
Interfae Input/Output AutomataKim G. Larsen1, Ulrik Nyman1, and Andrzej W¡sowski2⋆

1 Department of Computer Siene, Aalborg University{kgl,ulrik}�s.aau.dk
2 Computational Logi and Algorithms Group, IT University of Copenhagenwasowski�itu.dkAbstrat. Building on the theory of interfae automata by de Alfaroand Henzinger we design an interfae language for Lynh's I/O automata,a popular formalism used in the development of distributed asynhronoussystems, not addressed by previous interfae researh. We introdue anexpliit separation of assumptions from guarantees not yet seen in otherbehavioral interfae theories. Moreover we derive the omposition oper-ator systematially and formally, guaranteeing that the resulting om-positions are always the weakest in the sense of assumptions, and thestrongest in the sense of guarantees. We also present a method for solv-ing systems of relativized behavioral inequalities as used in our setup anddraw a formal orrespondene between our work and interfae automata.1 IntrodutionA suitably expressive interfae language lies at the very enter of any omponent-oriented development framework. Interfaes are abstrations of omponents, ar-rying all essential information neessary to establish ross-omponent ompat-ibility. Instead of reasoning about omponents diretly, one typially examinesompatibility of their interfaes, while the adherene of a partiular implemen-tation to its interfae is tested separately. This, not only allows for independentdevelopment of omponents, but also by introduing ompositionality helps toombat the state spae explosion problem in various automati analyses.Type annotations, type heking, and type inferene have traditionally beenused to deide ompatibility of omponents soundly with respet to memorysafety. However, stati type orretness in this traditional sense fails to guar-antee more elaborate properties, like orretness of ommuniation, or deadlokfreeness. This observation has inspired a long line of researh on behavioral typesystems and behavioral interfae languages suitable for spei�ation of highlytrusted omputer systems (see [1�4℄ and referenes therein for examples).We follow de Alfaro and Henzinger [5, 6℄ in studying an automata basedinterfae language, or interfae automata. Unlike them however, we expliitlyseparate, in the interfae desription, the assumptions that a omponent maymake about its use from the guarantees that it needs to ommit to. Assumptionsdesribe the possible behaviors of the omponent's external environment, whileguarantees desribe the possible behaviors of the omponent itself.

⋆ Partly supported by Center for Embedded Software Systems (CISS) in Aalborg.

0 1send?
ok !EnvClient

send ok fail

0 1send !
ok?SpecClient

send ok failFig. 1. Client = (EnvClient ,SpecClient)

50 1 2 3 46
ack !ok?

ack !
send ! trnsmt? nack ! trnsmt?

fail? nack !
EnvTryTwicesend ok fail

trnsmt ack nack

50 1 2 3 46
ack?ok !

ack?
send? trnsmt ! nack? trnsmt !

fail ! nack?
SpecTryTwicesend ok fail

trnsmt ack nackFig. 2. TryTwice = (EnvTryTwice ,SpecTryTwice)Eah interfae in our theory onsists of two I/O automata. The �rst, alledthe environment, represents assumptions. The seond, alled the spei�ation,desribes guarantees. Figure 1 shows an interfae for a Client omponent on-sisting of the automata EnvClient and SpecClient . The arrows inoming to oroutgoing from the box surrounding eah of the automata visualize their statitypes, or signatures. The environment EnvClient spei�es that even though thestati type does allow a fail ation, the emission of this ation is disallowed forall ompliant exeution environments. The only legal input is send. One an stilluse the Client omponent in a ontext that syntatially permits fail, but thebehavior of the Client is only guaranteed in environments that do not fail.Alfaro and Henzinger model assumptions about the use of a omponent bythe interfae's inabilities to reeive inputs. The output transitions of the verysame interfae automaton desribe its guarantees. Sine we separate the two, wealleviate the need for bloking. Our automata are input enabled�aepting anyinput from their signature in every state. In order to avoid lutter we usually donot draw loop transitions, whih orrespond to ignoring an input. There is onesuh impliit transition 1 send?−−−−→1 in EnvClient and three in SpecClient .Two interfaes an be ombined into a omposite interfae, desribing a newset of assumptions and guarantees. Interfae TryTwice, presented in Fig. 2 anbe omposed with Client . The two omponents do not form a losed system, butare intended for use together with a further unspei�ed LinkLayer omponent.Composition of interfaes is a entral onstrution in any interfae theory.One of our ontributions is that the omposition is derived systematially: weformally state requirements for it in the form of a system of inequalities, andderive a result of the omposition as a maximal solution of this system. Conse-quently properties of the omposition hold by onstrution.Figure 3 shows the interfae resulting from omposing Client and TryTwice .Later we shall explain how it has been omputed. Now observe that any om-ponent legally interating with this new interfae may not send a nak twie

0 2 3 4 Tack !
ack ! trnsmt?

nack ! ack !
trnsmt? nack ! trnsmt? trnsmt?EnvComp1

trnsmt ack nack

0 2 3 4 6ack?
ack?trnsmt! nack? trnsmt! nack?SpecComp1

trnsmt ack nackFig. 3. (EnvTryTwice ,SpecTryTwice)|(EnvClient ,SpecClient) = Comp1

(a) 0 1 2 5ok?
ack !send ! trnsmt?send ok fail

trnsmt ack nack

(b) 0 2 Tack ! nack !
ack !trnsmt? trnsmt?

trnsmt ack nackFig. 4. (a) The environment EnvNoNack and (b) the environment EnvComp2 .in response to the transmt request�a simple onsequene of the fat that thiswould make TryTwie respond with a fail to Client, violating the assumptions ofthe latter. The additional state T manifests the fat that the omputed environ-ment expresses the weakest assumptions. It allows reeiving arbitrary behaviorafter a seond transmt in a row, beause any ompliant implementation wouldnever send it, and thus would never be a�eted by the subsequent behaviour.An advantage of separating assumptions from guarantees is that one of theautomata an be hanged without a�eting the other. Thus the same guaranteesan be used for multiple interfaes. In [7℄ we have argued that this is useful formodeling software produt lines: a family of omponent variants may be spei�edusing a single spei�ation (guarantee) and multiple environmental restritions(assumptions). An advaned ompiler may use the assumptions to derive speial-ized versions of the omponent from the same soure ode. Let us illustrate thiswith an example. Figure 4a gives an alternative environment EnvNoNack for the
SpecTryTwice spei�ation. This environment disallows the sending of a nak asa response to a trnsmt request. Any implementation of TryTwice is also an im-plementation of (EnvNoNack ,SpecTryTwice). If it is only used in EnvNoNack , thenit ould be automatially speialized to these spei� irumstanes. The errorhandling ode ould be removed as it is not needed in suh a ontext. The om-position Comp2 = (EnvNoNack ,SpecTryTwice)|(EnvClient ,SpecClient) has exatlythe same spei�ation part as the Comp1 omposition. The resulting environ-ment EnvComp2 (Fig. 4b) disallows the generation of the nak input even thoughthe stati type permits this.As we have also argued in [7℄ the separation supports a simple delarativestyle of modeling assumptions: simple properties an be modeled as standaloneautomata and ombined using the proess algebrai operators of sum and prod-ut, orresponding to disjuntion and onjuntion of properties respetively.An interesting theoretial side e�et of our exposition, is an informal orre-spondene drawn between bloking and non-bloking interfae theories. A single

bloking interfae automaton of [5℄ expresses both the assumptions of a ompo-nent and its ommitments. When a bloking interfae automaton is unable to a-ept an input, it e�etively assumes that any ompatible environment will neverprovide it. In the theory for non-bloking systems the interfaes are omposed oftwo non-bloking automata, and the same e�et is ahieved by expliitly usingone of the automata for desribing the permissible behavior of the surroundings.The paper develops as follows. Setion 2 de�nes I/O automata and interfaes.Setion 3 disusses re�nement of interfaes. The most entral setion, Setion 4,is devoted to omposition, while a more tehnial setion, Setion 5, is devotedto systems of inequalities used in setion 4 and is a ontribution in itself. Butreading it is not essential for appreiating our interfae theory. Setion 6 drawsa orrespondene between interfae automata and our interfaes, while setion 7disusses other related work. We onlude in setion 8. A partiularly interestedreader an �nd the proofs of all our laims in an upoming BRICS report.2 I/O Automata and Their InterfaesDe�nition 1. An I/O automaton S=(statesS , startS , inS , outS , intS , stepsS) isa 6-tuple, where statesS is a set of states, startS ∈ statesS is an initial state,inS is a set of input ations, outS a set of output ations, and intS is a setof internal ations. All of the ation sets are mutually disjoint. We abbreviateextS = inS ∪outS and atS = extS ∪ intS. Then stepsS ⊆ statesS ×atS × statesSis the set of transitions. I/O automata are input enabled: for every state s andany ation i ∈ inS there exists a state s′ and a transition (s, i, s′) ∈ stepsS.We write q a−→S q
′ if (q, a, q′) ∈ stepsS . We often expliitly su�x external a-tions with diretion of ommuniation writing q a!−−→S q

′ if a ∈ outS , and q a?−−→S q
′if a ∈ inS . Notie that the labels a! and a? still denote exatly the same ation,and we an drop the su�xes whenever the diretion of ommuniation is irrele-vant. We write q a6−−→, meaning that there is no q′ suh that q a−→q′.De�nition 2. An exeution of an I/O-automaton S starting in a state q0 is a�nite sequene of labels q0, a0, q

1, a1, q
2, a2, . . . , q

n−1, an−1, q
n suh that all qi'sare members of statesS, all ai's are members of atS and for every k = 0 . . . n−1it is the ase that qk ak−−→S q

k+1. A trae σ of S is an exeution ψ of S startingin the initial state, with all the states and internal ations deleted: σ = ψ ↾ extS,where ψ ↾ X denotes a sequene reated from ψ by removing symbols that arenot in set X. The set of all traes of automaton S is denoted TrS.Two I/O-automata S1 and S2 are syntatially omposable if their input andoutput sets do not overlap and their internal ations are not shared: inS1
∩inS2

=outS1
∩outS2

= intS1
∩atS2

= atS1
∩ intS2

= ∅. Two syntatially omposableautomata S1 = (statesS1
, startS1

, inS1
, outS1

, intS1
, stepsS1

) and S2 = (statesS2
,startS2

, inS2
, outS2

, intS2
, stepsS2

) an be omposed into a single produt automa-ton S = S1|S2, where S=(statesS , startS , inS , outS , intS , stepsS) and statesS =statesS1
× statesS2

, startS = (startS1
, startS2

), inS = inS1
∪ inS2

\ outS1
\ outS2

,

outS =outS1
∪ outS2

\ inS1
\ inS2

, intS = intS1
∪ intS2

∪ (extS1
∩extS2

), and stepsSare de�ned by the following rules:if q1 a−→S1
q′1 and a∈atS1

\atS2
then (q1, q2) a−→S1|S2

(q′1, q2)if q2 a−→S2
q′2 and a∈atS2

\atS1
then (q1, q2) a−→S1|S2

(q1, q
′
2)if q1 a−→S1

q′1 and q2 a−→S2
q′2 then (q1, q2) a−→S1|S2

(q′1, q
′
2)In pratie unreahable states may be removed from the produt, without af-feting the results presented below.Our omposition (same as in [6℄) di�ers from the standard I/O automata om-position in that it applies hiding immediately. It is equivalent with the standardomposition as long as eah ation is only shared by at most two omponents.We de�ne an interfae model to be a pair (E,S) of I/O automata:De�nition 3. A pair of I/O automata (E,S) is an interfae if E|S is a losedsystem, i.e. inE =outS and outE = inS.The environment automaton E drives the spei�ation automaton S. Anyimplementation I of S must onform to S as long as it is reeiving input thatonforms to E. The behavior of I on sequenes of inputs that annot be providedby E is not onstrained. We formalize this using relativized re�nement:De�nition 4. An I/O automaton I implements an interfae (E,S), written

E |= I 6 S, i� outI = outS and inI = inS and TrE ∩ TrI ⊆ TrS.3 Re�nement of InterfaesWe establish a hierarhy on interfaes in order to quantify their generality.De�nition 5. Let (E1, S1) and (E2, S2) be two interfaes with the same signa-tures. We will say that (E1, S1) is a stronger interfae than (E2, S2), written
(E1, S1) � (E2, S2), if (E1, S1) has less implementations than (E2, S2), so forany I/O automaton I: E1 |= I 6 S1 implies E2 |= I 6 S2.The re�nement of interfaes an be seen as a subtyping relation in a behav-ioral type system for omponents. In suh an interpretation we would say that
(E1, S1) is a subtype of (E2, S2). We propose several simple sound harateriza-tions of the above re�nement that are useful in making proofs:Theorem 6. Let (E1, S1), (E2, S2) be interfaes with idential signatures. Then1. TrE1

∩TrS1
= TrE2

∩TrS2
implies (E1, S1) � (E2, S2) and (E2, S2) � (E1, S1)2. TrE2

⊆TrE1
∧ TrS1

⊆TrS2
implies (E1, S1) � (E2, S2)3. TrE1

\ TrS1
⊇ TrE2

\ TrS2
implies (E1, S1) � (E2, S2)The above haraterizations are onvenient in establishing subtyping rela-tions among interfaes in many onrete ases. However none of them are om-plete. The re�nement of interfaes an be haraterized in a sound and ompletemanner using a notion of tests that resembles failure traes of Hoare [8℄, butdeterminized, relativized with respet to the environment, and su�x losed.

De�nition 7. The set of onformane tests of interfae (E,S) is de�ned as:test(E,S)= {σ · a |σ∈ TrE ∩ TrS , σ · a∈ TrE \ TrS} · ext∗E ,where X∗ denotes the set of all �nite sequenes over alphabet X.Theorem 8. Let (E1, S1) and (E2, S2) be two interfaes with idential signa-tures. Then test(E1,S1) ⊇ test(E2,S2) i� (E1, S1) � (E2, S2).Without spelling out the details, we remark that a �nite automaton, suhthat test(E,S) is its aepted language, an be omputed in quadrati time, andan be used for testing ontainment in appliations of the above theorem.4 Interfae CompositionsWe would like to abstrat ompositions of omponents by ompositions of theirinterfaes. For any two ompatible interfaes (E1, S1) and (E2, S2) we should beable to derive an interfae of their omposition (E,S), the one that is imple-mented �awlessly by any two implementations of (E1, S1) and (E2, S2).Two interfaes are syntatially omposable if the I/O automata omprisingthem are pointwise syntatially omposable. This guarantees that any ompo-nents I1 and I2 implementing syntatially omposable interfaes (E1, S1) and
(E2, S2), are also syntatially omposable. The question that we want to ad-dress is the dynami ompatibility of I1 and I2: an I1 violate the environmentalassumptions expressed in E2? Can I2 violate the assumptions in E1?We may be tempted to say that the omposite interfae is the ompositionof the interfae parts: (E,S) = (E1|E2, S1|S2). This onstrution, however, isunsound. It is possible to �nd two ompliant implementations that, when om-posed together, violate (E,S). In order to arrive at a sound and omplete notionof omposition, we will state the requirements for the omposite interfae, andthen derive the onstrution from them. The three requirements are: independentimplementability [6℄, mutal deadlok freeness, and assoiativity.Independent implementability means that (E,S) is suh, that the implemen-tations of (E1, S1) and (E2, S2) an be developed independently of eah other,and their omposition will implement the omposition of their interfaes:For all I1, I2. E1 |= I1 6 S1 and E2 |= I2 6 S2 implies E |= I1|I2 6 S . (1)Mutual deadlok freeness means that any two orret implementations, whenomposed and embedded in an environment that obeys the assumptions of E,will not violate eah other's assumptions:For all I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2implies I1 |= E|I2 6 E1 and I2 |= E|I1 6 E2 . (2)You may �nd it useful to refer to the �owgraph on Fig. 5a, while studying theabove rule. Observe that in the omposed system I1 is indeed the environment

(a)
I1 I2

E

E2E1

(b) 0 1send !
fail?EnvAlwaysFail

send ok fail 0 1send?
fail !SpecAlwaysFail

send ok fail

Fig. 5. (a) Flowgraph for a omposition of (E1, S1) and (E2, S2). (b) AlwaysFailin whih E|I2 operates. The omposition E|I2 is also the environment for I1 andit is supposed not to violate any of the assumptions expressed in E1.Finally, assoiativity means that in whatever order ompositions are applied,they give rise to equivalent interfaes:
((E1, S1) | (E2, S2)) | (E3, S3) � (E1, S1) | ((E2, S2) | (E3, S3))

(E1, S1) | ((E2, S2) | (E3, S3)) � ((E1, S1) | (E2, S2)) | (E3, S3) . (3)A disadvantage of the above requirements is that they are not onstrutive.They rely on quanti�ation over all implementations, whih makes them uselessfor omputing the omposition. Fortunately the quanti�ation an be eliminated.The following theorem redues the property of mutual deadlok freeness of allimplementations to mutual deadlok freeness of the interfaes being omposed:Theorem 9. Any environment E ful�lls the requirement (2) i� it ful�lls thefollowing ondition:
S1 |= E|S2 6 E1 and S2 |= E|S1 6 E2 . (4)The above redution is very fortunate, as (4) also implies independent im-plementability with the hoie of the guarantees omponent to be S1|S2:Theorem 10. Let (E1, S1) and (E2, S2) be syntatially omposable interfaes,and E be an environment I/O automaton satisfying property (4). Then for all I1and I2 suh that E1 |= I1 6 S1 and E2 |= I2 6 S2 we have E |= I1|I2 6 S1|S2.Consequently if we were able to �nd an environment E satisfying (4), thenthe interfae (E,S1|S2) would satisfy mutual deadlok freeness and independentimplementability�a good andidate for the omposition of environments. How-ever, the environment satisfying (4) may not always exist. This is the ase, if S1unonditionally, independently of E's behavior, violates the assumptions of S2expressed in E2. In this ase (E1, S1) and (E2, S2) are said to be inompatible.De�nition 11. Interfaes (E1, S1), (E2, S2) are inompatible if there exists noI/O automaton E suh that: S1 |= E|S2 6 E1 and S2 |= E|S1 6 E2.Figure 5b shows an interfae AlwaysFail , whih has a signature ompati-ble with the signature of Client . Nevertheless the dynami types of Client and

AlwaysFail are inompatible in that they share only one nonempty trae, on-sisting of one step, and this trae ends in a deadlok.

In fat there typially exist many pairs (E,S) that satisfy all our require-ments. For example an interfae (M,U), onsisting of a mute environment Mnever produing any outputs and a universal system spei�ation U generatingall possible traes, would satisfy the omposition requirements of any two om-patible interfaes. The interfae (M,U) allows any implementation�it says thatits implementations will behave in an arbitrary fashion (U), not allowing anyexternal stimulation (M). Clearly, as a omponent interfae, (M,U) is useless.We should ensure that our omposition operator produes the interfae thatarries over all the information available from its omponents. It must have thesmallest possible set of implementations, while still satisfying all our require-ments. Similarly, it must maximize the set of omponents ompatible with it (asopposed to the set of omponents implementing it). We shall all this optimalinterfae the most general. Intuitively to ahieve this optimality we need an en-vironment E satisfying the requirements suh that it is maximal with respet totrae inlusion. By inreasing the set TrE we make it easier for omponents tobe ompatible with our interfae. Similarly we make it harder to implement theomposite interfae, as inreasing the set of traes of E dereases the assump-tions that an implementation an make. The following theorem says that suh amaximal E always exists for ompatible interfaes:Theorem 12. Let (E1, S1) and (E2, S2) be two syntatially omposable inter-faes. If there exists an I/O automaton E enjoying property (4) then there alsoexists a maximal suh environment with respet to trae inlusion.Theorem 13. The omposition operator mapping interfaes (E1, S1) and (E2, S2)to (E,S1|S2), where E is the maximal solution of (4), is assoiative.Theorems 12�13 together with our earlier observations suggest that the inter-fae (E,S1|S2), where E is this maximal solution of equations (4), is even morelikely to be the most general interfae that we are searhing for. A maximalsolution of (4) an be found algorithmially for �nite state interfaes. Setion 5desribes a method that an be used for this purpose.As inreasing the environment E makes the interfaes more general, so doesdereasing the spei�ation S (within the limits set by the requirements). Forany partiular seletion of E satisfying (1), no S an be smaller (relative to E)than S1|S2, beause S1 and S2 themselves are valid implementations. So S1|S2is the smallest possible spei�ation of the omposite interfae with respet toany partiular hoie of E. This observation an be generalized to a laim that
(E,S1|S2) is the most general interfae possible:Theorem 14. Let (E1, S1), (E2, S2) be interfaes. Let E be the maximal so-lution to (4) and let (E′, S′) satisfy independent implementability and mutualdeadlok freeness. If (E′, S′) is ompatible with (E′′, S′′) then also (E,S1|S2) isompatible with (E′′, S′′).Having onluded that (E,S1|S2), where E is a maximal solution of (4), iswell de�ned and the most general, we an use it as a de�nition of the ompositionoperator. We will denote this omposite interfae by (E1, S1)|(E2, S2).Furthermore our omposition of interfaes is omplete in the following sense

Theorem 15. For ompatible interfaes (E1, S1), (E2, S2) and any (E′, S′) sat-isfying independent implementability and mutual deadlok freeness:
(E1, S1)|(E2, S2) � (E′, S′) .We remark that our omposition would not be omplete if we only requiredindependent implementability. It seems likely from the work presented in [9℄ thatit is indeed impossible, for our setting, to be omplete in the above sense usingonly independent implementability. Similarly we would not be omplete if weonly required mutual deadlok freeness, simply beause it does not restrit the

S omponent, whih an then be taken to be mute, likely yielding a smallerinterfae than ours. Still our omposition is sound and omplete with respetto both requirements ombined. Requirements (2) and (3) have been introduedsolely for their inherent usefulness. Their interplay guaranteeing soundness andompleteness is a pleasant side e�et.De�nition 16. Let (E1, S1), (E2, S2) be syntatially omposable interfaes.Their omposition, denoted (E1, S1)|(E2, S2), is an interfae (E,S1|S2), where
E has the same signature as E1|E2, and is a maximal solution of (4).The operator of Def. 16 is assoiative, supports independent implementabilityand mutual deadlok freeness, and produes the most general interfaes.5 Solving Behavioral InequalitiesComputing ompositions of interfaes requires a method for �nding solutionsof systems of relativized linear inequalities. In partiular we are interested insystems of inequalities of the following form:

C(E) :

P1 |= E|S1 6 F1...
Pm |= E|Sm 6 Fm

(5)where {Pi}i=1..m, {Si}i=1..m and {Fi}i=1..m are states of the three I/O automata
P , S and F and E is a single unknown automaton. We are interested in �ndinga greatest suh E with respet to 6, or in reporting inompatibility betweenomponents, if no solutions exist. Sine in (4) various omponents of inequalitiesome from separate automata, in order to apply the method below we need toonstrut three automata P , S and F as the disjoint unions of the automata thatappear in the given plae of the onstraints in (4). We introdue three onvenientmapping funtions in, out and ext whih from a state of the two automata F and
S return respetively the set of input, output or external ations of the automatathat this state originates from in the disjoint union omputation. We will usethem in the algorithm below to reover some of the signature information lostby making the disjoint union.For simpliity of exposition we shall also assume that all I/O automata in-volved in the systems are deterministi. Otherwise they an be determinized

without loss of information, as long as our re�nement riterion is based on lan-guage inlusion. This assumption is not inherent to the method, though.We should now state a property similar to Theorem 12, but formulated forsystems of inequalities in general. We expand it to any number of onstraintsand do not require that all the I/O automata ome from the same interfaes.Theorem 17. Let C(E) be a �nite system of relativized inequalities:
C(E) :

P1 |= E|S1 6 F1...
Pm |= E|Sm 6 FmIf C(E) has a solution (an I/O automaton satisfying all the onstraints), then

C(E) also has a greatest solution with respet to trae set inlusion.We begin with onstruting a modal transition system [10℄ orrespondingto C(E), and then hoose a maximal solution from its states and transitions.From our perspetive modal transition systems are automata with two transitionrelations −→may and −→must.De�nition 18. A modal transition system is a quadruple S = (Q,A,−→may,
−→must), where Q is a set of systems of onstraints (states), A is a set of ations,
−→may ⊆ Q×A×Q is the may transition relation, and −→must ⊆ Q×A×Q isthe must transition relation, −→must ⊆ −→may.Systems of relativized inequalities an be seen as sets of onstraint triples
{(P1, S1, F1), . . . , (Pm, Sm, Fm)} over the solutionE. The onstraints evolve whenany of their omponents, inluding the unknown E, takes an ation. This evo-lution omprises not only state hanges of the I/O automata, but also removingand introduing onstraints. Legal ations of the unknown omponent E in anyof its states are dependent on the states of the onstraints�on what all the Pi's,
Si's and all the Fi's an do. This is why we label states of our modal transitionsystems with systems of inequalities (sets of onstraints). All the steps that areallowed by the onstraints, but are not stritly required (like a possibility toprodue an output) should give rise to may transitions in the modal transitionsystem. While all the steps that are stritly required (like input ations enforedby input-enabledness) give rise to orresponding must transitions.Formally three I/O automata P, S, F indue a modal transition system E =
(Q,A0,−→may,−→must), where elements of Q are sets of onstraints over statesof P , S and F, enrihed with a distint primitive onstraint False denoting anempty set of solutions. The initial state A0 is equal to the set {(P1, S1, F1), . . . ,
(Pm, Sm, Fm)} of initial onstraints, and the transition relations are de�ned a-ording to the following rules:

E a!−−→mayE′ if and only if both of the following rules are satis�ed:For all (P, S, F) ∈ E suh that a ∈ outE \ inSIf ∃F ′. F a!−−→F ′ and ∃P ′. P a−→P ′ then (P ′, S, F ′) ∈ E′Else if ∃P ′.P a?−−→P ′ and F a!6−−→ then False ∈ E′

For all (P, S, F) ∈ E and all S′ suh that a∈outE ∩ inSIf S a?−−→S′ also (P, S′, F) ∈ E′

E a?−−→mustE′ and E a?−−→mayE′ i� both of the following rules are satis�ed:For all (P, S, F) ∈ E and all F ′ suh that a ∈ inE \ outSIf F a?−−→F ′ and P a!−−→P ′ then (P ′, S, F ′) ∈ E′For all (P, S, F) ∈ E suh that a ∈ inE ∩ outSIf S a!−−→S′ then (P, S′, F) ∈ E′Eah state E ∈ Q of E is minimal suh that it satis�es the above transition rulesand the following losure rules :For all (P, S, F) ∈ E and a ∈ extS ∩ extFIf ∃S′. S a−→S′ and ∃F ′. F a−→F ′ and ∃P ′. P a−→P ′then also (P ′, S′, F ′) ∈ E.For all (P, S, F) ∈ E and a ∈ extS ∩ extFIf S a!−−→S′ and F a!6−−→ and ∃P ′. P a?−−→P ′ then False ∈ E.The two may rules disuss E making an output transition onerning anexternal output, or an internal ommuniation with S respetively. The mustrules state that E needs to aept all the inputs from the outside and from Srespetively. Finally the losure rules allow S to advane without any interferenewith E on its own external ations. Whenever there is a possibility of violationof the relativized trae inlusion, we add false to the target state of E, hintingthat E should not be allowed to make that step.De�nition 19. The state onsisteny relation S over a modal transition system
E = (Q,A,−→may,−→must) is the maximal subset of Q suh that if E ∈ S thenFalse /∈ E and whenever E a−→mustE′ then E′ ∈ S.De�nition 20. A onsistent set of transitions T of a modal transition system
E = (Q,A,−→may,−→must) with respet to onsisteny relation S is a maximalsubset of −→may, where whenever (s, a, s′) ∈ T then s ∈ S and s′ ∈ S.Theorem 21. Let C(E) be a system of inequalities as required above, and E =
(Q,A,−→may,−→must) be the modal transition system indued by C. Then themaximal solution of C(E) is an I/O automaton E suh that its set of states
statesE is a maximal onsisteny relation over E,

startE ={(F1, S1), ..., (Fm, Sm)},

inE =

m
⋃

i=1

(inFi
\ inSi

) ∪
m
⋃

i=1

(outSi
\ outFi

)

outE =

m
⋃

i=1

(outFi
\ outSi

) ∪
m
⋃

i=1

(inSi
\ inFi

),

ST0 |= � | SC0 6 ET0SC0 |= � | ST0 6 EC0ST1 |= � | SC1 6 ET1SC1 |= � | ST1 6 EC1 ST5 |= � | SC1 6 ET5SC1 |= � | ST5 6 EC1ST0 |= � | SC0 6 ET0SC0 |= � | ST0 6 EC0ST1 |= � | SC1 6 ET1SC1 |= � | ST1 6 EC1 ST4 |= � | SC1 6 ET4SC1 |= � | ST4 6 EC1
ST2 |= � | SC1 6 ET2SC1 |= � | ST2 6 EC1 ST3 |= � | SC1 6 ET3SC1 |= � | ST3 6 EC1 TRUEtrnsmt? trnsmt?nak!ak! trnsmt?

ak!
trnsmt? trnsmt?Fig. 6. The resulting modal transition system for the omputation of EnvComp1 .and its set of transitions stepE is a maximal onsistent set of transitions of Ewith respet to statesE. If the maximal state onsisteny relation of E is emptythen C has no solutions.The set S an be found by a simple maximal �xpoint omputation. In pratiethe onsisteny of the initial state may be deided in a loal fashion withoutonstruting the entire modal transition system.Figure 6 shows the onsistent part of the modal transition system induedby (EnvTryTwice ,SpecTryTwice)|(EnvClient ,SpecClient). It an then be minimizedin order to obtain EnvComp1 , shown in Fig. 3. Similarly SpecComp1 from Fig. 3has been obtained by minimizing SpecTryTwice |SpecClient .6 Interfae AutomataThe relation of our theory to interfae automata [5, 6℄ requires speial attention,as we address several issues of that work; most importantly the representationof assumptions and guarantees within a single automaton. We learly separateassumptions from guarantees, and the pairs of assumptions and guarantees anbe onstruted independently. In [6℄ Alfaro and Henzinger disuss stati As-sume/Guarantee interfaes featuring a similar split, however they do not persuethe idea to the dynami ase.In a larger perspetive our work an be seen as a study of building interfaetheories as suh: starting with a seletion of the building bloks, going throughrequirements analysis, deriving the omposition operator, and studying its gen-erality. Let us review this proess brie�y. We begin with seleting importantingredients suh as a omponent model, an interfae model, an implementationrelation and a re�nement relation. The partiular hoie of input-enabled sys-tems and (relativized) trae inlusion is not ruial for our developments. In fatwe believe that a similar theory an be built using (relativized) simulation, or fortimed automata. We hoose I/O automata and trae inlusion beause they arevery di�erent from Alfaro and Henzinger's interfae automata, so we iniden-tally provide a omponent theory for a di�erent ommunity�the I/O automataommunity. At the same time our hoie hallenges some opinions expressed in[5, 6℄ that building suh a theory, espeially supporting ontravariant re�nement,is impossible using language inlusion riteria or in a non-bloking setting.

Furthermore we show how the omposition operator an be derived fromrequirements (by analysis, redution and automated solving), while Alfaro andHenzinger introdue this operator in a rather ad ho manner. After having de-rived our operator we disuss its generality, and onlude that it is indeed themost general operator possible, meeting our requirements with respet to traeinlusion, with respet to the � re�nement, and with respet to ompatibilitywith other omponents. We onjeture that the operator of our predeessors isalso the most general in their setting, however they never make that laim.Let us now draw a formal orrespondane between the two interfae theories.De�nition 22 (after [6℄). An interfae automaton is a six-tuple S = (statesS ,startS , inS , outS , intS , stepsS), where statesS is a �nite set of states, startS ∈statesS is an initial state, inS, outS, and intS are three pairwise disjoint sets ofinput, output, and internal ations respetively, and stepsS ⊆ statesS × atS ×statesS is an input-deterministi transition relation, with atS = inS∪outS∪intSNotie that the transition relation of interfae automata may be non input-enabled. Syntati omposability of interfae automata is governed by the samerule as the omposability of I/O automata, de�ned on p. 4. The omposed inter-fae is omputed by taking a produt of the two automata, and removing fromit all inompatible states. A state of the produt is an error state if one of itsomponents an produe a shared output, that the other is unable to reeive. Astate of the produt is inompatible if it an reah an error state by an exeutionover internally ontrollable transitions (transitions labeled with ations from:intS1|S2
∪ outS1|S2

).De�nition 23. Two syntatially omposable interfae automata S1 and S2 areompatible i� removing all inompatible states from their produt leaves an in-terfae automaton with a non-empty set of reahable states.The funtion unzip de�ned below translates an interfae automaton to anI/O automaton interfae. If A is an interfae automaton then unzipA := (E,S),where statesS = statesE = statesA∪{T }, startS = startE = startA, inS = outE =inA, outS = inE = outA, intS = intE = intA. The transition relations of E and
S are reated from the transition relation of A by making it input-enabled onthe respetive input sets:stepsE = stepsA ∪ {(s, a, T)|s ∈ statesA, a ∈ inE , s

a6−−→A}stepsS = stepsA ∪ {(s, a, T)|s ∈ statesA, a ∈ inS , s
a6−−→A}Theorem 24. If A1 and A2 are two ompatible interfae automata, then unzipA1and unzipA2

are ompatible I/O automata interfaes.The zip funtion is a reverse of unzip: it translates an I/O automata interfaeinto a single interfae automaton, by omputing the produt of the two partsusing the lassi algorithm [11, hpt. 4.2℄ from automata theory: zip(E,S) := A,where statesA = statesE × statesS , startA = (startE , startS), inA = inS , outA =outS , intA = intS ∪ intE , and stepsA = {((s, e), a, (s′, e′))|s a−→s′ and e a−→e′}.

Theorem 25. If (E1, S1), (E2, S2) are ompatible deterministi I/O automatainterfaes, then zip(E1,S1), zip(E2,S2) are ompatible interfae automata.The fat that our ompatibility only implies ompatibility in the interfaeautomata sense for unzippings of deterministi interfaes is not surprising. It isatually expeted, due to the very di�erent nature of the re�nement relationsused in the two theories: trae inlusion and alternating simulation [12℄.Alfaro and Henzinger hoose alternating simulation to support ontravarianttreatment of inputs and outputs. We stress that input-enabledness and rela-tivized trae inlusion already guarantee ontravariant treatment of behaviorsin a very similar spirit. Still our theory somewhat stritly requires that im-plementations of an interfae have preisely the same sort as their interfaes,so it is tehnially not possible to substitute a riher omponent in plae of asimpler one, if they are the same on shared funtionality. We stress that thisde�ieny is not inherent, while it simpli�es the presentation. Contravariant sig-nature extensions an be easily realized with relativized trae inlusion in theinput-enabled setting. Instead of requiring inI = inS and outI = outS in Def. 3,insist on inS ⊆ inI and outI ⊆ outS . In fat the only signi�ant hange requiredin later developments is the addition of a side ondition to the independentimplementability rule:
∀I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2 andinI1 ∩ outS2

⊆ inS1
and inI2 ∩ outS1

⊆ inS2
implies E |= I1|I2 6 S . (6)This is the very same side ondition that Alfaro and Henzinger add to indepen-dent implementability in order to support ontravariant signature extensions. Itensures that even though the implementation allows additional inputs, it willonly be used as desribed in this interfae. The other omponents will not om-muniate with it on these additional inputs.7 Other Related WorkOur work relates diretly to the original version of interfae automata [5, 6℄,whih was later extended with time and resoure information in [13℄ and [14℄.To strengthen the ase, we have used some examples from [6℄ adapting themto our framework, and aligned the terminology with [5, 6℄ as muh as possible.Another approah to ompatibility for bloking-servies is taken by Rajamaniand Rehof in [2℄ targeting ompatibility of web servies. We work in the input-enabled asynhronous setting of I/O-automata [15℄, whih is semantially loserto implementations of embedded systems. To the best of our knowledge similarproperties have not been studied in the I/O automata ommunity yet.The notion of relativized re�nement and equivalene, or more preisely sim-ulation and bisimulation, is due to Larsen [16, 17℄. It was so far applied in thesetting of protool veri�ation [18℄, automati testing [19℄ and modeling softwareprodut lines [7℄. Here we adapt it to a language inlusion based re�nement.

The general method of solving systems of behavioral equations using disjun-tive modal transition systems and bisimulation as a requirement was publishedin [20℄. The method presented in setion 5 is an adaptation of this earlier work toan input-enabled setting and language-inlusion based re�nement. The originalmethod does not assume determinism of proesses in the system of onstraints.The preliminary version of this paper [21℄ featured a stronger de�nition of mu-tual deadlok freeness: E|S1 6 E2 and E|S2 6 E1. Being stronger, this formula-tion also implies independent-implementability, but it rules out many useful om-positions as inompatible. The relativized version proposed here (2) is weaker,but still strong enough to imply independent implementability. As we have seenin the previous setion, it behaves reasonably allowing roughly the same kindof ompatible interfaes as interfae automata. The present paper, ompletelyrewritten, reworks the theory with this new haraterization, adding assoiativ-ity, re�nement of interfaes, a new method for solving systems of inequalities,ontravariant signature extension, and the orrespondene to interfae automata.8 ConlusionWe have proposed an interfae theory for distributed networks of asynhronousomponents modeled as I/O automata. The harateristi feature of our inter-faes is an expliit separation of assumptions from guarantees. Apart from theusual engineering advantages o�ered by suh a separation of onerns, it alsoallows modeling of families of interfaes implemented by software produt lines.We demonstrated that it is possible to build a reasonably behaved interfaetheory in an input-enabled setting, with language inlusion as re�nement. Weemphasize that our derivation of interfae omposition is systemati: we staterequirements for omposition and redue the problem to �nding a solution of aorresponding system of behavioral inequalities. We also disuss the generalityof the onstruted interfae, onluding that it exhibits the weakest assumptionsand the strongest guarantees that are possible with our requirements. Finallywe desribe a method for solving systems of inequalities arising in our setup anddraw a formal orrespondene between the present work and interfae automata.Referenes1. Igarashi, A., Kobayashi, N.: A generi type system for the pi-alulus. In: POPL2001, ACM Press (2001)2. Rajamani, S.K., Rehof, J.: Conformane heking for models of asynhronousmessage passing software. In Brinksma, E., Larsen, K.G., eds.: 14th InternationalConferene on Computer Aided Veri�ation (CAV). Volume 2404 of Leture Notesin Computer Siene., Copenhagen, Denmark, Springer-Verlag (2002) 166�1793. Lee, E.A., Xiong, Y.: A behavioral type system and its appliation in Ptolemy II.Formal Aspets of Computing Journal (2004) Speial issue on Semanti Founda-tions of Engineering Design Languages.4. Lee, E.A., Zheng, H., Zhou, Y.: Causality interfaes and ompositional ausalityanalysis. [22℄

5. Alfaro, L., Henzinger, T.A.: Interfae automata. In: Proeedings of the Ninth An-nual Symposium on Foundations of Software Engineering (FSE), Vienna, Austria,ACM Press (2001) 109�1206. Alfaro, L., Henzinger, T.A.: Interfae-based design. In: In Engineering Theoriesof Software Intensive Systems, proeedings of the Marktoberdorf Summer Shool,Kluwer Aademi Publishers (2004)7. Larsen, K.G., Larsen, U., W¡sowski, A.: Color-blind spei�ations for transforma-tions of reative synhronous programs. In Cerioli, M., ed.: Proeedings of FASE,Edinburgh, UK, April 2005. LNCS, Springer-Verlag (2005)8. Hoare, C.: Communiating Sequential Proesses. International Series in ComputerSiene. Prentie Hall (1985)9. Maier, P.: Compositional irular assume-guarantee rules annot be sound andomplete. In Gordon, A., ed.: Foundations of Software Siene and ComputationalStrutures: 6th International Conferene, FOSSACS 2003. Volume 2620 of LetureNotes in Computer Siene., Springer-Verlag (2003) 343�35710. Larsen, K.G., Thomsen, B.: A modal proess logi. In: LICS, IEEE ComputerSoiety (1988) 203�21011. Hoproft, J.E., Motwani, R., Ullman, J.D.: Introdution to Automata Theory,Languages and Computation. 2nd edn. Addison-Wesley (2001)12. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.: Alternating re�nement rela-tions. In Sangiorgi, D., de Simone, R., eds.: Proeedings of the Ninth InternationalConferene on Conurreny Theory (CONCUR'98). Volume 1466 of Leture Notesin Computer Siene., Springer-Verlag (1998) 163�17813. Alfaro, L., Henzinger, T., Stoelinga, M.I.A.: Timed interfaes. In Sangiovanni-Vinentelli, A., Sifakis, J., eds.: EMSOFT 02: Pro. of 2nd Intl. Workshop onEmbedded Software. Leture Notes in Computer Siene, Springer (2002) 108�12214. Chakabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Resoure inter-faes. In Alur, R., Lee, I., eds.: EMSOFT 03: 3rd Intl. Workshop on EmbeddedSoftware. Leture Notes in Computer Siene, Springer (2003)15. Lynh, N.: I/O automata: A model for disrete event systems. In: Annual Confer-ene on Information Sienes and Systems, Prineton University, Prineton, N.J.(1988) 29�3816. Larsen, K.G.: Context Dependent Bisimulation Between Proesses. PhD thesis,Edinburgh University (1986)17. Larsen, K.G.: A ontext dependent equivalene between proesses. TheoretialComputer Siene 49 (1987) 184�21518. Larsen, K.G., Milner, R.: A ompositional protool veri�ation using relativizedbisimulation. Information and Computation 99 (1992) 80�10819. Larsen, K.G., Mikuionis, M., Nielsen, B.: Online testing of real-time systems usinguppaal. In: Formal Approahes to Testing of Software (FATES), Linz, Austria.September 21, 2004. Volume 1644 of Leture Notes in Computer Siene., Springer-Verlag (2005)20. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:Fifth Annual IEEE Symposium on Logis in Computer Siene (LICS), 4�7 June1990, Philadelphia, PA, USA. (1990) 108�11721. Larsen, K.G., Nyman, U., W¡sowski, A.: Interfae input/output automata: Split-ting assumptions from guarantees. [22℄22. Hermanns, H., Rehof, J., Stoelinga, M.I.A., eds.: Workshop Proedings FIT 2005:Foundations of Interfae Tehnologies. ENTCS, Elsevier Siene Publishers (2005)

