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2 Computational Logi and Algorithms Group, IT University of Copenhagen{kgl,ulrik,wasowski}�s.aau.dkAbstrat. Alfaro and Henzinger use alternating simulation in a two player game as are�nement for interfae automata [1℄. We show that interfae automata orrespond toa subset of modal transition systems of Larsen and Thomsen [2℄, on whih alternatingsimulation oinides with modal re�nement. As a onsequene a more expressive inter-fae theory may be built, by a simple generalization from interfae automata to modalautomata. We de�ne modal I/O automata, an extension of interfae automata withmodality. Our interfae theory that follows an express liveness properties, disallowingtrivial implementations of interfaes, a problem that exists for theories build around sim-ulation preorders. In order to further exemplify the usefulness of modal I/O automata,we onstrut a behavioral variability theory for produt line development.1 IntrodutionAn interfae theory [1, 3�7℄ is a type-system-like theory for omponent languages,where types (interfaes) desribe omponents (implementations) with omposi-tion being the only operator available. A type error proves that either a om-ponent does not onform to its interfae, or that two omposed omponents areinompatible. Sine the overall struture of these type systems is so simple, itis often aepted not to give typing rules expliitly when desribing interfaetheories (for example [1, 3�6℄), fousing instead on the essential ingredients ofonformane, ompatibility and omposition.Regular, non-omponent types are only applied to existing objets in pro-gram ode. In ontrast for interfae theories it makes sense to disuss interfaesas spei�ations of appliation's arhiteture in isolation from atual soure ode.An interfae abstrats the omponent in terms of the assumptions made by theomponent and the guarantees that it provides. One reasons about possible on-netions between omponent implementations (ompositions) by using proper-ties of omposition of interfaes; most importantly independent implementability(that any implementations onforming to ompatible interfaes are ompatible)and generality properties (that the omposition of interfaes produes an interfaewith the weakest assumptions and strongest guarantees).We onsider behavioral interfae theories suitable for spei�ation of om-muniation protools between omponents (web servies or embedded systems).Suh theories typially require a ontravariant treatment of inputs and outputsto ensure deadlok-free implementations: inputs guaranteed by the spei�ation



are always o�ered by the implementation and that the implementation neverprodues more outputs than the spei�ation. This observation led de Alfaro,Henzinger and olleagues [1, 3, 4℄ to a onlusion that game theoretial modelsof interation are most suitable as building bloks for behavioral interfae theo-ries. While we do appreiate the values of the game theoretial formulations, wedisagree with some laims in the above ited work and argue that game formu-lations are insu�ient in themselves: there is a genuine value in ombining thegame theoretial approah with more traditional formulations based on transitionsystems, or more preisely on modal transition systems.The two worlds of game models and modal transition systems onvey largelyorthogonal information about the moves of a system. Game models speify whohas ontrol over transitions, while modal transition systems fous on require-ments, modality : whih moves are allowed and whih are required. In this paperwe try to relate the two worlds, explain their weaknesses and their qualities.Eventually we ombine them into a uni�ed interfae theory.Game theoretial notions of onformane are often based on alternating sim-ulation [8℄. We show that alternating simulation in a two player setting, as usedin interfae automata [1, 9℄, is just a speial ase of modal transition systems re-�nement developed by Larsen and Thomsen [2℄ in the late eighties. This suggeststhat the real value of the game theoreti approah to omponent theories doesnot lie in the use of alternating simulation, but in the use of ontrol informationin the omposition synthesis algorithms.Not surprisingly then, modal transition systems themselves annot be usedto build an interfae theory, without adding ontrol information. We build anew interfae theory around modal I/O automata, whih ombine features ofboth game theoreti models and modal transition systems. Thanks to this newombination, our interfaes are now able to express liveness properties, whih wasimpossible in existing interfae theories (after this work has been ompleted wehave learned about [10℄, whih ahieves a similar e�et in a di�erent setting).In order to further demonstrate the usefulness of our modal I/O automata,we onstrut a produt line [11�13℄ theory. In simple words a produt line is a setof similar produts built by ombining assets from a ommon platform availablein the development proess. The di�erenes between the produts are referred toas variability. Our theory is a behavioral formalism for desribing the variabilityof omponents. The theory supports deiding whether given requirements anbe satis�ed by hoosing onrete instanes from the set of available assets. Thistheory, though very small, is to the best of our knowledge one of the very fewattempts at desribing software produt lines in a behavioral fashion, and unlikethe previous work [14℄, whih takes a top-down approah to desribing produtfamilies, it failitates a bottom up onstrution of produts, whih is how prod-ut line development is more typially understood in the software engineeringommunity. This ontribution is not meant to be omprehensive, highly devel-oped and well set in the tradition of the produt line development. It should be
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send! ok? fail?Fig. 1. The Client interfae (left) and a trivial implementation of it (right).understood as a simple example that emphasizes the semanti di�erene betweenmodeling omponents in omponent based development and modeling assets forprodut family development. We do hope to extend this theory soon and reportabout it separately in detail.The paper proeeds as follows. In the next setion we shall explain the mainresults of the paper in nontehnial terms. Our main results onentrate in se-tions 3, 5 and 6. In Setion 3 we draw a orrespondene between the alternatingsimulation and observational modal re�nement. In Setion 4 modal I/O automataare de�ned, whih are then used to onstrut an interfae theory in Setion 5 anda produt line theory in Setion 6. Setions 5 and 6 are largely independent,though they share a lot of intuitions. We onlude in Setion 7.2 Interfae Automata vs Modal Automata: An ExampleConsider an example interfae automaton for a Client omponent (Fig. 1 (left),originally presented in [1℄). This simple model desribes a omponent that oa-sionally may want to send a pakage, and one it has made the request it is readyto reeive an aknowledgment. The signature of the interfae also mentions a failinput, but the omponent is never able to reeive it. This means that Client isonly apable of interating with network links that never fail.In interfae automata, due to a game theoreti semantis, all outputs areontrolled by the omponent itself (alled the Output player), while all inputsto suh omponents are ontrolled by the environment player (alled the Inputplayer). An implementation onforms to the interfae i� whenever some inputis o�ered by the interfae, then it is also o�ered by the implementation, andwhenever an implementation produes any output, this output is also present inthe interfae (onformane formalized as alternating simulation [8℄).Suh a notion of onformane implies that ompatibility an be passed frominterfaes to omponents: if there is no winning strategy for the input playerthat leads to a deadlok in the interfae automaton, then there won't be suha strategy for the same player that interats diretly with any implementation.Similarly if there is no strategy for the output player that leads to an output thatannot be aepted by the environment, then there is also no suh strategy forany of the implementations.
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linkStatus! ack? nack? down?Fig. 2. DataLink layer with nontrivial modalities (left). Composition DataLink ⊗Client (right). State22 is an error state, where DataLink an produe the fail ation, not aepted by Client .Unfortunately this notion of onformane, though very muh safety oriented,does not enfore that the implementations take on any useful ativities at all.Consider for example the diagram on the right side of Fig. 1. It presents a modelof an implementation that does not perform any ations ever. In other wordsthis is a network appliation that does not use the network at all. Still this newmodel onforms to its interfae on the left, as in its initial state it does not addany illegal outputs and it o�ers all the inputs that were o�ered by the interfae.If we turn this into the terminology used in modal transition systems it meansthat all the inputs are required, whih is indiated by the 2 (must) modality onthe orresponding transition, and the outputs are allowed, whih is indiated bythe 3 (may) modality on the transitions. In a modal transition systems perspe-tive, onformane is based on modal re�nement [2℄. This re�nement requires thatwhenever an implementation makes a step, then it must be possible to mimi itby an allowed transition of the spei�ation; whenever the spei�ation makes arequired step it must be possible to math it with some required step of the or-responding state in the implementation. With the assignment of may to outputtransitions and must to input transitions this sounds nearly like the alternatingsimulation desribed above. In Setion 3 we prove that indeed the two relationsoinide if we require that the may transition relation is input-enabled.Consequently modality gives stritly more modeling power than alternatingre�nement. Various modalities an be assigned to ations regardless of whomontrols them. Instead of allowing all possible extensions on inputs, as in interfaeautomata, the designer is able to ontrol what extensions are allowed. For examplewe an hange the Client model of Fig. 1 to have a must modality (2) on the send!transition, whih will have the e�et that now all the implementations must beable to proeed produing an output. This would rule out trivial implementationsas the one presented on the right side of Fig. 1.The game theoreti formulation of onformane gives a ertain interpretationto inputs and outputs. Namely that inputs are inoming requests for servie(for example remote proedure alls), while outputs are outgoing requests for
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linkStatus! ack? nack? down?Fig. 3. Composed interfaes LinkLayer |Client and variability models LinkLayer ·Clientservie (also remote proedure alls, albeit in the other diretion). With suhan interpretation it beomes lear that removing servies from the promised listshould be illegal, while removing alls to external servies is perfetly �ne. This isexatly what alternating simulation ahieves. What it misses is a more omplexstruture of ommuniation.In asynhronous systems some messages indeed onvey alls for servie, how-ever many other return feedbak from the servies (return a value). When a givenoutput models returning a value from a omponent, then learly it should neverbe removed, as then the whole omponent beomes useless. Fig. 2 illustrates an-other interfae modeling a data link layer, whih exploits the interplay betweenontrol and modality. The must modality is plaed on transmt! transitions, asthe data link layer would be useless if the implementation was permitted not toforward pakets down the stak. Similarly the transition sending bak the errormessage annot legally be removed. At the same time the all for linkStatus! is amay transition as some implementations are allowed not to onsult the hardwarelink expliitly to detet errors. Finally not all implementations are fored to beable to work with links that fail twie in a row, whih is modeled by the seondnak! transition being a may transition.Now onsider how the two interfaes of Fig. 1 (left) and Fig. 2 (left) should beomposed. The omposition resembles a produt omputation (taken separatelyfor the may transition relation and the must transition relation). As a resultwe obtain the interfae presented on the right side of Fig. 2. Beause the lientomponent was so weak, the ultimate interfae shows a system that possibly maynever do anything. However if Client will send some pakets, these pakets willertainly be proessed by the omposition, unless the hardware link is broken. Insuh a ase it might be that the implementation will produe a fail!message whihwill ause a deadlok with the urrent version of the Client (this an happen whenthe omposition is in state 22). Sine we annot modify the omposed system weinstead synthesize a new interfae whih restrits the use of the omposition inorder to guarantee error freeness. States of the omposition that an experienedeadloks are alled error states. We follow Alfaro and Henzinger in removingerror states, and transitively all states from whih error states an be reahed



by following internally ontrollable transitions of the omponent (outputs andinternal ations). This leads to the interfae on Fig. 3 (left), expressing the fatthat this omponent works well as long as the physial link never goes down.The pruning mehanism desribed above would not be possible without the in-formation desribing whih transitions are internally ontrollable being expliitlypresent in the model. It does not seem possible to ompute the safe fragment ofthe produt automaton, by just investigating the modalities of transitions. Whilewe have said that modal re�nement is stritly more expressive than alternatingsimulation, the ontrol information of interfae automata has its unique qualitiestoo: it enables valuable synthesis algorithms not otherwise possible.Let us now revisit the model of Fig. 2 (left) giving it a di�erent interpretationthan previously. Instead of pereiving it as an abstration of a omponent, weshould now see it as a desription of a set of omponents. A modal automatondesribes in fat a whole, often in�nite, set of possible implementation automata3.One an think of them as all possible on�gurations of the model. This feature ofmodal automata suggests the possibility of using them as a behavioral formalismin desribing variability in produt lines.A produt line is a olletion of produts that are similar in that they o�eroverlapping funtionality, and in that they are built from assets seleted froma ommon platform. In here we want to desribe both assets and the wholeprodut line by modal I/O automata. If eah of the assets is modeled as a modalI/O automaton we an model the apabilities of the family by omposing thesedesriptions. However this time we would not be interested in a omposition thatguarantees ompatible behavior of any seletion of assets. It is normally expetedthat not all the assets in a produt line platform are mutually ompatible. Someof them will deadlok (for example a failing link layer and our Client omponent).The requirement for omposing the variability desriptions is not to synthesize aninterfae that guarantees orretness of omposition of all possible ombinationof assets, but to preisely desribes what the orret ombinations are: i.e. whatare the deadlok free behaviors respeting the modalities that an be onstrutedwith the available automata.It turns out that a omposition like that exists and it resembles the pruningof the produt automaton for interfae automata. The only di�erene is that nowerror states are the states where the error must be possible to realize (so oneparty must be required to produe an output that the other party must not beallowed to reeive) and that we prune all the states from whih reahing an errorstate is unavoidable (in our interfae theory we have pruned states from whihreahing errors might be possible).The result of omposing Client and LinkLayer using the variability modelsemantis is presented on the right side of Figure 3. This result ontains a slightly3 This is also true for interfae automata, though to a muh lesser extent. Due to the lak of modalitythe set of implementations for an interfae automaton is muh simpler than it an be for a modalautomaton.



bigger model than the interfae automaton omposition on the left. It states thatthere exists a pair of assets (implementations of Client and LinkLayer) suh thatit is able to aept a link down message without an error message. The transitionwith the down message was removed in the interfae ompositions as, for somepairs of implementations, it would lead to a deadlok.Can a given spei�ation be implemented by hoosing omponents from avail-able assets? Is the result of the omposition the most general possible, ontainingall possible legal produts? Can we �nd what the on�guration of these elementsshould be? We address some of these questions in setion 6, with an intention ofelaborating more in upoming work.3 Alternating Simulation vs Modal Re�nementLet us begin with de�ning modal automata, a version of modal transition sys-tems [2℄ extended with signatures. A modal automaton has two transition rela-tions indiating respetively allowed (may) and required (must) behavior.De�nition 1 (Modal Automaton). A modal automaton S is a six tuple: S =
(statesS, startS, extS, intS,−→3

,−→2
) where statesS is a �nite set of states, startS

∈ statesS is the initial state, extS and intS are disjoint sets of external and internalations and atS = extS ∪ intS, −→3S ⊆ statesS × atS × statesS is the maytransition relation desribing allowed behavior, and −→2S ⊆ statesS × atS ×statesS is the must transition relation desribing required behavior.Throughout the paper we sometimes use the symbols �!�, �?� and �;� after anation. This is done in order to inrease the readers intuition of whether the ationis respetively an output, input or internal ation. No symbol is used when theation an be of more than one type. These symbols ould be left out ompletelyas it is the identity of the ation that is signi�ant.In the following we write s τ−→∗
2
s′ meaning that there exists a sequene ofinternalmust ations leading from s to s′. The same is de�ned formay transitions.A modal automaton is syntatially onsistent if everything that is required isalso allowed, suh that−→2

⊆ −→3
. In the following we only onsider syntatiallyonsistent modal automata. A modal automaton is an implementation if the twotransition relations oinide.A modal automaton desribes a set of possible implementations. Simplistiallywhen re�ning a modal automaton spei�ation into an implementation one anremove a may transition, that does not have a orresponding must transitions orstrengthen it into a must transition. In general this re�nement is not syntati,but behavioral, so it is not the syntati transitions that are re�ned but theatual steps taken by the transition system. The same transition an be re�neddi�erently eah time it is taken.



De�nition 2 (Modal Re�nement). For a pair of modal automata S and Twith the same signature, a binary relation R ⊆ statesS × statesT is a modalre�nement if whenever sRt and a ∈ atS it holds thatif t a−−→2
t′ then ∃s′.s a−−→2

s′ and (s′, t′) ∈ R.if s a−−→3
s′ then ∃t′.t a−−→3

t′ and (s′, t′) ∈ R.Modal re�nement ≤mis de�ned as the largest suh relation. We say that a modalautomaton S modally re�nes a modal automaton T , written S ≤m T , i� thereexists a modal re�nement ontaining (startS, startT ).Observational modal re�nement is a weaker re�nement in whih the two modalautomata an take internal transitions, that annot be diretly observed by theother automaton. In absene of internal ations the observational re�nement o-inides with the non-observational one.De�nition 3 (Observational Modal Re�nement). For a pair of modal au-tomata S and T with the same signature, a binary relation R ⊆ statesS × statesTis an observational modal re�nement if whenever sRt and a ∈ atS it holds thatif t a−−→2
t′ and a ∈ extT then ∃s′. s a−−→2

s′ ∧ (s′, t′) ∈ R.if s a−−→3
s′ and a ∈ extS then ∃t′.t τ−→∗

3
t′.∃t′′. t′ a−−→3

t′′ ∧ (s′, t′′) ∈ R.if s a−−→3
s′ and a ∈ intS then ∃t′.t τ−→∗

3
t′.(s′, t′) ∈ RObservational modal re�nement ≤∗mis de�ned as the largest suh relation. We saythat a modal automaton S observationally re�nes a modal automaton T if thereexists an observational modal re�nement ontaining (startS, startT ).Interfae Automata [1℄ an be onsidered a subset of modal automata in whihthe external ations extS are partitioned into inputs inS and outputs outS.De�nition 4 (Interfae Automaton). An interfae automaton P is a tuple

P = (statesP , startP , inP , intP , outP ,−→P ) where statesP is a �nite set of states,startP ∈ statesP is the initial state, inP , outP and intP are three pairwise dis-joint sets of input, output and hidden (internal) ations respetively, and −→P ⊆statesP × atP × statesP is the set of transitions where atP = inP ∪ outP ∪ intP .We require that the transition relation is input-deterministi suh that for all
s, s′, s′′ ∈ statesP and all input ations a ∈ inP if s a?−−→s′ and s a?−−→s′′ then s′ = s′′.Similarly as for Modal Automata we de�ne s τ−→∗s′ for Interfae Automatato mean that there exists a sequene of internal transitions leading from s to
s′. We de�ne alternating simulation for interfae automata as ommonly used insoftware spei�ation [9℄, whih is slightly less general than the original [1℄:De�nition 5 (Alternating Simulation). For a pair of interfae automata Sand T with the same signature, a binary relation R ⊆ statesS × statesT is analternating simulation if whenever sRt and a ∈ atS it holds that:if t a?−−→t′ and a ∈ inT then ∃s′.s a?−−→s′ and (s′, t′) ∈ Rif s a!−→s′ and a ∈ outS then ∃t′.t τ−→∗t′.∃t′′.t′ a−→t′′ and (s, t′′) ∈ R



if s a;−→s′ and a ∈ intS then ∃t′.t τ−→∗t′ and (s′, t′) ∈ RAlternating simulation ≤ais de�ned as the largest suh relation. We say that Ssimulates T , written S ≤a T , if there exists an alternating simulation ontaining
(startS, startT ).In order to ompare interfae automata with modal automata, we onstruta translation funtion T mapping from the former to the latter. The result ofthe translation always ful�lls the onditions listed below. It is easy to see thatfor modal automata that ful�ll these onditions a reversed mapping an be on-struted, too.1. The may transition relation is input enabled, meaning that for eah state

s ∈ statesS and eah input ation a ∈ inS there exists a state s′ and a maytransition s a?−−→3
s′2. The onstruted modal automaton is syntatially onsistent: −→2

⊆ −→33. Must transitions are only labeled by inputs: −→2S ⊆ statesS × inS × statesSLet smayall be a fresh state that allows all behavior but does not require any be-havior. If U denotes the universe of all inputs, suh that for all interfae automata
P , inP ∈ U , then we de�ne the translation funtion as follows:
T (statesP , startP , inP , outP , intP ,−→P ) = (statesS, startS, extS, intS,−→3

,−→2
)where statesS = statesP ∪ {smayall}, startS = startP , extS = U ∪ outP , intS = intPand s1

a−−→3

S s2 if s1
a−→Ps2 and a ∈ outP ∪ intPand s3

a−−→2

S s4 and s3
a−−→3

S s4 if s3
a−→Ps4 and a ∈ inPand s3

a−−→3

S smayall if ∀s′ ∈ statesP (s3, a, s′) /∈ −→P and a ∈ U ,and smayall is a fresh state suh that ∀a ∈ atS.smayall
a−−→3

S smayall.Theorem 6. Alternating simulation and observational modal re�nement oin-ide for interfae automata in the following sense:for any two interfae automata S, T : S ≤a T i� T (S) ≤∗m T (T ) (1)Theorem 6 suggests that the usefulness of game theoretial models for omponenttheories does not lie in its onformane relation. The rux is the use of ontrolinformation in synthesis algorithms, when paths to error states are pruned. If thisis the ase we an onstrut an interfae theory based on modal re�nement andmodal automata augmented with ontrol information. Sine modal re�nement isriher and we an use a generalization of the synthesis algorithm used for interfaeautomata, we will obtain a more expressive interfae theory.The fat that alternating simulation oinides with the observational versionof modal re�nement is expeted, beause De�nition 5 embeds a losure on inter-nal transitions. In fat in the absene of internal ations alternating simulationoinides with the regular modal re�nement, as desribed in De�nition 2, whihis easy to prove. In order to simplify the developments we use the regular modalre�nement (≤m) from now on, even though most of our theorems an reasonablybe onsidered for the observational re�nement (≤∗m), too.



4 Modal I/O AutomataLet us now de�ne modal I/O automata, an extension of modal automata withontrol information, that will be the main ingredients of our interfae theory andthe produt line theory oming in the next setions.De�nition 7. A modal I/O automaton S is a tuple S = (statesS, startS, inS, outS,intS,−→3
,−→2

), where statesS is a set of states, startS ∈ statesS is an initialstate, inS, outS and intS are pairwise disjoint sets of inputs, outputs and internalations respetively (atS = inS∪outS∪intS), −→3S ⊆ statesS×atS×statesS is amay-transition relation, and −→2S ⊆ statesS ×atS × statesS is a must-transitionrelation. Like previously we only onsider syntatially onsistent modal I/O au-tomata here, so −→2
⊆ −→3

.The omposition for modal I/O automata ombines both the modal aspetsand the ommuniations aspets. Two modal I/O automata S1,S2 are omposeablei� their ations only overlap on omplementary types: (inS1
∪ intS1

) ∩ (inS2
∪intS2

) = ∅ and (outS1
∪ intS1

) ∩ (outS2
∪ intS2

) = ∅. The omposition S1 ⊗ S2gives rise to a modal I/O automaton S suh that statesS = statesS1
× statesS2

,startS = (startS1
, startS2

), inS = (inS1
\ outS2

) ∪ (inS2
\ outS1

), outS = (outS1
\inS2

) ∪ (outS2
\ inS1

), intS = intS1
∪ intS2

∪ (inS1
∩ outS2

) ∪ (outS1
∩ inS2

). Thetransition relations are given by the following rules (see Fig. 2 for an example):
s1

a!−→γs
′
1 s2

a?−−→γs
′
2

s1 ⊗ s2
a−→γs

′
1 ⊗ s′2

γ ∈ {2, 3}
s1

a?−−→γs
′
1 s2

a!−→γs
′
2

s1 ⊗ s2
a−→γs

′
1 ⊗ s′2

γ ∈ {2, 3}

s1
a−→γs

′
1 a /∈ atS2

s1 ⊗ s2
a−→γs

′
1 ⊗ s2

γ ∈ {2, 3}
s2

a−→γs
′
2 a /∈ atS1

s1 ⊗ s2
a−→γs1 ⊗ s′2

γ ∈ {2, 3}For tehnial reasons (e�ieny and simpliity) we always assume that un-reahable states are removed after omputing a omposition (both here and inlater setions). The following theorem is a simple orollary from the general fatthat the modal re�nement is a preongruene [15, 16℄:Theorem 8. Modal re�nement is a preongruene with respet to the above om-position operator: for any four modal I/O automata T1, T2, S1, S2 suh that
T1 ≤m S1 and T2 ≤m S2 it holds that T1 ⊗ T2 ≤m S1 ⊗ S2.The omposition operator (⊗) de�ned above orresponds to a usual ompo-sition of software (hardware) omponents. Whenever we use it below we meanan unrestrited onnetion of omponents, whih does not prelude deadloks orother kinds of errors. We shall soon introdue two seemingly similar ompositionoperators, (|) and (·) having a very di�erent use. In fat they are algorithms syn-thesizing spei�ations of how a result of simple omposition (⊗) should be usedin order to guarantee the absene of ertain errors.



5 A Modal Interfae TheoryInterfae theories support omponent based development. The aim is to speifyomponent interfaes and from these interfaes to derive the interfaes of om-posite omponents. The novel aspet of the interfae theory presented here is thatthe omponents an speify both required and allowed behavior, onsequently itis suitable for expressing liveness properties.In our spei� interfae theory an interfae is given by a modal I/O automaton.A given interfae spei�es a set of potential implementations (onrete implemen-tations have idential transition relations −→3
= −→2

). The goal of our interfaetheory is to be able to use interfae desriptions to desribe legal implementa-tions of omponents in a omponent based system. The implementation relation,the relation that spei�es whih implementations onform to a given interfaedesription is modal re�nement ≤m. From the interfae desriptions of two om-ponents it should be possible to derive the interfae of the ombined omponent.This is done without knowing more about the implementations, than the fatthat they onform to their individual interfae spei�ation.The result of omposing two interfaes is a subset of the result of omposingtwo modal I/O automata, in whih all possible internally ontrollable paths lead-ing to error states are removed. An error state is a state in whih one omponentan output something that the other omponent might be unable to reeive:err i
S1,S2

= {(s1, s2) ∈ statesS1⊗S2
| there exists a ∈ intS1⊗S2

and states s′1, s′2suh that (s1
a!−−→3

S1 s′1 and s2 6 a?−−→2

S2) or (s2
a!−−→3

S2 s′2 and s1 6 a?−−→2

S1)} (2)State 22 on Fig. 2 is an error state, witnessed by the fail ation.We are now ready to de�ne the set of states of the omposition:statesS1|S2
=

∞⋂

n=0

prunen
i (statesS1⊗S2

\err i
S1,S2

) , (3)where prunei(S) = {s ∈ S | ∀s′ ∀a ∈ intS1⊗S2
. s a−−→3

s′ implies s′ ∈ S}, whih is amonotoni funtion that removes, from the set of states S, all those states thatin one internally ontrollable step may reah a state that is not in S.See Figure 3 (left) for an example of how pruning works. State 22 has beenremoved as an error state, then state 21 was pruned as an error state an bereahed from it by the internally ontrollable transition log!. Then all transitionsinvolving states 21 and 22 were removed. State 20 remains in the result as themust transition labeled down is externally ontrollable.De�nition 9 (Composition). The omposition of two interfaes S1 and S2is de�ned if S1 and S2 are omposable modal I/O automata and startS1⊗S2
∈statesS1|S2

(see above). The omposition results in a modal I/O automaton S1|S2suh that S1|S2 = (statesS1|S2
, startS1⊗S2

, inS1⊗S2
, outS1⊗S2

, intS1⊗S2
,−→3

S1⊗S2 ∩
(statesS1|S2

×atS1⊗S2
×statesS1|S2

),−→2

S1⊗S2 ∩(statesS1|S2
×atS1⊗S2

×statesS1|S2
)).



Two interfaes are ompatible if the set of states resulting from omposition,statesS1|S2
, ontains the initial state (startS1

, startS2
).A desirable property of an interfae theory is that omponents an be im-plemented independently of eah other one the spei�ations are known. Thefollowing theorem formally states that this theory satis�es the property.Theorem 10 (Independent Implementability). For any two ompatible in-terfaes S1, S2 and for any two implementations I1, I2, I1 ≤m S1 and I2 ≤m S2,it holds that I1 ⊗ I2 ≤m S1|S2.This has three impliations. First, I1 ⊗ I2 would deliver all the required behaviorpromised by S1|S2 as long as it interats with an environment obeying S1|S2.Seond, I1 ⊗ I2 will not do anything that S1|S2 would not allow in suh anenvironment. Third, sine S1|S2 does not ontain error states then I1 ⊗ I2 willnot deadlok.Theorem 11 (Deadlok Freeness Preservation). For any two ompatibleinterfaes S1, S2, any two implementations I1, I2, so I1 ≤m S1 and I2 ≤m S2,and any interfae T ompatible with S1|S2, if T ⊗ (S1|S2) has no reahable errorstates then T ⊗ (I1 ⊗ I2) has no reahable error states.Finally the omposition operator (|) is ommutative and assoiative up tograph isomorphism.6 A Produt Line TheoryIn produt line development one typially maintains a family of existing assetsthat are omposed in a bottom-up fashion in order to build a produt. Here weassume that existing assets are su�ient to build the produt and no genuinelynew programming is required. Assets are organized in small subfamilies, that anbe thought of as on�gurable omponents. Choosing an asset from a subfamily isa on�guration proess. We model subfamilies as modal I/O automata, and allthem variability models, to distinguish them from interfaes. The on�gurationproess amounts to �nding a suitable modal re�nement of a variability model.There is a need for a mehanism for omposing variability models, to enablereasoning about the produts that an be onstruted using available assets.As in the interfae theory we are interested in omputing the legal uses for theomposition of two models, without reahing error states. However we weaken therequirement this time: we do not require that all possible pairs of implementationsgive an error free omposition, but only that there exists a pair of implementationsthat an avoid errors under a suitable use.Two variability models are omposable if their input, output and hidden a-tions do not overlap (the general rule for modal I/O automata). Two omposablefamilies an be omposed, resulting in a desription of a higher level omponentfamily. The signature of this variability model is found in the same way as for



modal I/O automata. The requirement for the desription of this more abstratfamily is that a spei�ation that re�nes its desription an be realized by hoos-ing some onrete implementations from both lower level families involved. Sothat in e�et one an on�gure the �nal produt by on�guring the abstratomposed variability model, being sure that the seleted on�guration an bere�ned to on�gurations of eah of the smaller omponents, available in the ol-letion of assets. We give a su�ient ondition for a re�nement of a variabilitymodel to be deomposable.The ultimate omposition losely resembles the omposition (|) for interfaeautomata: it uses the regular modal I/O automata omposition (⊗) �rst and thenremoves error states. However now only internally ontrollable required transitionsare pruned, while in the interfae theory we had also removed states reahableby allowed exeutions of the same kind. The very existene of allowed internallyontrolled exeution to an error state was onsidered dangerous in the interfaetheory�it is not in the produt line theory. This is beause we are not interestedin eliminating errors by all means, but only in making sure that there exist error-free realizations of the spei�ation. For two syntatially omposable variabilitymodels we de�ne the set of error states, err v
S1,S2

, to be:err v
S1,S2

= {(s1, s2) ∈ statesS1⊗S2
| there exists a ∈ intS1⊗S2

and states s′1, s
′
2suh that (s1

a!−−→2
s′1 and s2 6 a?−−→3

) or (s1 6 a?−−→3
and s2

a!−−→2
s′2)} (4)In Figure 2 (right) state 22 is still an error state, though for a di�erent reasonthan previously: in state 22 the LinkLayer must be able to produe fail, but the

Client is not allowed to reeive it. If a produt of two variability models ontainsan error state it means that there exist on�gurations of omposed assets thatannot safely work together. However, in the same spirit as in the interfae the-ory, we an ompute the set of legal uses that guarantee that there exist pairsof ompatible on�gurations to interat with them. We remove from the produt
S1 ⊗ S2 all the states that aording to the variability spei�ation must be ableto reah an error state. If there is no states left then the two variability modelsare inompatible. Otherwise we arrive at a spei�ation of states and transitionsamong the ompatible states that onstraint possible legal implementations ob-tained from these two families. Formally:statesS1·S2

=
∞⋂

n=0

prunen
v(statesS1⊗S2

\errv
S1,S2

) , (5)where prunev(S) = {s ∈ S | ∀s′. ∀a ∈ intS1⊗S2
∪ outS1⊗S2

. s a−−→2
s′ and s′ ∈ S}.We ompute the two transition relations for the omposition, by projeting thetransition relations of the parallel omposition S1⊗S2 onto the new set of states:

−→3

S1·S2 = −→3

S1⊗S2 ∩ (statesS1·S2
× atS1⊗S2

× statesS1·S2
) (6)

−→2

S1·S2 = −→2

S1⊗S2 ∩ (statesS1·S2
× atS1⊗S2

× statesS1·S2
) . (7)



Finally we an state the omplete result of the omposition: a modal I/O au-tomaton S1 ·S2 suh that S1 · S2 = (statesS1·S2
, (startS1

, startS2
), inS1⊗S2

, outS1⊗S2
,intS1⊗S2

,−→3

S1·S2,−→2

S1·S2) and all the omponents are de�ned above.De�nition 12. Two variability models are ompatible if they are omposable andtheir omposition is nonempty.It turns out that observationally onsistent re�nements of ompositions ofvariability models are realizable with existing assets. We de�ne observationalonsisteny for states of a single automaton. Let t A−−→2

∗t′ mean that t′ is reahablefrom t via a possible empty sequene of required transitions labeled by possiblydi�erent ations from a set A.De�nition 13. Let T be a modal automaton and let A ⊆ atT be a set of ations.A relation C ⊆ statesT × statesT is an observational onsisteny relation withrespet to A if for any pair of states (t1, t2) ∈ C the following two properties hold:1. ∀t′1. if t1
A−−→2

∗t′1 then ∀a /∈ A. ∀t′′1. t
′
1

a−−→2
t′′1 implies ∃t′2. t2

a−−→3
t′2∧(t′′1, t

′
2) ∈ C.2. ∀t′2. if t2

A−−→2

∗t′2 then ∀a /∈ A. ∀t′′2. t
′
2

a−−→2
t′′2 implies ∃t′1. t1

a−−→3
t′1∧(t′1, t

′′
2) ∈ C.Two states are observationally onsistent if there exists an observational onsis-teny relation relating them. A set of states is said to be observationally onsistentwith respet to A if all possible pairs of states from the set are observationallyonsistent with respet to A. An automaton T is observationally onsistent withrespet to A i� the set {startT} is an observationally onsistent set.The following theorem states the existene of deomposition formally:Theorem 14 (Deomposability). Let T1, T2 be deterministi omposable vari-ability models, and S be a on�guration (a deterministi variability model itself)suh that S ≤m T1 · T2, and T1, S are observationally onsistent with respet toatT1

\ atT2
and T2, S are observationally onsistent with respet to atT2

\ atT1
.Then there exist S1 and S2 suh that S1 ≤m T1 and S2 ≤m T2 and S1 ⊗ S2 ≤m S.A version of the theorem, not requiring observational onsisteny, does nothold, whih an be demonstrated with a ounter-example, not inluded here.An important orollary is that the deomposition an be arried over down topreise on�gurations: if a onrete on�guration of a produt is required, thenthere exist onrete on�gurations of assets to realize it. The question whethera spei�ation is realizable with given assets is redued to establishing observa-tional onsisteny and a modal re�nement between the postulated requirementand the variability model. Consequently the abstrat variability model an beommuniated to on�guration engineers and used to on�gure �nal produts.Let us lose our disussion with a statement that the (·) operator is generalenough to desribe all implementations safely realizable with existing assets.Theorem 15 (Completeness). For any two ompatible variability models T1,

T2 and any two ompatible onrete implementation spei�ations I1, I2, where
I1 ≤m T1 and I2 ≤m T2 it holds that I1 · I2 ≤m T1 · T2.



7 Conlusion & Future WorkWe have investigated the relation between alternating simulation as used in in-terfae automata and observational modal re�nement, onluding that former isa ase of the latter. We have argued that the strength of the game theoreti ap-proah to interfae theories does not lie in alternating re�nement itself, but in thelabeling of transitions with ontrol information; in partitioning the ations intointernally and externally ontrollable. We have extended modal transition sys-tems with this information and demonstrated that in this way interfae theoriestraking liveness properties, an be built. Finally we have presented a produtline theory desribing variability in behavior of omponent families.In the future we would like to extend the produt line theory of Setion 6to a full featured theory based on observational modal re�nement and study itsproperties in depth. Also it appears interesting to investigate the relation betweenthe general notion of alternating re�nement [8℄ and (modal) transition systems,lifting the restritions aepted in Setion 3 after the interfae automata model.Referenes1. Alfaro, L., Henzinger, T.A.: Interfae automata. In: Proeedings of the Ninth Annual Symposiumon Foundations of Software Engineering (FSE), Vienna, Austria, ACM Press (2001) 109�1202. Larsen, K.G., Thomsen, B.: A modal proess logi. In: LICS, IEEE Computer Soiety (1988)3. Chakabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Resoure interfaes. In Alur,R., Lee, I., eds.: EMSOFT 03: 3rd Intl. Workshop on Embedded Software. LNCS, Springer (2003)4. Alfaro, L., Henzinger, T., Stoelinga, M.I.A.: Timed interfaes. In Sangiovanni-Vinentelli, A.,Sifakis, J., eds.: EMSOFT 02: 2nd Intl. Workshop on Embedded Software. LNCS, Springer (2002)5. Larsen, K.G., Nyman, U., W¡sowski, A.: Interfae input/output automata. In Misra, J., Nip-kow, T., Sekerinski, E., eds.: 14th International Symposium on Formal Methods (FM) Hamilton,Canada, August 21�27, 2006 Proeedings. Volume 4085 of LNCS., Springer (2006) 82�976. �erná, I., Va°eková, P., Zimmerová, B.: Component substitutability via equivalenies of omponent-interation automata. In: FACS'06. (2006) 115�130 To be published in ENTCS.7. Hermanns, H., Rehof, J., Stoelinga, M.I.A., eds.: Workshop Proedings FIT 2005: Foundations ofInterfae Tehnologies. ENTCS, Elsevier Siene Publishers (2005)8. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.: Alternating re�nement relations. In San-giorgi, D., de Simone, R., eds.: Proeedings of the Ninth International Conferene on ConurrenyTheory (CONCUR'98). Volume 1466 of LNCS., Springer (1998) 163�1789. Alfaro, L., Henzinger, T.A.: Interfae-based design. In: In Engineering Theories of SoftwareIntensive Systems, Marktoberdorf Summer Shool, Kluwer Aademi Publishers (2004)10. Carrez, C., Fantehi, A., Najm, E.: Assembling omponents with behavioral ontrats. Annalesdel Téléommuniations 60 (2005)11. Parnas, D.L.: On the design and development of program families. IEEE Transations on SoftwareEngineering Vol. SE-2 (1976) 1�912. Czarneki, K., Eiseneker, U.W.: Generative Programming: Methods, Tools, and Appliations.Addison-Wesley (2000)13. Pohl, K., Bökle, G., van der Linden, F.: Software Produt Line Engineering�Foundations, Prin-iples, and Tehniques. Springer (2005)14. Larsen, K.G., Larsen, U., W¡sowski, A.: Color-blind spei�ations for transformations of reativesynhronous programs. In Cerioli, M., ed.: FASE, Edinburgh, April 2005. LNCS, Springer (2005)15. Boudol, G., Larsen, K.G.: Graphial versus logial spei�ations. In Arnold, A., ed.: CAAP.Volume 431 of Leture Notes in Computer Siene., Springer (1990) 57�7116. Larsen, K.G.: Modal spei�ations. In Sifakis, J., ed.: Automati Veri�ation Methods for FiniteState Systems. Volume 407 of Leture Notes in Computer Siene., Springer (1989) 232�246



A ProofsThis appendix ontains proofs of theorems and lemmas, along with some oun-terexamples for negative laims or one-way impliations. The appendix is not anintegral part of the paper, and reading it is not required in order to assess thevalue of the results.A.1 Appendix for Setion 3This setion uses formulations of Alternating Simulation and Observational ModalRe�nement with ǫ-losure(s) instead of s τ−→∗.Proof (of Theorem 6). The proof will be divided into two diretions. First we willprove that
∀S, T ∈ IA. S ≤a T =⇒ T (S) ≤∗m T (T ).We will prove this by showing that alternating simulation is a subset of ob-servational modal re�nement on the translation of IA: ≤a ⊆ ≤∗m. This will beshown by showing that the following relation is a modal re�nement.

R = {(s, t)|∃ŝ, t̂.s = T (ŝ) ∧ t = T (t̂) ∧ ŝ ≤a t̂} ∪ {(s, smayall)|s ∈ statesS}This is shown in three di�erent ases, one for eah of the rules that de�neobservational modal re�nement.1. Must transition, external ation: Take t.t a−−→2
t′ ∧ a ∈ extT . We an on-lude from the de�nition of translation that this ase only exists for a ∈ inT .By R we have that ∃t̂.t̂ a?−−→t̂′. From the de�nition of Alternating Simulationwe have that ∃ŝ.ŝ a?−−→ŝ′∧(s′, t′) ∈ R. By translation we have that s a−−→2

s′ andthis implies that (s′, t′) ∈ R.2. May transition, external ation: Take s.s a−−→3
s′∧a ∈ outS∪inS it means,by R, that ∃ŝ.ŝ a−→ŝ′2.1 a ∈ outS ∧ ŝ a!−→ŝ′, by ŝ ≤a t̂ and the de�nition of alternating simulation wehave that t̂ a!−→t̂′ ∧ ŝ′ ≤a t̂′. By translation we have t a−−→3

t′ this all impliesthat (s′, t′) ∈ R.2.2 a ∈ inS∧ ŝ a?−−→ŝ′∧ t̂ a?−−→t̂′, by ŝ ≤a t̂, the de�nition of alternating simulationand the fat that IA are input deterministi we have that ŝ a?−−→ŝ′∧ ŝ′ ≤a t̂′and this implies that (s′, t′) ∈ R.2.3 a ∈ inS ∧ ŝ a?−−→ŝ′ ∧ t̂ 6 a?−−→, by translation we have t a?−−→3
smayall and byde�nition of R we have that (s, smayall) ∈ R3. May transition, internal ation: Take s.s a−−→3

s′ ∧ a ∈ intS it means, by
R and translation, that ŝ a;−→ŝ′ ∧ s = T (ŝ). By the de�nition of alternatingsimulation we have that ∃t̂′.t̂ τ−→∗t̂′ ∧ ŝ′ ≤a t̂′. By translation we have that
∃t′.t τ−→∗

3
t′.t′ = T (t̂′). This all implies (s′, t′) ∈ R.



We will now prove the other diretion:
∀S, T ∈ IA. S ≤a T ⇐= T (S) ≤∗m T (T ).We will prove this by showing that observational modal re�nement, on thetranslation of IA, is a subset of alternating : ≤∗m ⊆ ≤a. This will be shown byshowing that the following relation is an alternating simulation.

Q = {(ŝ, t̂)|∃s, t.s = T (ŝ) ∧ t = T (t̂) ∧ s ≤∗m t}This will be split into three ases, one for eah of the rules in the de�nitionof Alternating Simulation.1. Take t̂ a?−−→t̂′ by Q and translation we have that a ∈ inT ∧ t a−−→2
t′. We have by

s ≤∗m t and the de�nition of Observational Modal Re�nement that ∃s′.s a−−→2
s′∧

s′ ≤m t′ and by translation we have that ŝ a−→ŝ′ where s′ = T (ŝ′) whih impliesthat (ŝ′, t̂′) ∈ Q.2. Take ŝ a!−→ŝ′, by Q and translation we have that a ∈ outS.s a−−→3
s′. We have by

s ≤∗m t and the de�nition of Observational Modal Re�nement that ∃t′.t τ−→∗
3
t′.

∃t′′. t′ a−−→3
t′′ and s′ ≤∗m t′′. By translation we have that this will give rise to asequene of internal transitions followed by an a transition suh that we knowthat ∃t̂′.t̂ τ−→∗t̂′.t̂′ a!−→t̂′′ ∧ ŝ′ ≤a t̂′′ This all implies that (ŝ′, t̂′′) ∈ Q.3. Take ŝ a;−→ŝ′. By Q and by translation we have that a ∈ intS ∧ s a−−→3

s′ Wehave by s ≤∗m t and the de�nition of Observational Modal Re�nement that
∃t′.t τ−→∗

3
t′ ∧ s′ ≤∗m t′. By translation we know that this sequene of zero ormore internal transitions will give rise to an idential sequene of internaltransitions suh that ∃t̂′.t̂ τ−→∗t̂′ and ŝ′ ≤a t̂′. This all implies that (ŝ′, t̂′) ∈ Q

⊓⊔A.2 Appendix for Setion 4Lemma 16. For any two omposeable and syntatially onsistent modal I/Oautomata S1, S2 their parallel omposition S1⊗S2 is also syntatially onsistent.A.3 Appendix for Setion 5Proof (of Theorem 10). This theorem is proven by showing that the relation Ris a modal re�nement:
R = {(i, s) ∈ statesI1⊗I2×statesS1|S2

|i = (i1, i2)∧s = (s1, s2)∧i1 ≤m s1∧i2 ≤m s2}The proof is divided into two ases, one for eah of the rules in the de�nitionof modal re�nement.



1. s a−−→2
s′. This means that (s1, s2)

a−−→2
(s′1, s

′
2) .We want to show that ∃i′.i a−−→2

i′ ∧ (i′, s′) ∈ R. This will be divided into �vesub ases depending on how (s1, s2)
a−−→2

(s′1, s
′
2) is ahieved. Several of theseases are symmetri versions of eah other.1.1 s1

a!−−→2
s′1 ∧ a ∈ intS1|S2

. We know that s2
a?−−→2

s′2 must exists, else theoutput transition would have been pruned. We know i1 ≤m s1 ∧ i2 ≤m s2whih gives us i1
a!−−→2

i′1 ∧ i2
a?−−→2

i′2. So take i = (i′1, i
′
2), by de�nition of

I1 ⊗ I2 we have that i a−−→2
i′ and this implies that (i′, s′) ∈ R.1.2 This ase is ompletely symmetri, where it is s2 that outputs.1.3 s1

a!−−→2
s′1 ∧ a ∈ outS ∧ a ∈ extS1|S2

by i1 ≤m s1 we have that i1
a!−−→2

i′1 ∧
i′1 ≤m s′1. Also in this ase we have, by omposability, that s′2 = s2∧ i′2 = i2and (i1, i2) a!−−→2

(i′1, i2). For i′ = (i′1, i2) ∧ s′ = (s′1, s2) this all implies that
(i′, s′) ∈ R.1.4 s1

a?−−→2
s′1∧a ∈ inS∧a ∈ extS1|S2

. This ase is symmetri with the previousase.1.5 s1
a;−−→2

s′1∧a ∈ intS∧a ∈ intS1|S2
. This ase is symmetri with the previousase. All three ases also have symmetri ases where the transition inquestion is part of S2.2. i a−−→3

i′ this means that (i1, i2)
a−−→3

(i′1, i
′
2).We want to show that ∃s′.s a−−→3

s′ ∧ (i′, s′) ∈ R. This will be divided into �vesub ases depending on how (i1, i2)
a−−→3

(i′1, i
′
2) is ahieved. Several of theseases are symmetri versions of eah other.2.1 i1

a!−−→3
i′1∧i2

a?−−→3
i′2. By R and the de�nition of≤mwe have that s1

a!−−→3
s′1∧

s2
a!−−→3

s′2 ∧ i′1 ≤m s′1 ∧ i′2 ≤m s′2 whih gives us that ((i′1, i
′
2), (s

′
1, s

′
2)) ∈ R.2.2 This ase is ompletely symmetri, where it is i2 that outputs.2.3 i1 a!−−→3

i′1 ∧ a ∈ outI ∧ a ∈ extI1⊗I2 by i1 ≤m s1 we have that s1
a!−−→3

s′1 ∧
i′1 ≤m s′1. Also in this ase we have, by omposability, that s′2 = s2∧ i′2 = i2and (s1, s2)

a!−−→3
(s′1, s2). For i′ = (i′1, i2)∧ s′ = (s′1, s2) this all implies that

(i′, s′) ∈ R.2.4 i1
a?−−→3

i′1∧a ∈ inI ∧a ∈ extI1⊗I2 . This ase is symmetri with the previousase.2.5 i1
a;−−→3

i′1∧a ∈ intI ∧a ∈ intI1⊗I2. This ase is symmetri with the previousase. All three ases also have symmetri ases where the transition inquestion is part of I2.
⊓⊔Proof (of Theorem 11).The proof proeeds as a ontrapositive proof in whih we show that if an errorstate was reahable in T ⊗ (I1 ⊗ I2) then an error state would also be reahablein T ⊗ (S1|S2). There are two ways in whih an error state ould be reahable in

T ⊗ (I1 ⊗ I2).1. err i
T,(I1⊗I2)

∩ reahable(T ⊗ (I1 ⊗ I2))is non empty.



2. Π2(reahable(T ⊗ (I1 ⊗ I2))) ∩ err i
I1,I2

is non empty.Contrapositive proof:1. Assume that (t, i) ∈ err i
T,(I1⊗I2)

and that (t, i) is reahable. No we want toshow that ∃(t, s) ∈ err i
T,(S1|S2) and that (t, s) is reahable.Beause t is reahable and I1 ⊗ I2 ≤m S1|S2 (Theorem 10) we know that

∃s ∈ statesS1|S2
and i ≤m s ∧ s is reahable by may transitions in S1|S2.1.1 t a!−−→3

t′ ∧ i 6 a?−−→2
∧ a ∈ intT⊗(I1⊗I2) but then s 6 a?−−→2

. We now needto argue that (t, s) is reahable by may transitions. This follows from
I1 ⊗ I2 ≤m S1|S2 (Theorem 10). Beause of onsisteny we only onsidermay transitions.Exeutions of T and I1⊗I2 is a sequene of may transitions of T and I1⊗I2.All the may transitions of I1 ⊗ I2 an be mathed by may transitions of
S1|S21.2 i a!−−→3

i′ ∧ t 6 a?−−→2
∧ a ∈ intT⊗(I1⊗I2). The argument is idential to theprevious ase.2. Assume that i1

a!−−→3
i′1 ∧ i2 6 a?−−→2

and ∃t.(t, i1, i2) is reahable. This impliesthat s1
a!−−→3

s′1 ∧ s2 6 a?−−→2
. So we an onlude that an error state would bereahable in T ⊗ (S1|S2) in this ase.Lemma 17. For any two omposeable and syntatially onsistent modal inter-fae automata S1, S2 their parallel omposition S1|S2 is also syntatially onsis-tent.Theorem 18 (Assoiativity). ∀S1, S2, S3. pairwise ompatible S1|(S2|S3) is iso-morphi with (S1|S2)|S3.A.4 Appendix for Setion 6Lemma 19. For any two omposeable and syntatially onsistent modal vari-ability models S1, S2 their parallel omposition S1 · S2 is also syntatially on-sistent.De�nition 20 (A-losure). For a set of ations A we de�ne an A-losure ofa pair of states (s, t1) ∈ statesS × statesT1

as a subset Σ of statesS × statesT1onsisting of (s, t1) itself and all pairs (s′, t′1) in whih s′ an be reahed from sby following a sequene of steps from −→2

S labeled solely by ations in A and t′1an be reahed from t1 by following an idential sequene (sequene with the samelabels) of steps from −→2

T1. Closures for pairs of states of S and T2 are de�nedanalogously.De�nition 21 (A-losure). We lift de�nition 20 to sets of pairs of states, suhthat the result is simply the union of the A-losures of all pairs.



Let t A−−→2

∗t′ mean that t′ is reahable from t via a possible empty sequene ofrequired transitions labeled by ations from a set A (possibly di�erent ations).We will de�ne observational onsisteny for states of a single automata.De�nition 22. Let T be a modal automaton and let A ⊆ atT be a set of ations.A relation C ⊆ statesT × statesT is an observational onsisteny relation withrespet to A if for any pair of states (t1, t2) ∈ C the following two properties hold:1. ∀t′1. if t1
A−−→2

∗t′1 then ∀a /∈ A. ∀t′′1. t
′
1

a−−→2
t′′1 implies ∃t′2. t2

a−−→3
t′2∧(t′′1, t

′
2) ∈ C.2. ∀t′2. if t2

A−−→2

∗t′2 then ∀a /∈ A. ∀t′′2. t
′
2

a−−→2
t′′2 implies ∃t′1. t1

a−−→3
t′1∧(t′1, t

′′
2) ∈ C.Two states are observationally onsistent if there exists an observational onsis-teny relation relating them. A set of states is said to be observationally onsistentwith respet to A if all possible pairs of states from the set are observationally on-sistent with respet to A.An automaton T is observationally onsistent with respet to A i� the set

{startT} is an observationally onsistent set.Lemma 23. Consisteny is transitive in the following sense: for a onsistenyrelation C if (t1, t2) ∈ C and (t2, t3) ∈ C then (t1, t3) ∈ C.Lemma 24. Let S, T1, T2 be modal I/O automata and S ≤m T1 · T2. If s ∈statesS and t2 ∈ statesT2
are observationally onsistent states wrt to atT2

\ atT1then projetions of (atT2
\atT1

)�losure(s, t2) on the �rst and seond4 omponentgive observationally onsistent sets of states with respet to the same set of ationsatT2
\ atT1

.Similarly if s ∈ statesS and t1 ∈ statesT1
are observationally onsistent stateswrt to atT1

\ atT2
then projetions of (atT1

\atT2
)�losure(s, t1) on the �rst andseond omponent give observationally onsistent sets of states with respet to thesame set of ations atT1

\ atT2
.These laims generalize also to sets of onsistent states.Proof (of Thm. 14). We shall onstrut S1 and S2 exhibiting the requirements ofthe theorem. The signatures of S1 and S2 are idential to those of T1 and T2:intSi

= intTi
, outSi

= outTi
, intSi

= intTi
. (8)Sine S ≤m T1 · T2 there exists the least relation R ⊆ statesS × (statesT1

×statesT2
), whih is a modal re�nement of T1 · T2 by S. LetstatesS1

= {(Σ1, t1) | t1 ∈ statesT1
and Σ1 ⊆ {(s, t2) | (s, (t1, t2)) ∈ R}} (9)statesS2

= {(Σ2, t2) | t2 ∈ statesT2
and Σ2 ⊆ {(s, t1) | (s, (t1, t2)) ∈ R}} (10)4 For the urrent version of the proof we only need to laim onsisteny when projeted on the �rstomponent.



andstartS1
= (Σ0

1 , startT1
), where Σ0

1 =(atT2
\atT1

)�losure(startS, startT2
) (11)startS2

= (Σ0
2 , startT2

), where Σ0
2 =(atT1

\atT2
)�losure(startS, startT1

) (12)We reate only one transition relation for eah of S1 and S2 (or more preiselyboth will have two, but idential transition relations). Intuitively this transitionrelation for S1 will ontain all steps allowed by T1 and required by S. Formallyit is given by the following rules:
a ∈ atS1

\atS2
t1

a−−→3

T1t′1 ∃(s, t2)∈Σ1. s
a−−→2

S

Σ′
1 = {(s′, t2) | ∃(s, t2)∈Σ1. s

a−−→3

Ss′}

(Σ1, t1)
a−−→3

S1((atT2
\atT1

)�losure(Σ′
1), t

′
1)

(13)
a ∈ atS1

∩atS2
t1

a−−→3

T1t′1 ∃(s, t2)∈Σ1. s
a−−→2

S

Σ′
1 = {(s′, t′2) | ∃(s, t2)∈Σ1. s

a−−→3

Ss′ ∧ t2
a−−→3

T2t′2}

(Σ1, t1) a−−→3

S1((atT2
\atT1

)�losure(Σ′
1), t

′
1)

(14)
a ∈ atS1

∩atS2
t1

a−−→2

T1t′1 ∀(s, t2)∈Σ1. s 6 a−−→2

S

(Σ1, t1)
a−−→3

S1(∅, t′1)
(15)

a ∈ atS1
\atS2

t1
a−−→2

T1t′1

(∅, t1) a−−→3

S1(∅, t′1)
(16)We take the must transition relation −→2

S1 to be idential with −→3

S1 . Notethat e�etively S1 follows all must transition relations of S in its sort, exeptthat whenever T1 requires an input that is not followed by S (as T2 is not able tosynhronize on this input), we rediret the transition relation to a region where allmust transitions of T1 are mapped. We do that as minimum addition to maintainre�nement of T1 by S1, on the funtionality not explored by S.We refrain from showing the rules for S2 here�they an be easily onstrutedby analogy, as the problem is entirely symmetri.It is lear that the onstruted systems S1 and S2 are deterministi�thelosure operation is deterministi and we apply to a unique maximal set for eahation in eah partiular soure state.Lemma 25. The rules for transitions of S1 ensures that if the originating statebelongs to statesS1
then the target state will also belong to statesS1

.An entirely symmetri lemma an be made for S2.



Proof. (Lemma 25) First we need to argue that the initial state startS1
∈ statesS1

.Firstly startT1
∈ statesT1

whih satis�es the �rst part of the requirement for statesin statesS1
. Now we need to show that (atT2

\atT1
)�losure(startS, startT2

) ⊆
{(s, t2) | (s, (t1, t2)) ∈ R}. The state from whih the losure is alulated namely,
({(startS, startT2

)}, startT1
), is part of statesS1

beause (startS1
, (startT1

, startT2
)) ∈

R. All the transitions that are taken in the alulation of the losure are on a-tions not involving T1 and are taken simultaneously by S and T2, whih ensuresthat all pairs of states Σ′
1 that are reahed will still ful�ll the requirement forbeing in statesS1

.The rest of the proof onsists of four ases, one for eah rule. We need toargue for transitions generated by eah of the four rules that the target state willbe in statesS1
, given that the soure state is. Transitions generated by rule (13)ensure this beause the states that are in Σ′

1 have taken one transition that is ona non shared ation of T1. This transition is taken simultaneously by T1 and S.Finally the losure also preserves the property, by the same argument as before.The argument for rule (14) is similar, the only di�erene being that the �rsttransition is on a shared ation and is taken by S, T1 and T2. Rule (15) and (16)are di�erent. Here the argument is that ∅ is a subset of {(s, t2) | (s, (t1, t2)) ∈ R}.We want to show that 1◦ S1 ≤m T1, 2◦ S2 ≤m T2 and 3◦ S1 ⊗ S2 ≤m S.
1◦ Show that

R1 = {((Σ1, t1), t1) |Σ1 ∈ statesS1
and t1 ∈ statesT1

} (17)is a modal re�nement of T1 by S1.Consider an arbitrary pair of states ((Σ1, t1), t1) ∈ R1 and a transition t1
a−−→2

T1t′1.We want to show that there exists a state (Σ′
1, t

′
1) and a transition suh that

(Σ1, t1)
a−−→2

S1(Σ′
1, t

′
1) and ((Σ′

1, t
′
1), t

′
1) ∈ R1

1.1◦ If Σ1 = ∅ then take Σ′
1 to be ∅ and the orresponding transition existsdue to rule (16) or rule (15). In the ase of rule (15) the premise that

∀(s, t2) ∈ Σ1 is trivially true.
1.2◦ Let a be an ation of T1 that is not shared with T2, or similarly a ∈atS1

\ atS2
. We want to apply rule (13) and want to show that thepremises are ful�lled. The �rst two premises are ful�lled by the ase thatwe are looking at. The third premise is ful�lled by the following argu-ment. Beause t′1 is making a step we have that (t1, t2) a−−→2

T1·T2(t′1, t2). Bythe de�nition of statesS1
and R1 we have that (s, (t1, t2)) ∈ R for ev-ery pair (s, t1) ∈ Σ1. Beause R is a modal re�nement of T by S wehave that s a−−→2

Ss′ and (s′, (t′1, t2)) ∈ R for every pair (s, t1) ∈ Σ1. Thethird premise will trivially hold and we an even onlude that Σ′
1 will benonempty. Now we an apply rule (13) and we an onlude that indeed

(Σ1, t1)
a−−→3

S1(((atT2
\atT1

)�losure(Σ′
1), t

′
1). From this we an onludethat a similar must transition exists beause the two transition relations are



idential. Finally we an onlude that (((atT2
\atT1

)�losure(Σ′
1), t

′
1) ∈ R1beause the generated transitions stay within statesS1

and t′1 ∈ statesT1
.

1.3◦ Let a be an ation of T1 that is shared with T2, or similarly a ∈ atS1
∩atS2

.We want to apply rule (14) and (15), in two di�erent sub ases, and wantto show that the premises are ful�lled. The �rst two premises of both rulesare ful�lled by the ase that we are looking at. The third premise of rule(14) and (15) are eah others opposites, suh that the one is true when theother is false and vise versa. Looking at the ase where ∃(s, t2) ∈ Σ1.s a−−→2

S,whih is exatly the third premise of rule (14), then we an onlude thatthe last premise for rule (14) is true by the following argument. Beause
S is onsistent we know that there is a transition s a−−→3

S. Beause R is amodal re�nement of T by S and we an onlude that the only way thatthis transition an exist is if a similar transition t2
a−−→3

T2t′2 exists suh that
(t1, t2)

a−−→3

T1·T2. The fourth premise of rule (14) is trivially true, but wean now onlude that Σ′
1 is nonempty. Now we an apply rule (14) andwe an onlude that indeed (Σ1, t1) a−−→3

S1(((atT2
\atT1

)�losure(Σ′
1), t

′
1).From this we an onlude that a similar must transition exists beausethe two transition relations are idential. Finally we an onlude that

(((atT2
\ atT1

)�losure(Σ′
1), t

′
1) ∈ R1 beause the generated transitionsstay within statesS1

and t′1 ∈ statesT1
.Now turning to the other sub ase where ∀(s, t2) ∈ Σ1 s 6 a−−→2

S. In thisase there are no must transitions in S requiring the behavior but S1will have the behavior beause T1 requires it. From this we an onludethat (∅, t1) a−−→3

S1(∅, t′1) and that a similar must transition exists beausethe two transition relations are idential. Finally we an onlude that
(((atT2

\atT1
)�losure(∅), t′1) ∈ R1 beause the generated transitions staywithin statesS1
and t′1 ∈ statesT1

.This �nishes one diretion of the proof. Lets now onsider a may transition
(Σ1, t1)

a−−→3

S1(Σ′
1, t

′
1). We need to show that a transition t1

a−−→3

T1t′1 exists suhthat ((Σ′
1, t

′
1) ∈ R1)

1.4◦ This transition ould have been generated by one of the four rules (13)-(16). In two of the ases we an diretly onlude that a transition t1
a−−→3

T1t′1exists. In the other two ases we an onlude that this transition existsbeause the rules require a similar must transition and T1 is syntatilyonsistent. Now it follows diretly from Lemma 25 that (Σ′
1, t

′
1) ∈ R1

2◦ The proof that S2 ≤m T2 is entirely symmetri to the proof that S1 ≤m T1.



3◦ Show that S1 ⊗ S2 ≤m S. We do that by arguing that
R2 = {(((Σ1, t1), (Σ2, t2)), s) |

((atT1
\atT2

)�losure(s, t1) ⊆ Σ2 and
((atT2

\atT1
)�losure(s, t2) ⊆ Σ1 and

Π1(Σ1) is observationally onsistent wrt atT2
\atT1

and
Π1(Σ2) is observationally onsistent wrt atT1

\atT2
} (18)is a modal re�nement of S by S1 ⊗ S2. First we should argue that

((startS1
, startS2

), startS) ∈ R2 . (19)Obviously
(atT2

\atT1
)�losure(startS, startT2

) ⊆ Σ0
1 and (20)

(atT1
\atT2

)�losure(startS, startT1
) ⊆ Σ0

2 (21)(atually equalities hold). Observational onsisteny of projetions of Σ0
1 and

Σ0
2 follows from onsisteny of S, T1, T2 and Lemma 24.We shall disuss that the may transition relation preserves the re�nement.Take any (((Σ1, t1), (Σ2, t2)), s) ∈ R2 and a transition step

((Σ1, t1), (Σ2, t2))
a−−→3

S1⊗S2((Σ′
1, t

′
1), (Σ

′
2, t

′
2)) (22)We want to �nd a state s′ suh that s a−−→3

Ss′ and ((Σ′
1, t

′
1), (Σ

′
2, t

′
2)), s

′) ∈ R2.Note that due to the way R2 is onstruted we know that neither Σ1 nor Σ2are empty. The transition step of the omposition must then be reated byboth omponents taking a shared ation (and both following rule (14)) or byone omponent taking a non-shared ation, by rule (13), and the other nothanging state.Observe that rule (16), an never give rise to suh a transition as it wouldrequire Σ1 or Σ2 to be empty, whih we have just ruled out.
3.1◦ Let a ∈ atS1

∩ atS2
. We want to �rst argue that both omponents takesteps generated by rule (14) and not rule (15). The latter would requirethat either t1 or t2 enjoys a must transition ti

a−−→2

Tit′i. If both transitionsexisted, they would imply that also s a−−→2

Ss′ (sine (s, (t1, t2)) ∈ R, Sis deterministi), whih would ontradit the joint premises of the rules.So only one of the two must transitions an exist. But then the otheromponent is taking a transition generated by rule (14) implying that
s a−−→2

Ss′, ontraditing premises of rule (15) (for both omponents). Inother words rule (15) ould not have been used, so for some sets Σ′′
1 , Σ′′

2 :
(Σ1, t1)

a−−→3

S1((atT2
\atT1

)�losure(Σ′′
1 ), t′1) (23)

(Σ2, t2)
a−−→3

S2((atT1
\atT2

)�losure(Σ′′
2 ), t′2) (24)



From that we derive that rule (14) must have been used to reate both ofthese transitions, whih implies that there exists (s1, p2) ∈ Σ1 suh that
s1

a−−→2

Ss′1 for some state s′1. Sine Π1(Σ1) is an observationally onsistentset with respet to atT2
\ atT1

then there exists a state s′ suh that
s a−−→3

Ss′ and (s′1, s
′) is an observationally onsistent pair of states. Sine Sis deterministi the same argument an be used for all elements in Π1(Σ

′′
1 )5,whih with help of Lemmas 23 and 24 leads us to a onlusion that the�rst omponent of (atT2

\atT1
)�losure(Σ′′

1 ) is observationally onsistentwrt (atT2
\atT1

).Sine rule (14), or more preisely its ounterpart for S2, must have beenused to onstrut transition (24) we an also onlude that t2
a−−→3

T2t′2. Soby premises of rule (14) instantiated for transition (23) we onlude that
(s′, t′2) ∈ Σ′′

1 and hene is in the losure.Symmetri arguments an be used to argue that the �rst omponent ofthe losure of Σ′′
2 is observationally onsistent wrt atT1

\ atT2
, and that

(s′, t′1) ∈ Σ′′
2 and hene also in its losure, whih �nishes the proof of thisase.

3.2◦ Let a ∈ atS1
\ atS2

. Then we know that:
(Σ1, t1)

a−−→3

S1(Σ′
1, t

′
1) and Σ′

2 = Σ2 and t′2 = t2 . (25)It easy to onlude that the step of T1 has been generated by rule (13) andnot rule (16) (we have already argued against this ase above: Σ1 6= ∅).The fat that (Σ1, t1) is able to make an a step by rule (13) implies thatsome state of s paired with some state of T2 in Σ1 requires suh a step.By observational onsisteny of Π1(Σ1) we have that neessarily s a−−→3

Ss′for some s′. Moreover (s′, t2) ∈ Σ′
1 (by rule (13)) and (s′, t′1) ∈ Σ2 sine

(s′, t′1) ∈ (atT1
\ atT2

)�losure(s, t1) = Σ2. Sine Σ2 does not hange,there is no need to argue for its onsisteny. Consisteny of Π1(Σ
′
1) followsfrom the fat that a transition is taken, whih annot move outside theonsistent set (a hidden must transition).

3.3◦ The ase when s takes a transition over a non-shared ation of S2 is entirelysymmetri.Observe that impliitly (by analyzing all interation possibilities) we haveruled out a possibility of a deadlok between S1 and S2.Let us now turn towards the must transition relations. Assume that for someation a and state s′ we have that s a−−→2

Ss′.
3.4◦ Let a ∈ atT1

∩atT2
. Sine (s, (t1, t2)) ∈ R and S is syntatially onsistent,we get that (t1, t2)
a−−→3

T1·T2(t′1, t
′
2) for some t′1, t′2 and further that t1

a−−→3

T1t′15 In the nondeterministi ase we would probably have to extend the de�nition of observationalonsisteny with a universal quanti�er, instead of the existential, whih it is using now.



and t2
a−−→3

T2t′2. But these imply by rule (14) that (Σ1, t1)
a−−→3

S1(Σ′
1, t

′
1),where (atT2

\atT1
)�losure(s′, t′2) ⊆ Σ′

1 and similarly (Σ2, t2) a−−→3

S2(Σ′
2, t

′
2),where (atT1

\atT2
)�losure(s′, t′1) ⊆ Σ′

2.We have hosen that the must transition relations of both S1 and S2 areidential with their respetive may transition relations, so we an onludethat ((Σ1, t1), (Σ2, t2))
a−−→2

S1⊗S2((Σ′
1, t

′
1), (Σ

′
2, t

′
2)).Observational onsisteny of the �rst omponents of Σ′

1 and Σ′
2 an beargued as in earlier ases (existene of a single must transition of s guar-antees that none of s transitions labeled in a and soured in states of Σian leave outside the set of onsistent states).

3.5◦ Let a ∈ atT1
\atT2

. Sine (s, (t1, t2)) ∈ R and S is syntatially onsistent,we get that (t1, t2)
a−−→3

T1·T2(t′1, t2) and further that t1
a−−→3

T1t′1. But this im-plies by rule (13) that (Σ1, t1)
a−−→3

S1(Σ′
1, t

′
1), where (atT2

\atT1
)�losure(s′, t2) ⊆

Σ′
1. Also (atT1

\atT2
)�losure(s′, t′1) ⊆ Σ2 sine the transition performedby this pair is within the original losure (atT1

\atT2
)�losure(s, t1), whihwas a subset of Σ2.As we have hosen that must transition relation of S1 is idential with itsmay transition relation, we an onlude that:

((Σ1, t1), (Σ2, t2))
a−−→2

S1⊗S2((Σ′
1, t

′
1), (Σ2, t2)) . (26)Finally Σ′

1 is observationally onsistent as s only takes a hidden transitionhere (with respet to the set of ignored ations), whih �nishes the prooffor this ase.
3.6◦ The ase where S2 takes an independent step is symmetri. ⊓⊔Observe that the above theorem an be used to generate deompositions ofsimulations and bisumulations (whih are speial ases of modal re�nement).Proof (Thm. 15). Show that

R3 = {((i1, i2), (t1, t2)) ∈ statesI1·I2 × statesT1·T2
| i1 ≤m t1 ∧ i2 ≤m t2} (27)is a modal re�nement of T1 · T2 by I1 · I2.

1◦ Consider (i1, i2)
a−−→3

(i′1, i
′
2). We have to onsider four ases: 1.1◦ a ∈ extI1·I2,

i1
a−−→3

i′1 and i2 = i′2. As i1 ≤m t1 there must exist a t′1 suh that t1
a−−→3

t′1 and
i′1 ≤m t′1, so ((i′1, i2), (t

′
1, t2)) ∈ R3. By de�nition of the omposition operator(·) we get that (t1, t2)
a−−→3

(t′1, t2): the only possibility for it ould not hold iswhen (t′1, t2) has been pruned in T1 · T2, so there exists a sequene of internallyontrollable must transitions leading from (t′1, t2) to an error state (t′′1, t
′′
2) where

t′′k
a!−−→3

t′′′k and t′′3−k 6 a?−−→3
, where k ∈ 1, 2. But then a orresponding sequenewould exist in I1 · I2, meaning that (i1, i2)

a−−→3
(i′1, i2) was not possible to beginwith (also pruned). Finally it is easy to see ((s′1, s

′
2), (t

′
1, t

′
2)) ∈ R3.

1.2◦ a ∈ extI1·I2, i2
a−−→3

i′2 and i1 = i′1 is symmetri.



1.3◦ a ∈ intI1·I2, i1
a!−−→3

i′1 and i2
a?−−→3

i′2. Then by i1 ≤m t1 and i2 ≤m
t2 we onlude that there exists t′1, t′2 suh that t1 a!−−→3

t′1 and t2 a?−−→3
t′2 and

i′1 ≤m t′1 and i′2 ≤m t′2. By de�nition of the omposition operator (·) we get that
(t1, t2)

a−−→3
(t′1, t

′
2): the only possibility for it ould not hold is when (t′1, t

′
2) hasbeen pruned in T1 · T2, so there exists a sequene of internally ontrollable musttransitions leading from (t′1, t

′
2) to an error state (t′′1, t

′′
2) where t′′k

a!−−→3
t′′′k and

t′′3−k 6 a?−−→3
, where k ∈ 1, 2. But then a orresponding sequene would exist in

I1 · I2, meaning that (i1, i2)
a−−→3

(i′1, i
′
2) was not possible to begin with. Finally itis easy to see ((s′1, s

′
2), (t

′
1, t

′
2)) ∈ R3.

1.4◦ a ∈ intI1·I2, i2
a!−−→3

i′2 and i1
a?−−→3

i′1. The argument follows as in 1.3◦.
2◦ Consider (t1, t2)

a−−→2
(t′1, t

′
2). We have four subases again out of whih 2are interesting.

2.1◦ a ∈ extT1·T2
and t1

a−−→2
t′1 and t2 = t′2. Then by i1 ≤m t1 there exist i′1suh that i1

a−−→2
i′1 and i′1 ≤m t′1. By similar argument as above (i1, i2)

a−−→2
(i′1, i2)(beause if (i′1, i2) was pruned then so was (i1, i2), for whih we assumed that itwas not) and (i′1, i

′
2), (t

′
1, t

′
2) ∈ R3.

2.2◦ a ∈ extT1·T2
and t2

a−−→2
t′2 and t1 = t′1. Argument as above.

2.3◦ a ∈ intT1·T2
and t1 a!−−→2

t′1 and t2 a?−−→2
t′2. Then by i1 ≤m t1 and i2 ≤m

t2 there exist i′1 and i′2 suh that i1
a−−→2

i′1 and i2
a−−→2

i′2 and i′1 ≤m t′1 and
i′2 ≤m t′2. By a similar argument involving the de�nition of (·) as above we get
(i1, i2)

a−−→2
(i′1, i

′
2) (as if (i′1, i

′
2) then so would (i1, i2) whih was assumed not tobe pruned). So ((i′1, i

′
2), (t

′
1, t

′
2)) ∈ R3, whih �nishes the proof. ⊓⊔


