C4 (c). Overview of the relationship
between the environments (d) and the specialized models (e).

For a set A ⊆ Action let ignore A denote observation classes, which ignore
elements of A, but distinguish all the other actions:

ignore A =
{

{o ∪ o
′|o′ ∈ P(A)}

∣

∣ o ∈ P(Action \ A)
}

Note that ignoring the empty set, ignore ∅, means observing all differences in
outputs. Another abbreviation equiv A denotes observation classes, which are
unable to distinguish between any actions in A:

equiv A =
{

{o ∪ o
′|o′ ∈ P(A) \ ∅}

∣

∣ o ∈ P(Action \ A)
}

∪
{

o
∣

∣ o ∈ P(Action \ A)
}

We shall begin with stating general requirements, which hold for all the en-
vironments used to execute the alarm clock. These general requirements usually
reflect the physical nature of actuators and sensors. In the case of our alarm clock
events dark/bright and snooze/snoozeR are always generated in an alternating
fashion: E0 = Interleave snooze snoozeR ∧ Interleave dark bright. Figure 7a
demonstrates how Interleave could be defined using a set-based semantics.

The first member of the family C1 was introduced in section 2 (Fig. 2). This
model operates in an environment, which becomes blind for the lightOn action
right after generating the snooze event. Formally E1 = E0 ∧ E ′, where E ′ is
defined on Fig. 7b. Figure 6a presents a new clock C2, which is devoid of the
actual snooze function. The user of this clock can still press the snooze button,
but the only effect it has is turning the backlight on for a short while. This



ignore{}?

bright!
dark!
alarm!

snoozeTO!
alarmTO!

ignore{}?

snooze! snoozeR!

dark!

snoozeTO!
bright!

ignore{}?

alarm!

alarmTO!

(a)

E ′′:

ignore{}? ignore{beepOn}?

snoozeR!

snoozeTO!

alarmTO!

bright!

snooze!

dark!
alarm!

snoozeTO!
ignore{beepOff}?

(c)

E ′:

ignore{lightOn}?ignore{}?

snoozeR!

snoozeTO!

alarmTO!

bright!

snooze!

dark!
alarm!

(b)

E ′′′:

equiv{glow, lightOff}?

bright!
dark!
alarm!

snoozeTO!
alarmTO!

snoozeR!

snooze!

(d)

Fig. 7. (a) Interleave snooze snoozeR. (b) Environment E ′ ignoring the lightOn output
produced in reaction to the snooze button. (c) Environment E ′′ ignoring the snooze
function of the clock. (d) Environment E ′′′ Equiv glow lightOff.

user becomes blind to beepOn and beepOff actions initiated by the snooze and
snoozeTO events. Formally E2 = E0 ∧ E ′′, where E ′′ is defined on Fig. 7c.

The third clock variant C3 is a combination of C1 and C2. It has neither the
snooze function nor the snooze activated backlight function. We obtain it by
specialization against the E3 environment, where E3 = E1 ∧ E2. The model is
presented on Fig. 6b. Note that this clock still needs a snooze button, which
exhibits a slight anomaly in turning on the glow mode, namely that the glow
mode will not be activated, while this button is pressed. This is a perfectly
correct reminiscence of our original model, which could be easily remedied by
adding another constraint to the environment, that event snooze never occurs.

We would like to consider yet another restriction of the clock behavior. The
clock denoted C4, shall be deprived of the glowing mode (Fig. 6c). The glow-
mode lamp is not installed and the glow action is reimplemented to turn off the
main lamp instead. A corresponding environment E ′′′ is defined on Fig. 7d. This
environment is itself interesting as it specifies a less shiny alarm clock, which may
find its happy customers. Nevertheless, we decided to combine its characteristics
with the restrictions of E3, giving rise to an even more simple alarm clock with
neither the snooze related functions nor the glow mode: E4 = E3 ∧ E ′′′.

One can describe surprisingly many more reasonable variants even for such
a simple system as our alarm clock. Figures 6d-6e present an overview of en-
vironments and systems in our product line. Edges represent simulation and
relativized simulation. Proposition 6 explains how to interpret transitivity in
the hierarchy of systems (Fig. 6e).

Proposition 6. For any systems S1, S2 and S3 and any two compatible color-
blind environments E and F it holds that: S16ES2∧S26FS3∧E6F ⇒ S16ES3.



8 Related Work

Derivation of product lines is conventionally associated with partial evaluation
[13, 4, 8]. There have been limited approaches to enable partial evaluation based
on execution traces instead of fixed input values [10, 20, 5], nevertheless they were
never implemented for realistic languages. We fear that these transformations,
designed for abstract process calculi, can be barely applied in such contexts. This
is why we intend to define transformations on the language level, and only prove
correctness on the abstract level. Our framework allows more transformations
than known before due to the color-blindness, which allows some non-reductive
mutations in the program.

Previously Wasowski [25] presented a static framework for specifying envi-
ronments for reactive models, which relies solely on state independent properties.
The present paper provides a theoretical foundation for a product line manage-
ment setup similar to Wasowski’s [25], but based on behavioral properties.

Relativized simulation has been originally introduced by Larsen [16, 15, 14].
Our framework is modeled after this work, rephrased in the setting of I/O al-
ternating transition systems and extended with the notion of color-blindness.
In Larsen’s formulation, based on simple labeled transition systems [19], it was
impossible to express an environment’s inability to distinguish outputs.

The study of behaviors of systems embedded into execution contexts is rel-
atively mature [15, 1, 18, 22, 12]. Our work stems out from this series, by its ex-
tended support for observability specifications via color-blindness. This support
is needed, if the tools based on this framework, are to be useful for development
of product lines of embedded systems.

9 Conclusion & Future Work

We have presented the semantics of a specification language for environments
of reactive synchronous systems, together with a notion of context-dependent
refinement based on color-blindness. This refinement relation is more liberal than
usual in allowing some mutations to program outputs, instead of bare reductions.
We have explained and demonstrated how partial specifications of behaviors
can be composed and used to define families of products. The framework was
designed as a core of an upcoming tool for compact code generation and product
line derivation for discrete control embedded systems. Our specifications shall
be used as preconditions for advanced model optimizers/specializers. We have
thoroughly discussed issues, which arise in the implementation of the theory for
realistic languages, especially focusing on languages with sequences as outputs.

An implementation [23] of a powerful context-aware optimizer for models
based on model-checking and program analysis is currently underway. This pro-
totype tool is supposed to be compatible with an industrial development envi-
ronment for embedded systems [11], which will allow for realistic case studies.

We would like to attempt a formulation of a corresponding theory for dis-
tributed asynchronous systems. We hope that a similarly appealing construction



can be proposed for such systems. The main difficulty appears to be a notion of
simulation between nondeterministic color-blind environments. The simulation
of definition 7 is too weak to imply theorem 1 in a nondeterministic setting.

References

1. L. de Alfaro and T. A. Henzinger. Interface automata. In Foundations of Software
Engineering (FSE), pp. 109–120, Vienna, September 2001. ACM Press.

2. G. Berry. The foundations of Esterel. In G. Plotkin, etal. eds., Proof, Language
and Interaction. Essays in Honour of Robin Milner, pp. 425–454. MIT Press, 2000.

3. E. M. Clarke. Model Checking. The MIT Press, 1999.
4. O. Danvy et al. eds.,Partial Evaluation, LNCS 1110, Feb. 1996. Springer-Verlag.
5. S. Etalle and M. Gabbrieli. Partial evaluation of concurrent constraint languages.

ACM Computing Surveys, 30(3es), September 1998.
6. Rob van Glabbeek. The linear time–branching time spectrum In J.C.M Beaten

and J.W. Klop eds., CONCUR’90, LNCS 458, Springer–Verlag
7. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-

puter Programming, 8:231–274, 1987.
8. J. Hatcliff, T. Æ. Mogensen, and P. Thiemann, editors. Partial Evaluation: Practice

and Theory, LNCS 1706. Springer-Verlag, Copenhagen, Denmark, 1999.
9. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

10. H. Hosoya, N. Kobayashi, A. Yonezawa. Partial evaluation scheme for concurrent
languages and its correctness. In L. Bougé et al eds., Euro-Par’96, LNCS 1123.

11. IAR Inc. IAR visualSTATE®. http://www.iar.com/Products/VS/.
12. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. In POPL

2001. ACM Press.
13. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and

Automatic Program Generation. Prentice Hall, 1993.
14. K.G. Larsen and R. Milner. A compositional protocol verification using relativized

bisimulation. Information and Computation, 99(1):80–108, 1992.
15. K. Larsen. Context Dependent Bisimulation Between Processes. PhD thesis, Ed-

inburgh University, 1986.
16. K. Larsen. A context dependent equivalence between processes. Theoretical Com-

puter Science, 49:184–215, 1987.
17. J. Lind-Nielsen, H. R. Andersen, H. Hulgaard, G. Behrmann, K. Kristoffersen, and

K. G. Larsen. Verification of large state/event systems using compositionality and
dependency analysis. Formal Methods in System Design, 18(1):5–23, 2001.

18. N. Lynch. I/O automata: A model for discrete event systems. In Annual Conference
on Information Sciences and Systems, pp. 29–38, Princeton, N.J., 1988.

19. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
20. M. Murakami. Partial evaluation of reactive communciating processes using tem-

poral logic formulas. In Algebraic and Object-Oriented Approaches to Software
Science, 1995.

21. Object Management Group. OMG Unified Modelling Language specification, 1999.
22. S. K. Rajamani, J. Rehof. Conformance checking for models of asynchronous

message passing software. In CAV’02, LNCS 2404, Springer-Verlag.
23. Scope: a statechart compiler. http://www.mini.pw.edu.pl/~wasowski/scope.
24. Sun Microsystems, Inc. Java Card(TM) specification. http://java.sun.com/.
25. A. Wasowski. Automatic generation of program families by model restrictions. In

SPLC 2004, LNCS 3154, Boston, USA, September 2004. Springer-Verlag.


