
Interfa
e Input/Output AutomataKim G. Larsen1, Ulrik Nyman1, and Andrzej W¡sowski2⋆

1 Department of Computer S
ien
e, Aalborg University{kgl,ulrik}�
s.aau.dk
2 Computational Logi
 and Algorithms Group, IT University of Copenhagenwasowski�itu.dkAbstra
t. Building on the theory of interfa
e automata by de Alfaroand Henzinger we design an interfa
e language for Lyn
h's I/O automata,a popular formalism used in the development of distributed asyn
hronoussystems, not addressed by previous interfa
e resear
h. We introdu
e anexpli
it separation of assumptions from guarantees not yet seen in otherbehavioral interfa
e theories. Moreover we derive the
omposition oper-ator systemati
ally and formally, guaranteeing that the resulting
om-positions are always the weakest in the sense of assumptions, and thestrongest in the sense of guarantees. We also present a method for solv-ing systems of relativized behavioral inequalities as used in our setup anddraw a formal
orresponden
e between our work and interfa
e automata.1 Introdu
tionA suitably expressive interfa
e language lies at the very
enter of any
omponent-oriented development framework. Interfa
es are abstra
tions of
omponents,
ar-rying all essential information ne
essary to establish
ross-
omponent
ompat-ibility. Instead of reasoning about
omponents dire
tly, one typi
ally examines
ompatibility of their interfa
es, while the adheren
e of a parti
ular implemen-tation to its interfa
e is tested separately. This, not only allows for independentdevelopment of
omponents, but also by introdu
ing
ompositionality helps to
ombat the state spa
e explosion problem in various automati
 analyses.Type annotations, type
he
king, and type inferen
e have traditionally beenused to de
ide
ompatibility of
omponents soundly with respe
t to memorysafety. However, stati
 type
orre
tness in this traditional sense fails to guar-antee more elaborate properties, like
orre
tness of
ommuni
ation, or deadlo
kfreeness. This observation has inspired a long line of resear
h on behavioral typesystems and behavioral interfa
e languages suitable for spe
i�
ation of highlytrusted
omputer systems (see [1�4℄ and referen
es therein for examples).We follow de Alfaro and Henzinger [5, 6℄ in studying an automata basedinterfa
e language, or interfa
e automata. Unlike them however, we expli
itlyseparate, in the interfa
e des
ription, the assumptions that a
omponent maymake about its use from the guarantees that it needs to
ommit to. Assumptionsdes
ribe the possible behaviors of the
omponent's external environment, whileguarantees des
ribe the possible behaviors of the
omponent itself.

⋆ Partly supported by Center for Embedded Software Systems (CISS) in Aalborg.

0 1send?
ok !EnvClient

send ok fail

0 1send !
ok?SpecClient

send ok failFig. 1. Client = (EnvClient ,SpecClient)

50 1 2 3 46
ack !ok?

ack !
send ! trnsmt? nack ! trnsmt?

fail? nack !
EnvTryTwicesend ok fail

trnsmt ack nack

50 1 2 3 46
ack?ok !

ack?
send? trnsmt ! nack? trnsmt !

fail ! nack?
SpecTryTwicesend ok fail

trnsmt ack nackFig. 2. TryTwice = (EnvTryTwice ,SpecTryTwice)Ea
h interfa
e in our theory
onsists of two I/O automata. The �rst,
alledthe environment, represents assumptions. The se
ond,
alled the spe
i�
ation,des
ribes guarantees. Figure 1 shows an interfa
e for a Client
omponent
on-sisting of the automata EnvClient and SpecClient . The arrows in
oming to oroutgoing from the box surrounding ea
h of the automata visualize their stati
types, or signatures. The environment EnvClient spe
i�es that even though thestati
 type does allow a fail a
tion, the emission of this a
tion is disallowed forall
ompliant exe
ution environments. The only legal input is send. One
an stilluse the Client
omponent in a
ontext that synta
ti
ally permits fail, but thebehavior of the Client is only guaranteed in environments that do not fail.Alfaro and Henzinger model assumptions about the use of a
omponent bythe interfa
e's inabilities to re
eive inputs. The output transitions of the verysame interfa
e automaton des
ribe its guarantees. Sin
e we separate the two, wealleviate the need for blo
king. Our automata are input enabled�a

epting anyinput from their signature in every state. In order to avoid
lutter we usually donot draw loop transitions, whi
h
orrespond to ignoring an input. There is onesu
h impli
it transition 1 send?−−−−→1 in EnvClient and three in SpecClient .Two interfa
es
an be
ombined into a
omposite interfa
e, des
ribing a newset of assumptions and guarantees. Interfa
e TryTwice, presented in Fig. 2
anbe
omposed with Client . The two
omponents do not form a
losed system, butare intended for use together with a further unspe
i�ed LinkLayer
omponent.Composition of interfa
es is a
entral
onstru
tion in any interfa
e theory.One of our
ontributions is that the
omposition is derived systemati
ally: weformally state requirements for it in the form of a system of inequalities, andderive a result of the
omposition as a maximal solution of this system. Conse-quently properties of the
omposition hold by
onstru
tion.Figure 3 shows the interfa
e resulting from
omposing Client and TryTwice .Later we shall explain how it has been
omputed. Now observe that any
om-ponent legally intera
ting with this new interfa
e may not send a na
k twi
e

0 2 3 4 Tack !
ack ! trnsmt?

nack ! ack !
trnsmt? nack ! trnsmt? trnsmt?EnvComp1

trnsmt ack nack

0 2 3 4 6ack?
ack?trnsmt! nack? trnsmt! nack?SpecComp1

trnsmt ack nackFig. 3. (EnvTryTwice ,SpecTryTwice)|(EnvClient ,SpecClient) = Comp1

(a) 0 1 2 5ok?
ack !send ! trnsmt?send ok fail

trnsmt ack nack

(b) 0 2 Tack ! nack !
ack !trnsmt? trnsmt?

trnsmt ack nackFig. 4. (a) The environment EnvNoNack and (b) the environment EnvComp2 .in response to the transmt request�a simple
onsequen
e of the fa
t that thiswould make TryTwi
e respond with a fail to Client, violating the assumptions ofthe latter. The additional state T manifests the fa
t that the
omputed environ-ment expresses the weakest assumptions. It allows re
eiving arbitrary behaviorafter a se
ond transmt in a row, be
ause any
ompliant implementation wouldnever send it, and thus would never be a�e
ted by the subsequent behaviour.An advantage of separating assumptions from guarantees is that one of theautomata
an be
hanged without a�e
ting the other. Thus the same guarantees
an be used for multiple interfa
es. In [7℄ we have argued that this is useful formodeling software produ
t lines: a family of
omponent variants may be spe
i�edusing a single spe
i�
ation (guarantee) and multiple environmental restri
tions(assumptions). An advan
ed
ompiler may use the assumptions to derive spe
ial-ized versions of the
omponent from the same sour
e
ode. Let us illustrate thiswith an example. Figure 4a gives an alternative environment EnvNoNack for the
SpecTryTwice spe
i�
ation. This environment disallows the sending of a na
k asa response to a trnsmt request. Any implementation of TryTwice is also an im-plementation of (EnvNoNack ,SpecTryTwice). If it is only used in EnvNoNack , thenit
ould be automati
ally spe
ialized to these spe
i�

ir
umstan
es. The errorhandling
ode
ould be removed as it is not needed in su
h a
ontext. The
om-position Comp2 = (EnvNoNack ,SpecTryTwice)|(EnvClient ,SpecClient) has exa
tlythe same spe
i�
ation part as the Comp1
omposition. The resulting environ-ment EnvComp2 (Fig. 4b) disallows the generation of the na
k input even thoughthe stati
 type permits this.As we have also argued in [7℄ the separation supports a simple de
larativestyle of modeling assumptions: simple properties
an be modeled as standaloneautomata and
ombined using the pro
ess algebrai
 operators of sum and prod-u
t,
orresponding to disjun
tion and
onjun
tion of properties respe
tively.An interesting theoreti
al side e�e
t of our exposition, is an informal
orre-sponden
e drawn between blo
king and non-blo
king interfa
e theories. A single

blo
king interfa
e automaton of [5℄ expresses both the assumptions of a
ompo-nent and its
ommitments. When a blo
king interfa
e automaton is unable to a
-
ept an input, it e�e
tively assumes that any
ompatible environment will neverprovide it. In the theory for non-blo
king systems the interfa
es are
omposed oftwo non-blo
king automata, and the same e�e
t is a
hieved by expli
itly usingone of the automata for des
ribing the permissible behavior of the surroundings.The paper develops as follows. Se
tion 2 de�nes I/O automata and interfa
es.Se
tion 3 dis
usses re�nement of interfa
es. The most
entral se
tion, Se
tion 4,is devoted to
omposition, while a more te
hni
al se
tion, Se
tion 5, is devotedto systems of inequalities used in se
tion 4 and is a
ontribution in itself. Butreading it is not essential for appre
iating our interfa
e theory. Se
tion 6 drawsa
orresponden
e between interfa
e automata and our interfa
es, while se
tion 7dis
usses other related work. We
on
lude in se
tion 8. A parti
ularly interestedreader
an �nd the proofs of all our
laims in an up
oming BRICS report.2 I/O Automata and Their Interfa
esDe�nition 1. An I/O automaton S=(statesS , startS , inS , outS , intS , stepsS) isa 6-tuple, where statesS is a set of states, startS ∈ statesS is an initial state,inS is a set of input a
tions, outS a set of output a
tions, and intS is a setof internal a
tions. All of the a
tion sets are mutually disjoint. We abbreviateextS = inS ∪outS and a
tS = extS ∪ intS. Then stepsS ⊆ statesS ×a
tS × statesSis the set of transitions. I/O automata are input enabled: for every state s andany a
tion i ∈ inS there exists a state s′ and a transition (s, i, s′) ∈ stepsS.We write q a−→S q
′ if (q, a, q′) ∈ stepsS . We often expli
itly su�x external a
-tions with dire
tion of
ommuni
ation writing q a!−−→S q

′ if a ∈ outS , and q a?−−→S q
′if a ∈ inS . Noti
e that the labels a! and a? still denote exa
tly the same a
tion,and we
an drop the su�xes whenever the dire
tion of
ommuni
ation is irrele-vant. We write q a6−−→, meaning that there is no q′ su
h that q a−→q′.De�nition 2. An exe
ution of an I/O-automaton S starting in a state q0 is a�nite sequen
e of labels q0, a0, q

1, a1, q
2, a2, . . . , q

n−1, an−1, q
n su
h that all qi'sare members of statesS, all ai's are members of a
tS and for every k = 0 . . . n−1it is the
ase that qk ak−−→S q

k+1. A tra
e σ of S is an exe
ution ψ of S startingin the initial state, with all the states and internal a
tions deleted: σ = ψ ↾ extS,where ψ ↾ X denotes a sequen
e
reated from ψ by removing symbols that arenot in set X. The set of all tra
es of automaton S is denoted TrS.Two I/O-automata S1 and S2 are synta
ti
ally
omposable if their input andoutput sets do not overlap and their internal a
tions are not shared: inS1
∩inS2

=outS1
∩outS2

= intS1
∩a
tS2

= a
tS1
∩ intS2

= ∅. Two synta
ti
ally
omposableautomata S1 = (statesS1
, startS1

, inS1
, outS1

, intS1
, stepsS1

) and S2 = (statesS2
,startS2

, inS2
, outS2

, intS2
, stepsS2

)
an be
omposed into a single produ
t automa-ton S = S1|S2, where S=(statesS , startS , inS , outS , intS , stepsS) and statesS =statesS1
× statesS2

, startS = (startS1
, startS2

), inS = inS1
∪ inS2

\ outS1
\ outS2

,

outS =outS1
∪ outS2

\ inS1
\ inS2

, intS = intS1
∪ intS2

∪ (extS1
∩extS2

), and stepsSare de�ned by the following rules:if q1 a−→S1
q′1 and a∈a
tS1

\a
tS2
then (q1, q2) a−→S1|S2

(q′1, q2)if q2 a−→S2
q′2 and a∈a
tS2

\a
tS1
then (q1, q2) a−→S1|S2

(q1, q
′
2)if q1 a−→S1

q′1 and q2 a−→S2
q′2 then (q1, q2) a−→S1|S2

(q′1, q
′
2)In pra
ti
e unrea
hable states may be removed from the produ
t, without af-fe
ting the results presented below.Our
omposition (same as in [6℄) di�ers from the standard I/O automata
om-position in that it applies hiding immediately. It is equivalent with the standard
omposition as long as ea
h a
tion is only shared by at most two
omponents.We de�ne an interfa
e model to be a pair (E,S) of I/O automata:De�nition 3. A pair of I/O automata (E,S) is an interfa
e if E|S is a
losedsystem, i.e. inE =outS and outE = inS.The environment automaton E drives the spe
i�
ation automaton S. Anyimplementation I of S must
onform to S as long as it is re
eiving input that
onforms to E. The behavior of I on sequen
es of inputs that
annot be providedby E is not
onstrained. We formalize this using relativized re�nement:De�nition 4. An I/O automaton I implements an interfa
e (E,S), written

E |= I 6 S, i� outI = outS and inI = inS and TrE ∩ TrI ⊆ TrS.3 Re�nement of Interfa
esWe establish a hierar
hy on interfa
es in order to quantify their generality.De�nition 5. Let (E1, S1) and (E2, S2) be two interfa
es with the same signa-tures. We will say that (E1, S1) is a stronger interfa
e than (E2, S2), written
(E1, S1) � (E2, S2), if (E1, S1) has less implementations than (E2, S2), so forany I/O automaton I: E1 |= I 6 S1 implies E2 |= I 6 S2.The re�nement of interfa
es
an be seen as a subtyping relation in a behav-ioral type system for
omponents. In su
h an interpretation we would say that
(E1, S1) is a subtype of (E2, S2). We propose several simple sound
hara
teriza-tions of the above re�nement that are useful in making proofs:Theorem 6. Let (E1, S1), (E2, S2) be interfa
es with identi
al signatures. Then1. TrE1

∩TrS1
= TrE2

∩TrS2
implies (E1, S1) � (E2, S2) and (E2, S2) � (E1, S1)2. TrE2

⊆TrE1
∧ TrS1

⊆TrS2
implies (E1, S1) � (E2, S2)3. TrE1

\ TrS1
⊇ TrE2

\ TrS2
implies (E1, S1) � (E2, S2)The above
hara
terizations are
onvenient in establishing subtyping rela-tions among interfa
es in many
on
rete
ases. However none of them are
om-plete. The re�nement of interfa
es
an be
hara
terized in a sound and
ompletemanner using a notion of tests that resembles failure tra
es of Hoare [8℄, butdeterminized, relativized with respe
t to the environment, and su�x
losed.

De�nition 7. The set of
onforman
e tests of interfa
e (E,S) is de�ned as:test(E,S)= {σ · a |σ∈ TrE ∩ TrS , σ · a∈ TrE \ TrS} · ext∗E ,where X∗ denotes the set of all �nite sequen
es over alphabet X.Theorem 8. Let (E1, S1) and (E2, S2) be two interfa
es with identi
al signa-tures. Then test(E1,S1) ⊇ test(E2,S2) i� (E1, S1) � (E2, S2).Without spelling out the details, we remark that a �nite automaton, su
hthat test(E,S) is its a

epted language,
an be
omputed in quadrati
 time, and
an be used for testing
ontainment in appli
ations of the above theorem.4 Interfa
e CompositionsWe would like to abstra
t
ompositions of
omponents by
ompositions of theirinterfa
es. For any two
ompatible interfa
es (E1, S1) and (E2, S2) we should beable to derive an interfa
e of their
omposition (E,S), the one that is imple-mented �awlessly by any two implementations of (E1, S1) and (E2, S2).Two interfa
es are synta
ti
ally
omposable if the I/O automata
omprisingthem are pointwise synta
ti
ally
omposable. This guarantees that any
ompo-nents I1 and I2 implementing synta
ti
ally
omposable interfa
es (E1, S1) and
(E2, S2), are also synta
ti
ally
omposable. The question that we want to ad-dress is the dynami

ompatibility of I1 and I2:
an I1 violate the environmentalassumptions expressed in E2? Can I2 violate the assumptions in E1?We may be tempted to say that the
omposite interfa
e is the
ompositionof the interfa
e parts: (E,S) = (E1|E2, S1|S2). This
onstru
tion, however, isunsound. It is possible to �nd two
ompliant implementations that, when
om-posed together, violate (E,S). In order to arrive at a sound and
omplete notionof
omposition, we will state the requirements for the
omposite interfa
e, andthen derive the
onstru
tion from them. The three requirements are: independentimplementability [6℄, mutal deadlo
k freeness, and asso
iativity.Independent implementability means that (E,S) is su
h, that the implemen-tations of (E1, S1) and (E2, S2)
an be developed independently of ea
h other,and their
omposition will implement the
omposition of their interfa
es:For all I1, I2. E1 |= I1 6 S1 and E2 |= I2 6 S2 implies E |= I1|I2 6 S . (1)Mutual deadlo
k freeness means that any two
orre
t implementations, when
omposed and embedded in an environment that obeys the assumptions of E,will not violate ea
h other's assumptions:For all I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2implies I1 |= E|I2 6 E1 and I2 |= E|I1 6 E2 . (2)You may �nd it useful to refer to the �owgraph on Fig. 5a, while studying theabove rule. Observe that in the
omposed system I1 is indeed the environment

(a)
I1 I2

E

E2E1

(b) 0 1send !
fail?EnvAlwaysFail

send ok fail 0 1send?
fail !SpecAlwaysFail

send ok fail

Fig. 5. (a) Flowgraph for a
omposition of (E1, S1) and (E2, S2). (b) AlwaysFailin whi
h E|I2 operates. The
omposition E|I2 is also the environment for I1 andit is supposed not to violate any of the assumptions expressed in E1.Finally, asso
iativity means that in whatever order
ompositions are applied,they give rise to equivalent interfa
es:
((E1, S1) | (E2, S2)) | (E3, S3) � (E1, S1) | ((E2, S2) | (E3, S3))

(E1, S1) | ((E2, S2) | (E3, S3)) � ((E1, S1) | (E2, S2)) | (E3, S3) . (3)A disadvantage of the above requirements is that they are not
onstru
tive.They rely on quanti�
ation over all implementations, whi
h makes them uselessfor
omputing the
omposition. Fortunately the quanti�
ation
an be eliminated.The following theorem redu
es the property of mutual deadlo
k freeness of allimplementations to mutual deadlo
k freeness of the interfa
es being
omposed:Theorem 9. Any environment E ful�lls the requirement (2) i� it ful�lls thefollowing
ondition:
S1 |= E|S2 6 E1 and S2 |= E|S1 6 E2 . (4)The above redu
tion is very fortunate, as (4) also implies independent im-plementability with the
hoi
e of the guarantees
omponent to be S1|S2:Theorem 10. Let (E1, S1) and (E2, S2) be synta
ti
ally
omposable interfa
es,and E be an environment I/O automaton satisfying property (4). Then for all I1and I2 su
h that E1 |= I1 6 S1 and E2 |= I2 6 S2 we have E |= I1|I2 6 S1|S2.Consequently if we were able to �nd an environment E satisfying (4), thenthe interfa
e (E,S1|S2) would satisfy mutual deadlo
k freeness and independentimplementability�a good
andidate for the
omposition of environments. How-ever, the environment satisfying (4) may not always exist. This is the
ase, if S1un
onditionally, independently of E's behavior, violates the assumptions of S2expressed in E2. In this
ase (E1, S1) and (E2, S2) are said to be in
ompatible.De�nition 11. Interfa
es (E1, S1), (E2, S2) are in
ompatible if there exists noI/O automaton E su
h that: S1 |= E|S2 6 E1 and S2 |= E|S1 6 E2.Figure 5b shows an interfa
e AlwaysFail , whi
h has a signature
ompati-ble with the signature of Client . Nevertheless the dynami
 types of Client and

AlwaysFail are in
ompatible in that they share only one nonempty tra
e,
on-sisting of one step, and this tra
e ends in a deadlo
k.

In fa
t there typi
ally exist many pairs (E,S) that satisfy all our require-ments. For example an interfa
e (M,U),
onsisting of a mute environment Mnever produ
ing any outputs and a universal system spe
i�
ation U generatingall possible tra
es, would satisfy the
omposition requirements of any two
om-patible interfa
es. The interfa
e (M,U) allows any implementation�it says thatits implementations will behave in an arbitrary fashion (U), not allowing anyexternal stimulation (M). Clearly, as a
omponent interfa
e, (M,U) is useless.We should ensure that our
omposition operator produ
es the interfa
e that
arries over all the information available from its
omponents. It must have thesmallest possible set of implementations, while still satisfying all our require-ments. Similarly, it must maximize the set of
omponents
ompatible with it (asopposed to the set of
omponents implementing it). We shall
all this optimalinterfa
e the most general. Intuitively to a
hieve this optimality we need an en-vironment E satisfying the requirements su
h that it is maximal with respe
t totra
e in
lusion. By in
reasing the set TrE we make it easier for
omponents tobe
ompatible with our interfa
e. Similarly we make it harder to implement the
omposite interfa
e, as in
reasing the set of tra
es of E de
reases the assump-tions that an implementation
an make. The following theorem says that su
h amaximal E always exists for
ompatible interfa
es:Theorem 12. Let (E1, S1) and (E2, S2) be two synta
ti
ally
omposable inter-fa
es. If there exists an I/O automaton E enjoying property (4) then there alsoexists a maximal su
h environment with respe
t to tra
e in
lusion.Theorem 13. The
omposition operator mapping interfa
es (E1, S1) and (E2, S2)to (E,S1|S2), where E is the maximal solution of (4), is asso
iative.Theorems 12�13 together with our earlier observations suggest that the inter-fa
e (E,S1|S2), where E is this maximal solution of equations (4), is even morelikely to be the most general interfa
e that we are sear
hing for. A maximalsolution of (4)
an be found algorithmi
ally for �nite state interfa
es. Se
tion 5des
ribes a method that
an be used for this purpose.As in
reasing the environment E makes the interfa
es more general, so doesde
reasing the spe
i�
ation S (within the limits set by the requirements). Forany parti
ular sele
tion of E satisfying (1), no S
an be smaller (relative to E)than S1|S2, be
ause S1 and S2 themselves are valid implementations. So S1|S2is the smallest possible spe
i�
ation of the
omposite interfa
e with respe
t toany parti
ular
hoi
e of E. This observation
an be generalized to a
laim that
(E,S1|S2) is the most general interfa
e possible:Theorem 14. Let (E1, S1), (E2, S2) be interfa
es. Let E be the maximal so-lution to (4) and let (E′, S′) satisfy independent implementability and mutualdeadlo
k freeness. If (E′, S′) is
ompatible with (E′′, S′′) then also (E,S1|S2) is
ompatible with (E′′, S′′).Having
on
luded that (E,S1|S2), where E is a maximal solution of (4), iswell de�ned and the most general, we
an use it as a de�nition of the
ompositionoperator. We will denote this
omposite interfa
e by (E1, S1)|(E2, S2).Furthermore our
omposition of interfa
es is
omplete in the following sense

Theorem 15. For
ompatible interfa
es (E1, S1), (E2, S2) and any (E′, S′) sat-isfying independent implementability and mutual deadlo
k freeness:
(E1, S1)|(E2, S2) � (E′, S′) .We remark that our
omposition would not be
omplete if we only requiredindependent implementability. It seems likely from the work presented in [9℄ thatit is indeed impossible, for our setting, to be
omplete in the above sense usingonly independent implementability. Similarly we would not be
omplete if weonly required mutual deadlo
k freeness, simply be
ause it does not restri
t the

S
omponent, whi
h
an then be taken to be mute, likely yielding a smallerinterfa
e than ours. Still our
omposition is sound and
omplete with respe
tto both requirements
ombined. Requirements (2) and (3) have been introdu
edsolely for their inherent usefulness. Their interplay guaranteeing soundness and
ompleteness is a pleasant side e�e
t.De�nition 16. Let (E1, S1), (E2, S2) be synta
ti
ally
omposable interfa
es.Their
omposition, denoted (E1, S1)|(E2, S2), is an interfa
e (E,S1|S2), where
E has the same signature as E1|E2, and is a maximal solution of (4).The operator of Def. 16 is asso
iative, supports independent implementabilityand mutual deadlo
k freeness, and produ
es the most general interfa
es.5 Solving Behavioral InequalitiesComputing
ompositions of interfa
es requires a method for �nding solutionsof systems of relativized linear inequalities. In parti
ular we are interested insystems of inequalities of the following form:

C(E) :











P1 |= E|S1 6 F1...
Pm |= E|Sm 6 Fm

(5)where {Pi}i=1..m, {Si}i=1..m and {Fi}i=1..m are states of the three I/O automata
P , S and F and E is a single unknown automaton. We are interested in �ndinga greatest su
h E with respe
t to 6, or in reporting in
ompatibility between
omponents, if no solutions exist. Sin
e in (4) various
omponents of inequalities
ome from separate automata, in order to apply the method below we need to
onstru
t three automata P , S and F as the disjoint unions of the automata thatappear in the given pla
e of the
onstraints in (4). We introdu
e three
onvenientmapping fun
tions in, out and ext whi
h from a state of the two automata F and
S return respe
tively the set of input, output or external a
tions of the automatathat this state originates from in the disjoint union
omputation. We will usethem in the algorithm below to re
over some of the signature information lostby making the disjoint union.For simpli
ity of exposition we shall also assume that all I/O automata in-volved in the systems are deterministi
. Otherwise they
an be determinized

without loss of information, as long as our re�nement
riterion is based on lan-guage in
lusion. This assumption is not inherent to the method, though.We should now state a property similar to Theorem 12, but formulated forsystems of inequalities in general. We expand it to any number of
onstraintsand do not require that all the I/O automata
ome from the same interfa
es.Theorem 17. Let C(E) be a �nite system of relativized inequalities:
C(E) :











P1 |= E|S1 6 F1...
Pm |= E|Sm 6 FmIf C(E) has a solution (an I/O automaton satisfying all the
onstraints), then

C(E) also has a greatest solution with respe
t to tra
e set in
lusion.We begin with
onstru
ting a modal transition system [10℄
orrespondingto C(E), and then
hoose a maximal solution from its states and transitions.From our perspe
tive modal transition systems are automata with two transitionrelations −→may and −→must.De�nition 18. A modal transition system is a quadruple S = (Q,A,−→may,
−→must), where Q is a set of systems of
onstraints (states), A is a set of a
tions,
−→may ⊆ Q×A×Q is the may transition relation, and −→must ⊆ Q×A×Q isthe must transition relation, −→must ⊆ −→may.Systems of relativized inequalities
an be seen as sets of
onstraint triples
{(P1, S1, F1), . . . , (Pm, Sm, Fm)} over the solutionE. The
onstraints evolve whenany of their
omponents, in
luding the unknown E, takes an a
tion. This evo-lution
omprises not only state
hanges of the I/O automata, but also removingand introdu
ing
onstraints. Legal a
tions of the unknown
omponent E in anyof its states are dependent on the states of the
onstraints�on what all the Pi's,
Si's and all the Fi's
an do. This is why we label states of our modal transitionsystems with systems of inequalities (sets of
onstraints). All the steps that areallowed by the
onstraints, but are not stri
tly required (like a possibility toprodu
e an output) should give rise to may transitions in the modal transitionsystem. While all the steps that are stri
tly required (like input a
tions enfor
edby input-enabledness) give rise to
orresponding must transitions.Formally three I/O automata P, S, F indu
e a modal transition system E =
(Q,A0,−→may,−→must), where elements of Q are sets of
onstraints over statesof P , S and F, enri
hed with a distin
t primitive
onstraint False denoting anempty set of solutions. The initial state A0 is equal to the set {(P1, S1, F1), . . . ,
(Pm, Sm, Fm)} of initial
onstraints, and the transition relations are de�ned a
-
ording to the following rules:

E a!−−→mayE′ if and only if both of the following rules are satis�ed:For all (P, S, F) ∈ E su
h that a ∈ outE \ inSIf ∃F ′. F a!−−→F ′ and ∃P ′. P a−→P ′ then (P ′, S, F ′) ∈ E′Else if ∃P ′.P a?−−→P ′ and F a!6−−→ then False ∈ E′

For all (P, S, F) ∈ E and all S′ su
h that a∈outE ∩ inSIf S a?−−→S′ also (P, S′, F) ∈ E′

E a?−−→mustE′ and E a?−−→mayE′ i� both of the following rules are satis�ed:For all (P, S, F) ∈ E and all F ′ su
h that a ∈ inE \ outSIf F a?−−→F ′ and P a!−−→P ′ then (P ′, S, F ′) ∈ E′For all (P, S, F) ∈ E su
h that a ∈ inE ∩ outSIf S a!−−→S′ then (P, S′, F) ∈ E′Ea
h state E ∈ Q of E is minimal su
h that it satis�es the above transition rulesand the following
losure rules :For all (P, S, F) ∈ E and a ∈ extS ∩ extFIf ∃S′. S a−→S′ and ∃F ′. F a−→F ′ and ∃P ′. P a−→P ′then also (P ′, S′, F ′) ∈ E.For all (P, S, F) ∈ E and a ∈ extS ∩ extFIf S a!−−→S′ and F a!6−−→ and ∃P ′. P a?−−→P ′ then False ∈ E.The two may rules dis
uss E making an output transition
on
erning anexternal output, or an internal
ommuni
ation with S respe
tively. The mustrules state that E needs to a

ept all the inputs from the outside and from Srespe
tively. Finally the
losure rules allow S to advan
e without any interferen
ewith E on its own external a
tions. Whenever there is a possibility of violationof the relativized tra
e in
lusion, we add false to the target state of E, hintingthat E should not be allowed to make that step.De�nition 19. The state
onsisten
y relation S over a modal transition system
E = (Q,A,−→may,−→must) is the maximal subset of Q su
h that if E ∈ S thenFalse /∈ E and whenever E a−→mustE′ then E′ ∈ S.De�nition 20. A
onsistent set of transitions T of a modal transition system
E = (Q,A,−→may,−→must) with respe
t to
onsisten
y relation S is a maximalsubset of −→may, where whenever (s, a, s′) ∈ T then s ∈ S and s′ ∈ S.Theorem 21. Let C(E) be a system of inequalities as required above, and E =
(Q,A,−→may,−→must) be the modal transition system indu
ed by C. Then themaximal solution of C(E) is an I/O automaton E su
h that its set of states
statesE is a maximal
onsisten
y relation over E,

startE ={(F1, S1), ..., (Fm, Sm)},

inE =

m
⋃

i=1

(inFi
\ inSi

) ∪
m
⋃

i=1

(outSi
\ outFi

)

outE =

m
⋃

i=1

(outFi
\ outSi

) ∪
m
⋃

i=1

(inSi
\ inFi

),

ST0 |= � | SC0 6 ET0SC0 |= � | ST0 6 EC0ST1 |= � | SC1 6 ET1SC1 |= � | ST1 6 EC1 ST5 |= � | SC1 6 ET5SC1 |= � | ST5 6 EC1ST0 |= � | SC0 6 ET0SC0 |= � | ST0 6 EC0ST1 |= � | SC1 6 ET1SC1 |= � | ST1 6 EC1 ST4 |= � | SC1 6 ET4SC1 |= � | ST4 6 EC1
ST2 |= � | SC1 6 ET2SC1 |= � | ST2 6 EC1 ST3 |= � | SC1 6 ET3SC1 |= � | ST3 6 EC1 TRUEtrnsmt? trnsmt?na
k!a
k! trnsmt?

a
k!
trnsmt? trnsmt?Fig. 6. The resulting modal transition system for the
omputation of EnvComp1 .and its set of transitions stepE is a maximal
onsistent set of transitions of Ewith respe
t to statesE. If the maximal state
onsisten
y relation of E is emptythen C has no solutions.The set S
an be found by a simple maximal �xpoint
omputation. In pra
ti
ethe
onsisten
y of the initial state may be de
ided in a lo
al fashion without
onstru
ting the entire modal transition system.Figure 6 shows the
onsistent part of the modal transition system indu
edby (EnvTryTwice ,SpecTryTwice)|(EnvClient ,SpecClient). It
an then be minimizedin order to obtain EnvComp1 , shown in Fig. 3. Similarly SpecComp1 from Fig. 3has been obtained by minimizing SpecTryTwice |SpecClient .6 Interfa
e AutomataThe relation of our theory to interfa
e automata [5, 6℄ requires spe
ial attention,as we address several issues of that work; most importantly the representationof assumptions and guarantees within a single automaton. We
learly separateassumptions from guarantees, and the pairs of assumptions and guarantees
anbe
onstru
ted independently. In [6℄ Alfaro and Henzinger dis
uss stati
 As-sume/Guarantee interfa
es featuring a similar split, however they do not persuethe idea to the dynami

ase.In a larger perspe
tive our work
an be seen as a study of building interfa
etheories as su
h: starting with a sele
tion of the building blo
ks, going throughrequirements analysis, deriving the
omposition operator, and studying its gen-erality. Let us review this pro
ess brie�y. We begin with sele
ting importantingredients su
h as a
omponent model, an interfa
e model, an implementationrelation and a re�nement relation. The parti
ular
hoi
e of input-enabled sys-tems and (relativized) tra
e in
lusion is not
ru
ial for our developments. In fa
twe believe that a similar theory
an be built using (relativized) simulation, or fortimed automata. We
hoose I/O automata and tra
e in
lusion be
ause they arevery di�erent from Alfaro and Henzinger's interfa
e automata, so we in
iden-tally provide a
omponent theory for a di�erent
ommunity�the I/O automata
ommunity. At the same time our
hoi
e
hallenges some opinions expressed in[5, 6℄ that building su
h a theory, espe
ially supporting
ontravariant re�nement,is impossible using language in
lusion
riteria or in a non-blo
king setting.

Furthermore we show how the
omposition operator
an be derived fromrequirements (by analysis, redu
tion and automated solving), while Alfaro andHenzinger introdu
e this operator in a rather ad ho
 manner. After having de-rived our operator we dis
uss its generality, and
on
lude that it is indeed themost general operator possible, meeting our requirements with respe
t to tra
ein
lusion, with respe
t to the � re�nement, and with respe
t to
ompatibilitywith other
omponents. We
onje
ture that the operator of our prede
essors isalso the most general in their setting, however they never make that
laim.Let us now draw a formal
orrespondan
e between the two interfa
e theories.De�nition 22 (after [6℄). An interfa
e automaton is a six-tuple S = (statesS ,startS , inS , outS , intS , stepsS), where statesS is a �nite set of states, startS ∈statesS is an initial state, inS, outS, and intS are three pairwise disjoint sets ofinput, output, and internal a
tions respe
tively, and stepsS ⊆ statesS × a
tS ×statesS is an input-deterministi
 transition relation, with a
tS = inS∪outS∪intSNoti
e that the transition relation of interfa
e automata may be non input-enabled. Synta
ti

omposability of interfa
e automata is governed by the samerule as the
omposability of I/O automata, de�ned on p. 4. The
omposed inter-fa
e is
omputed by taking a produ
t of the two automata, and removing fromit all in
ompatible states. A state of the produ
t is an error state if one of its
omponents
an produ
e a shared output, that the other is unable to re
eive. Astate of the produ
t is in
ompatible if it
an rea
h an error state by an exe
utionover internally
ontrollable transitions (transitions labeled with a
tions from:intS1|S2
∪ outS1|S2

).De�nition 23. Two synta
ti
ally
omposable interfa
e automata S1 and S2 are
ompatible i� removing all in
ompatible states from their produ
t leaves an in-terfa
e automaton with a non-empty set of rea
hable states.The fun
tion unzip de�ned below translates an interfa
e automaton to anI/O automaton interfa
e. If A is an interfa
e automaton then unzipA := (E,S),where statesS = statesE = statesA∪{T }, startS = startE = startA, inS = outE =inA, outS = inE = outA, intS = intE = intA. The transition relations of E and
S are
reated from the transition relation of A by making it input-enabled onthe respe
tive input sets:stepsE = stepsA ∪ {(s, a, T)|s ∈ statesA, a ∈ inE , s

a6−−→A}stepsS = stepsA ∪ {(s, a, T)|s ∈ statesA, a ∈ inS , s
a6−−→A}Theorem 24. If A1 and A2 are two
ompatible interfa
e automata, then unzipA1and unzipA2

are
ompatible I/O automata interfa
es.The zip fun
tion is a reverse of unzip: it translates an I/O automata interfa
einto a single interfa
e automaton, by
omputing the produ
t of the two partsusing the
lassi
 algorithm [11,
hpt. 4.2℄ from automata theory: zip(E,S) := A,where statesA = statesE × statesS , startA = (startE , startS), inA = inS , outA =outS , intA = intS ∪ intE , and stepsA = {((s, e), a, (s′, e′))|s a−→s′ and e a−→e′}.

Theorem 25. If (E1, S1), (E2, S2) are
ompatible deterministi
 I/O automatainterfa
es, then zip(E1,S1), zip(E2,S2) are
ompatible interfa
e automata.The fa
t that our
ompatibility only implies
ompatibility in the interfa
eautomata sense for unzippings of deterministi
 interfa
es is not surprising. It isa
tually expe
ted, due to the very di�erent nature of the re�nement relationsused in the two theories: tra
e in
lusion and alternating simulation [12℄.Alfaro and Henzinger
hoose alternating simulation to support
ontravarianttreatment of inputs and outputs. We stress that input-enabledness and rela-tivized tra
e in
lusion already guarantee
ontravariant treatment of behaviorsin a very similar spirit. Still our theory somewhat stri
tly requires that im-plementations of an interfa
e have pre
isely the same sort as their interfa
es,so it is te
hni
ally not possible to substitute a ri
her
omponent in pla
e of asimpler one, if they are the same on shared fun
tionality. We stress that thisde�
ien
y is not inherent, while it simpli�es the presentation. Contravariant sig-nature extensions
an be easily realized with relativized tra
e in
lusion in theinput-enabled setting. Instead of requiring inI = inS and outI = outS in Def. 3,insist on inS ⊆ inI and outI ⊆ outS . In fa
t the only signi�
ant
hange requiredin later developments is the addition of a side
ondition to the independentimplementability rule:
∀I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2 andinI1 ∩ outS2

⊆ inS1
and inI2 ∩ outS1

⊆ inS2
implies E |= I1|I2 6 S . (6)This is the very same side
ondition that Alfaro and Henzinger add to indepen-dent implementability in order to support
ontravariant signature extensions. Itensures that even though the implementation allows additional inputs, it willonly be used as des
ribed in this interfa
e. The other
omponents will not
om-muni
ate with it on these additional inputs.7 Other Related WorkOur work relates dire
tly to the original version of interfa
e automata [5, 6℄,whi
h was later extended with time and resour
e information in [13℄ and [14℄.To strengthen the
ase, we have used some examples from [6℄ adapting themto our framework, and aligned the terminology with [5, 6℄ as mu
h as possible.Another approa
h to
ompatibility for blo
king-servi
es is taken by Rajamaniand Rehof in [2℄ targeting
ompatibility of web servi
es. We work in the input-enabled asyn
hronous setting of I/O-automata [15℄, whi
h is semanti
ally
loserto implementations of embedded systems. To the best of our knowledge similarproperties have not been studied in the I/O automata
ommunity yet.The notion of relativized re�nement and equivalen
e, or more pre
isely sim-ulation and bisimulation, is due to Larsen [16, 17℄. It was so far applied in thesetting of proto
ol veri�
ation [18℄, automati
 testing [19℄ and modeling softwareprodu
t lines [7℄. Here we adapt it to a language in
lusion based re�nement.

The general method of solving systems of behavioral equations using disjun
-tive modal transition systems and bisimulation as a requirement was publishedin [20℄. The method presented in se
tion 5 is an adaptation of this earlier work toan input-enabled setting and language-in
lusion based re�nement. The originalmethod does not assume determinism of pro
esses in the system of
onstraints.The preliminary version of this paper [21℄ featured a stronger de�nition of mu-tual deadlo
k freeness: E|S1 6 E2 and E|S2 6 E1. Being stronger, this formula-tion also implies independent-implementability, but it rules out many useful
om-positions as in
ompatible. The relativized version proposed here (2) is weaker,but still strong enough to imply independent implementability. As we have seenin the previous se
tion, it behaves reasonably allowing roughly the same kindof
ompatible interfa
es as interfa
e automata. The present paper,
ompletelyrewritten, reworks the theory with this new
hara
terization, adding asso
iativ-ity, re�nement of interfa
es, a new method for solving systems of inequalities,
ontravariant signature extension, and the
orresponden
e to interfa
e automata.8 Con
lusionWe have proposed an interfa
e theory for distributed networks of asyn
hronous
omponents modeled as I/O automata. The
hara
teristi
 feature of our inter-fa
es is an expli
it separation of assumptions from guarantees. Apart from theusual engineering advantages o�ered by su
h a separation of
on
erns, it alsoallows modeling of families of interfa
es implemented by software produ
t lines.We demonstrated that it is possible to build a reasonably behaved interfa
etheory in an input-enabled setting, with language in
lusion as re�nement. Weemphasize that our derivation of interfa
e
omposition is systemati
: we staterequirements for
omposition and redu
e the problem to �nding a solution of a
orresponding system of behavioral inequalities. We also dis
uss the generalityof the
onstru
ted interfa
e,
on
luding that it exhibits the weakest assumptionsand the strongest guarantees that are possible with our requirements. Finallywe des
ribe a method for solving systems of inequalities arising in our setup anddraw a formal
orresponden
e between the present work and interfa
e automata.Referen
es1. Igarashi, A., Kobayashi, N.: A generi
 type system for the pi-
al
ulus. In: POPL2001, ACM Press (2001)2. Rajamani, S.K., Rehof, J.: Conforman
e
he
king for models of asyn
hronousmessage passing software. In Brinksma, E., Larsen, K.G., eds.: 14th InternationalConferen
e on Computer Aided Veri�
ation (CAV). Volume 2404 of Le
ture Notesin Computer S
ien
e., Copenhagen, Denmark, Springer-Verlag (2002) 166�1793. Lee, E.A., Xiong, Y.: A behavioral type system and its appli
ation in Ptolemy II.Formal Aspe
ts of Computing Journal (2004) Spe
ial issue on Semanti
 Founda-tions of Engineering Design Languages.4. Lee, E.A., Zheng, H., Zhou, Y.: Causality interfa
es and
ompositional
ausalityanalysis. [22℄

5. Alfaro, L., Henzinger, T.A.: Interfa
e automata. In: Pro
eedings of the Ninth An-nual Symposium on Foundations of Software Engineering (FSE), Vienna, Austria,ACM Press (2001) 109�1206. Alfaro, L., Henzinger, T.A.: Interfa
e-based design. In: In Engineering Theoriesof Software Intensive Systems, pro
eedings of the Marktoberdorf Summer S
hool,Kluwer A
ademi
 Publishers (2004)7. Larsen, K.G., Larsen, U., W¡sowski, A.: Color-blind spe
i�
ations for transforma-tions of rea
tive syn
hronous programs. In Cerioli, M., ed.: Pro
eedings of FASE,Edinburgh, UK, April 2005. LNCS, Springer-Verlag (2005)8. Hoare, C.: Communi
ating Sequential Pro
esses. International Series in ComputerS
ien
e. Prenti
e Hall (1985)9. Maier, P.: Compositional
ir
ular assume-guarantee rules
annot be sound and
omplete. In Gordon, A., ed.: Foundations of Software S
ien
e and ComputationalStru
tures: 6th International Conferen
e, FOSSACS 2003. Volume 2620 of Le
tureNotes in Computer S
ien
e., Springer-Verlag (2003) 343�35710. Larsen, K.G., Thomsen, B.: A modal pro
ess logi
. In: LICS, IEEE ComputerSo
iety (1988) 203�21011. Hop
roft, J.E., Motwani, R., Ullman, J.D.: Introdu
tion to Automata Theory,Languages and Computation. 2nd edn. Addison-Wesley (2001)12. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.: Alternating re�nement rela-tions. In Sangiorgi, D., de Simone, R., eds.: Pro
eedings of the Ninth InternationalConferen
e on Con
urren
y Theory (CONCUR'98). Volume 1466 of Le
ture Notesin Computer S
ien
e., Springer-Verlag (1998) 163�17813. Alfaro, L., Henzinger, T., Stoelinga, M.I.A.: Timed interfa
es. In Sangiovanni-Vin
entelli, A., Sifakis, J., eds.: EMSOFT 02: Pro
. of 2nd Intl. Workshop onEmbedded Software. Le
ture Notes in Computer S
ien
e, Springer (2002) 108�12214. Chakabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Resour
e inter-fa
es. In Alur, R., Lee, I., eds.: EMSOFT 03: 3rd Intl. Workshop on EmbeddedSoftware. Le
ture Notes in Computer S
ien
e, Springer (2003)15. Lyn
h, N.: I/O automata: A model for dis
rete event systems. In: Annual Confer-en
e on Information S
ien
es and Systems, Prin
eton University, Prin
eton, N.J.(1988) 29�3816. Larsen, K.G.: Context Dependent Bisimulation Between Pro
esses. PhD thesis,Edinburgh University (1986)17. Larsen, K.G.: A
ontext dependent equivalen
e between pro
esses. Theoreti
alComputer S
ien
e 49 (1987) 184�21518. Larsen, K.G., Milner, R.: A
ompositional proto
ol veri�
ation using relativizedbisimulation. Information and Computation 99 (1992) 80�10819. Larsen, K.G., Miku
ionis, M., Nielsen, B.: Online testing of real-time systems usinguppaal. In: Formal Approa
hes to Testing of Software (FATES), Linz, Austria.September 21, 2004. Volume 1644 of Le
ture Notes in Computer S
ien
e., Springer-Verlag (2005)20. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:Fifth Annual IEEE Symposium on Logi
s in Computer S
ien
e (LICS), 4�7 June1990, Philadelphia, PA, USA. (1990) 108�11721. Larsen, K.G., Nyman, U., W¡sowski, A.: Interfa
e input/output automata: Split-ting assumptions from guarantees. [22℄22. Hermanns, H., Rehof, J., Stoelinga, M.I.A., eds.: Workshop Pro
edings FIT 2005:Foundations of Interfa
e Te
hnologies. ENTCS, Elsevier S
ien
e Publishers (2005)

