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t. Building on the theory of interfa
e automata by de Alfaroand Henzinger we design an interfa
e language for Lyn
h's I/O automata,a popular formalism used in the development of distributed asyn
hronoussystems, not addressed by previous interfa
e resear
h. We introdu
e anexpli
it separation of assumptions from guarantees not yet seen in otherbehavioral interfa
e theories. Moreover we derive the 
omposition oper-ator systemati
ally and formally, guaranteeing that the resulting 
om-positions are always the weakest in the sense of assumptions, and thestrongest in the sense of guarantees. We also present a method for solv-ing systems of relativized behavioral inequalities as used in our setup anddraw a formal 
orresponden
e between our work and interfa
e automata.1 Introdu
tionA suitably expressive interfa
e language lies at the very 
enter of any 
omponent-oriented development framework. Interfa
es are abstra
tions of 
omponents, 
ar-rying all essential information ne
essary to establish 
ross-
omponent 
ompat-ibility. Instead of reasoning about 
omponents dire
tly, one typi
ally examines
ompatibility of their interfa
es, while the adheren
e of a parti
ular implemen-tation to its interfa
e is tested separately. This, not only allows for independentdevelopment of 
omponents, but also by introdu
ing 
ompositionality helps to
ombat the state spa
e explosion problem in various automati
 analyses.Type annotations, type 
he
king, and type inferen
e have traditionally beenused to de
ide 
ompatibility of 
omponents soundly with respe
t to memorysafety. However, stati
 type 
orre
tness in this traditional sense fails to guar-antee more elaborate properties, like 
orre
tness of 
ommuni
ation, or deadlo
kfreeness. This observation has inspired a long line of resear
h on behavioral typesystems and behavioral interfa
e languages suitable for spe
i�
ation of highlytrusted 
omputer systems (see [1�4℄ and referen
es therein for examples).We follow de Alfaro and Henzinger [5, 6℄ in studying an automata basedinterfa
e language, or interfa
e automata. Unlike them however, we expli
itlyseparate, in the interfa
e des
ription, the assumptions that a 
omponent maymake about its use from the guarantees that it needs to 
ommit to. Assumptionsdes
ribe the possible behaviors of the 
omponent's external environment, whileguarantees des
ribe the possible behaviors of the 
omponent itself.
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h interfa
e in our theory 
onsists of two I/O automata. The �rst, 
alledthe environment, represents assumptions. The se
ond, 
alled the spe
i�
ation,des
ribes guarantees. Figure 1 shows an interfa
e for a Client 
omponent 
on-sisting of the automata EnvClient and SpecClient . The arrows in
oming to oroutgoing from the box surrounding ea
h of the automata visualize their stati
types, or signatures. The environment EnvClient spe
i�es that even though thestati
 type does allow a fail a
tion, the emission of this a
tion is disallowed forall 
ompliant exe
ution environments. The only legal input is send. One 
an stilluse the Client 
omponent in a 
ontext that synta
ti
ally permits fail, but thebehavior of the Client is only guaranteed in environments that do not fail.Alfaro and Henzinger model assumptions about the use of a 
omponent bythe interfa
e's inabilities to re
eive inputs. The output transitions of the verysame interfa
e automaton des
ribe its guarantees. Sin
e we separate the two, wealleviate the need for blo
king. Our automata are input enabled�a

epting anyinput from their signature in every state. In order to avoid 
lutter we usually donot draw loop transitions, whi
h 
orrespond to ignoring an input. There is onesu
h impli
it transition 1 send?−−−−→1 in EnvClient and three in SpecClient .Two interfa
es 
an be 
ombined into a 
omposite interfa
e, des
ribing a newset of assumptions and guarantees. Interfa
e TryTwice, presented in Fig. 2 
anbe 
omposed with Client . The two 
omponents do not form a 
losed system, butare intended for use together with a further unspe
i�ed LinkLayer 
omponent.Composition of interfa
es is a 
entral 
onstru
tion in any interfa
e theory.One of our 
ontributions is that the 
omposition is derived systemati
ally: weformally state requirements for it in the form of a system of inequalities, andderive a result of the 
omposition as a maximal solution of this system. Conse-quently properties of the 
omposition hold by 
onstru
tion.Figure 3 shows the interfa
e resulting from 
omposing Client and TryTwice .Later we shall explain how it has been 
omputed. Now observe that any 
om-ponent legally intera
ting with this new interfa
e may not send a na
k twi
e
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onsequen
e of the fa
t that thiswould make TryTwi
e respond with a fail to Client, violating the assumptions ofthe latter. The additional state T manifests the fa
t that the 
omputed environ-ment expresses the weakest assumptions. It allows re
eiving arbitrary behaviorafter a se
ond transmt in a row, be
ause any 
ompliant implementation wouldnever send it, and thus would never be a�e
ted by the subsequent behaviour.An advantage of separating assumptions from guarantees is that one of theautomata 
an be 
hanged without a�e
ting the other. Thus the same guarantees
an be used for multiple interfa
es. In [7℄ we have argued that this is useful formodeling software produ
t lines: a family of 
omponent variants may be spe
i�edusing a single spe
i�
ation (guarantee) and multiple environmental restri
tions(assumptions). An advan
ed 
ompiler may use the assumptions to derive spe
ial-ized versions of the 
omponent from the same sour
e 
ode. Let us illustrate thiswith an example. Figure 4a gives an alternative environment EnvNoNack for the
SpecTryTwice spe
i�
ation. This environment disallows the sending of a na
k asa response to a trnsmt request. Any implementation of TryTwice is also an im-plementation of (EnvNoNack ,SpecTryTwice). If it is only used in EnvNoNack , thenit 
ould be automati
ally spe
ialized to these spe
i�
 
ir
umstan
es. The errorhandling 
ode 
ould be removed as it is not needed in su
h a 
ontext. The 
om-position Comp2 = (EnvNoNack ,SpecTryTwice)|(EnvClient ,SpecClient ) has exa
tlythe same spe
i�
ation part as the Comp1 
omposition. The resulting environ-ment EnvComp2 (Fig. 4b) disallows the generation of the na
k input even thoughthe stati
 type permits this.As we have also argued in [7℄ the separation supports a simple de
larativestyle of modeling assumptions: simple properties 
an be modeled as standaloneautomata and 
ombined using the pro
ess algebrai
 operators of sum and prod-u
t, 
orresponding to disjun
tion and 
onjun
tion of properties respe
tively.An interesting theoreti
al side e�e
t of our exposition, is an informal 
orre-sponden
e drawn between blo
king and non-blo
king interfa
e theories. A single



blo
king interfa
e automaton of [5℄ expresses both the assumptions of a 
ompo-nent and its 
ommitments. When a blo
king interfa
e automaton is unable to a
-
ept an input, it e�e
tively assumes that any 
ompatible environment will neverprovide it. In the theory for non-blo
king systems the interfa
es are 
omposed oftwo non-blo
king automata, and the same e�e
t is a
hieved by expli
itly usingone of the automata for des
ribing the permissible behavior of the surroundings.The paper develops as follows. Se
tion 2 de�nes I/O automata and interfa
es.Se
tion 3 dis
usses re�nement of interfa
es. The most 
entral se
tion, Se
tion 4,is devoted to 
omposition, while a more te
hni
al se
tion, Se
tion 5, is devotedto systems of inequalities used in se
tion 4 and is a 
ontribution in itself. Butreading it is not essential for appre
iating our interfa
e theory. Se
tion 6 drawsa 
orresponden
e between interfa
e automata and our interfa
es, while se
tion 7dis
usses other related work. We 
on
lude in se
tion 8. A parti
ularly interestedreader 
an �nd the proofs of all our 
laims in an up
oming BRICS report.2 I/O Automata and Their Interfa
esDe�nition 1. An I/O automaton S=(statesS , startS , inS , outS , intS , stepsS) isa 6-tuple, where statesS is a set of states, startS ∈ statesS is an initial state,inS is a set of input a
tions, outS a set of output a
tions, and intS is a setof internal a
tions. All of the a
tion sets are mutually disjoint. We abbreviateextS = inS ∪outS and a
tS = extS ∪ intS. Then stepsS ⊆ statesS ×a
tS × statesSis the set of transitions. I/O automata are input enabled: for every state s andany a
tion i ∈ inS there exists a state s′ and a transition (s, i, s′) ∈ stepsS.We write q a−→S q
′ if (q, a, q′) ∈ stepsS . We often expli
itly su�x external a
-tions with dire
tion of 
ommuni
ation writing q a!−−→S q

′ if a ∈ outS , and q a?−−→S q
′if a ∈ inS . Noti
e that the labels a! and a? still denote exa
tly the same a
tion,and we 
an drop the su�xes whenever the dire
tion of 
ommuni
ation is irrele-vant. We write q a6−−→, meaning that there is no q′ su
h that q a−→q′.De�nition 2. An exe
ution of an I/O-automaton S starting in a state q0 is a�nite sequen
e of labels q0, a0, q

1, a1, q
2, a2, . . . , q

n−1, an−1, q
n su
h that all qi'sare members of statesS, all ai's are members of a
tS and for every k = 0 . . . n−1it is the 
ase that qk ak−−→S q

k+1. A tra
e σ of S is an exe
ution ψ of S startingin the initial state, with all the states and internal a
tions deleted: σ = ψ ↾ extS,where ψ ↾ X denotes a sequen
e 
reated from ψ by removing symbols that arenot in set X. The set of all tra
es of automaton S is denoted TrS.Two I/O-automata S1 and S2 are synta
ti
ally 
omposable if their input andoutput sets do not overlap and their internal a
tions are not shared: inS1
∩inS2

=outS1
∩outS2

= intS1
∩a
tS2

= a
tS1
∩ intS2

= ∅. Two synta
ti
ally 
omposableautomata S1 = (statesS1
, startS1

, inS1
, outS1

, intS1
, stepsS1

) and S2 = (statesS2
,startS2

, inS2
, outS2

, intS2
, stepsS2

) 
an be 
omposed into a single produ
t automa-ton S = S1|S2, where S=(statesS , startS , inS , outS , intS , stepsS) and statesS =statesS1
× statesS2

, startS = (startS1
, startS2

), inS = inS1
∪ inS2

\ outS1
\ outS2

,



outS =outS1
∪ outS2

\ inS1
\ inS2

, intS = intS1
∪ intS2

∪ (extS1
∩extS2

), and stepsSare de�ned by the following rules:if q1 a−→S1
q′1 and a∈a
tS1

\a
tS2
then (q1, q2) a−→S1|S2

(q′1, q2)if q2 a−→S2
q′2 and a∈a
tS2

\a
tS1
then (q1, q2) a−→S1|S2

(q1, q
′
2)if q1 a−→S1

q′1 and q2 a−→S2
q′2 then (q1, q2) a−→S1|S2

(q′1, q
′
2)In pra
ti
e unrea
hable states may be removed from the produ
t, without af-fe
ting the results presented below.Our 
omposition (same as in [6℄) di�ers from the standard I/O automata 
om-position in that it applies hiding immediately. It is equivalent with the standard
omposition as long as ea
h a
tion is only shared by at most two 
omponents.We de�ne an interfa
e model to be a pair (E,S) of I/O automata:De�nition 3. A pair of I/O automata (E,S) is an interfa
e if E|S is a 
losedsystem, i.e. inE =outS and outE = inS.The environment automaton E drives the spe
i�
ation automaton S. Anyimplementation I of S must 
onform to S as long as it is re
eiving input that
onforms to E. The behavior of I on sequen
es of inputs that 
annot be providedby E is not 
onstrained. We formalize this using relativized re�nement:De�nition 4. An I/O automaton I implements an interfa
e (E,S), written

E |= I 6 S, i� outI = outS and inI = inS and TrE ∩ TrI ⊆ TrS.3 Re�nement of Interfa
esWe establish a hierar
hy on interfa
es in order to quantify their generality.De�nition 5. Let (E1, S1) and (E2, S2) be two interfa
es with the same signa-tures. We will say that (E1, S1) is a stronger interfa
e than (E2, S2), written
(E1, S1) � (E2, S2), if (E1, S1) has less implementations than (E2, S2), so forany I/O automaton I: E1 |= I 6 S1 implies E2 |= I 6 S2.The re�nement of interfa
es 
an be seen as a subtyping relation in a behav-ioral type system for 
omponents. In su
h an interpretation we would say that
(E1, S1) is a subtype of (E2, S2). We propose several simple sound 
hara
teriza-tions of the above re�nement that are useful in making proofs:Theorem 6. Let (E1, S1), (E2, S2) be interfa
es with identi
al signatures. Then1. TrE1

∩TrS1
= TrE2

∩TrS2
implies (E1, S1) � (E2, S2) and (E2, S2) � (E1, S1)2. TrE2

⊆TrE1
∧ TrS1

⊆TrS2
implies (E1, S1) � (E2, S2)3. TrE1

\ TrS1
⊇ TrE2

\ TrS2
implies (E1, S1) � (E2, S2)The above 
hara
terizations are 
onvenient in establishing subtyping rela-tions among interfa
es in many 
on
rete 
ases. However none of them are 
om-plete. The re�nement of interfa
es 
an be 
hara
terized in a sound and 
ompletemanner using a notion of tests that resembles failure tra
es of Hoare [8℄, butdeterminized, relativized with respe
t to the environment, and su�x 
losed.



De�nition 7. The set of 
onforman
e tests of interfa
e (E,S) is de�ned as:test(E,S)= {σ · a |σ∈ TrE ∩ TrS , σ · a∈ TrE \ TrS} · ext∗E ,where X∗ denotes the set of all �nite sequen
es over alphabet X.Theorem 8. Let (E1, S1) and (E2, S2) be two interfa
es with identi
al signa-tures. Then test(E1,S1) ⊇ test(E2,S2) i� (E1, S1) � (E2, S2).Without spelling out the details, we remark that a �nite automaton, su
hthat test(E,S) is its a

epted language, 
an be 
omputed in quadrati
 time, and
an be used for testing 
ontainment in appli
ations of the above theorem.4 Interfa
e CompositionsWe would like to abstra
t 
ompositions of 
omponents by 
ompositions of theirinterfa
es. For any two 
ompatible interfa
es (E1, S1) and (E2, S2) we should beable to derive an interfa
e of their 
omposition (E,S), the one that is imple-mented �awlessly by any two implementations of (E1, S1) and (E2, S2).Two interfa
es are synta
ti
ally 
omposable if the I/O automata 
omprisingthem are pointwise synta
ti
ally 
omposable. This guarantees that any 
ompo-nents I1 and I2 implementing synta
ti
ally 
omposable interfa
es (E1, S1) and
(E2, S2), are also synta
ti
ally 
omposable. The question that we want to ad-dress is the dynami
 
ompatibility of I1 and I2: 
an I1 violate the environmentalassumptions expressed in E2? Can I2 violate the assumptions in E1?We may be tempted to say that the 
omposite interfa
e is the 
ompositionof the interfa
e parts: (E,S) = (E1|E2, S1|S2). This 
onstru
tion, however, isunsound. It is possible to �nd two 
ompliant implementations that, when 
om-posed together, violate (E,S). In order to arrive at a sound and 
omplete notionof 
omposition, we will state the requirements for the 
omposite interfa
e, andthen derive the 
onstru
tion from them. The three requirements are: independentimplementability [6℄, mutal deadlo
k freeness, and asso
iativity.Independent implementability means that (E,S) is su
h, that the implemen-tations of (E1, S1) and (E2, S2) 
an be developed independently of ea
h other,and their 
omposition will implement the 
omposition of their interfa
es:For all I1, I2. E1 |= I1 6 S1 and E2 |= I2 6 S2 implies E |= I1|I2 6 S . (1)Mutual deadlo
k freeness means that any two 
orre
t implementations, when
omposed and embedded in an environment that obeys the assumptions of E,will not violate ea
h other's assumptions:For all I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2implies I1 |= E|I2 6 E1 and I2 |= E|I1 6 E2 . (2)You may �nd it useful to refer to the �owgraph on Fig. 5a, while studying theabove rule. Observe that in the 
omposed system I1 is indeed the environment
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Fig. 5. (a) Flowgraph for a 
omposition of (E1, S1) and (E2, S2). (b) AlwaysFailin whi
h E|I2 operates. The 
omposition E|I2 is also the environment for I1 andit is supposed not to violate any of the assumptions expressed in E1.Finally, asso
iativity means that in whatever order 
ompositions are applied,they give rise to equivalent interfa
es:
((E1, S1) | (E2, S2)) | (E3, S3) � (E1, S1) | ((E2, S2) | (E3, S3))

(E1, S1) | ((E2, S2) | (E3, S3)) � ((E1, S1) | (E2, S2)) | (E3, S3) . (3)A disadvantage of the above requirements is that they are not 
onstru
tive.They rely on quanti�
ation over all implementations, whi
h makes them uselessfor 
omputing the 
omposition. Fortunately the quanti�
ation 
an be eliminated.The following theorem redu
es the property of mutual deadlo
k freeness of allimplementations to mutual deadlo
k freeness of the interfa
es being 
omposed:Theorem 9. Any environment E ful�lls the requirement (2) i� it ful�lls thefollowing 
ondition:
S1 |= E|S2 6 E1 and S2 |= E|S1 6 E2 . (4)The above redu
tion is very fortunate, as (4) also implies independent im-plementability with the 
hoi
e of the guarantees 
omponent to be S1|S2:Theorem 10. Let (E1, S1) and (E2, S2) be synta
ti
ally 
omposable interfa
es,and E be an environment I/O automaton satisfying property (4). Then for all I1and I2 su
h that E1 |= I1 6 S1 and E2 |= I2 6 S2 we have E |= I1|I2 6 S1|S2.Consequently if we were able to �nd an environment E satisfying (4), thenthe interfa
e (E,S1|S2) would satisfy mutual deadlo
k freeness and independentimplementability�a good 
andidate for the 
omposition of environments. How-ever, the environment satisfying (4) may not always exist. This is the 
ase, if S1un
onditionally, independently of E's behavior, violates the assumptions of S2expressed in E2. In this 
ase (E1, S1) and (E2, S2) are said to be in
ompatible.De�nition 11. Interfa
es (E1, S1), (E2, S2) are in
ompatible if there exists noI/O automaton E su
h that: S1 |= E|S2 6 E1 and S2 |= E|S1 6 E2.Figure 5b shows an interfa
e AlwaysFail , whi
h has a signature 
ompati-ble with the signature of Client . Nevertheless the dynami
 types of Client and

AlwaysFail are in
ompatible in that they share only one nonempty tra
e, 
on-sisting of one step, and this tra
e ends in a deadlo
k.



In fa
t there typi
ally exist many pairs (E,S) that satisfy all our require-ments. For example an interfa
e (M,U), 
onsisting of a mute environment Mnever produ
ing any outputs and a universal system spe
i�
ation U generatingall possible tra
es, would satisfy the 
omposition requirements of any two 
om-patible interfa
es. The interfa
e (M,U) allows any implementation�it says thatits implementations will behave in an arbitrary fashion (U), not allowing anyexternal stimulation (M). Clearly, as a 
omponent interfa
e, (M,U) is useless.We should ensure that our 
omposition operator produ
es the interfa
e that
arries over all the information available from its 
omponents. It must have thesmallest possible set of implementations, while still satisfying all our require-ments. Similarly, it must maximize the set of 
omponents 
ompatible with it (asopposed to the set of 
omponents implementing it). We shall 
all this optimalinterfa
e the most general. Intuitively to a
hieve this optimality we need an en-vironment E satisfying the requirements su
h that it is maximal with respe
t totra
e in
lusion. By in
reasing the set TrE we make it easier for 
omponents tobe 
ompatible with our interfa
e. Similarly we make it harder to implement the
omposite interfa
e, as in
reasing the set of tra
es of E de
reases the assump-tions that an implementation 
an make. The following theorem says that su
h amaximal E always exists for 
ompatible interfa
es:Theorem 12. Let (E1, S1) and (E2, S2) be two synta
ti
ally 
omposable inter-fa
es. If there exists an I/O automaton E enjoying property (4) then there alsoexists a maximal su
h environment with respe
t to tra
e in
lusion.Theorem 13. The 
omposition operator mapping interfa
es (E1, S1) and (E2, S2)to (E,S1|S2), where E is the maximal solution of (4), is asso
iative.Theorems 12�13 together with our earlier observations suggest that the inter-fa
e (E,S1|S2), where E is this maximal solution of equations (4), is even morelikely to be the most general interfa
e that we are sear
hing for. A maximalsolution of (4) 
an be found algorithmi
ally for �nite state interfa
es. Se
tion 5des
ribes a method that 
an be used for this purpose.As in
reasing the environment E makes the interfa
es more general, so doesde
reasing the spe
i�
ation S (within the limits set by the requirements). Forany parti
ular sele
tion of E satisfying (1), no S 
an be smaller (relative to E)than S1|S2, be
ause S1 and S2 themselves are valid implementations. So S1|S2is the smallest possible spe
i�
ation of the 
omposite interfa
e with respe
t toany parti
ular 
hoi
e of E. This observation 
an be generalized to a 
laim that
(E,S1|S2) is the most general interfa
e possible:Theorem 14. Let (E1, S1), (E2, S2) be interfa
es. Let E be the maximal so-lution to (4) and let (E′, S′) satisfy independent implementability and mutualdeadlo
k freeness. If (E′, S′) is 
ompatible with (E′′, S′′) then also (E,S1|S2) is
ompatible with (E′′, S′′).Having 
on
luded that (E,S1|S2), where E is a maximal solution of (4), iswell de�ned and the most general, we 
an use it as a de�nition of the 
ompositionoperator. We will denote this 
omposite interfa
e by (E1, S1)|(E2, S2).Furthermore our 
omposition of interfa
es is 
omplete in the following sense



Theorem 15. For 
ompatible interfa
es (E1, S1), (E2, S2) and any (E′, S′) sat-isfying independent implementability and mutual deadlo
k freeness:
(E1, S1)|(E2, S2) � (E′, S′) .We remark that our 
omposition would not be 
omplete if we only requiredindependent implementability. It seems likely from the work presented in [9℄ thatit is indeed impossible, for our setting, to be 
omplete in the above sense usingonly independent implementability. Similarly we would not be 
omplete if weonly required mutual deadlo
k freeness, simply be
ause it does not restri
t the

S 
omponent, whi
h 
an then be taken to be mute, likely yielding a smallerinterfa
e than ours. Still our 
omposition is sound and 
omplete with respe
tto both requirements 
ombined. Requirements (2) and (3) have been introdu
edsolely for their inherent usefulness. Their interplay guaranteeing soundness and
ompleteness is a pleasant side e�e
t.De�nition 16. Let (E1, S1), (E2, S2) be synta
ti
ally 
omposable interfa
es.Their 
omposition, denoted (E1, S1)|(E2, S2), is an interfa
e (E,S1|S2), where
E has the same signature as E1|E2, and is a maximal solution of (4).The operator of Def. 16 is asso
iative, supports independent implementabilityand mutual deadlo
k freeness, and produ
es the most general interfa
es.5 Solving Behavioral InequalitiesComputing 
ompositions of interfa
es requires a method for �nding solutionsof systems of relativized linear inequalities. In parti
ular we are interested insystems of inequalities of the following form:

C(E) :











P1 |= E|S1 6 F1...
Pm |= E|Sm 6 Fm

(5)where {Pi}i=1..m, {Si}i=1..m and {Fi}i=1..m are states of the three I/O automata
P , S and F and E is a single unknown automaton. We are interested in �ndinga greatest su
h E with respe
t to 6, or in reporting in
ompatibility between
omponents, if no solutions exist. Sin
e in (4) various 
omponents of inequalities
ome from separate automata, in order to apply the method below we need to
onstru
t three automata P , S and F as the disjoint unions of the automata thatappear in the given pla
e of the 
onstraints in (4). We introdu
e three 
onvenientmapping fun
tions in, out and ext whi
h from a state of the two automata F and
S return respe
tively the set of input, output or external a
tions of the automatathat this state originates from in the disjoint union 
omputation. We will usethem in the algorithm below to re
over some of the signature information lostby making the disjoint union.For simpli
ity of exposition we shall also assume that all I/O automata in-volved in the systems are deterministi
. Otherwise they 
an be determinized



without loss of information, as long as our re�nement 
riterion is based on lan-guage in
lusion. This assumption is not inherent to the method, though.We should now state a property similar to Theorem 12, but formulated forsystems of inequalities in general. We expand it to any number of 
onstraintsand do not require that all the I/O automata 
ome from the same interfa
es.Theorem 17. Let C(E) be a �nite system of relativized inequalities:
C(E) :











P1 |= E|S1 6 F1...
Pm |= E|Sm 6 FmIf C(E) has a solution (an I/O automaton satisfying all the 
onstraints), then

C(E) also has a greatest solution with respe
t to tra
e set in
lusion.We begin with 
onstru
ting a modal transition system [10℄ 
orrespondingto C(E), and then 
hoose a maximal solution from its states and transitions.From our perspe
tive modal transition systems are automata with two transitionrelations −→may and −→must.De�nition 18. A modal transition system is a quadruple S = (Q,A,−→may,
−→must), where Q is a set of systems of 
onstraints (states), A is a set of a
tions,
−→may ⊆ Q×A×Q is the may transition relation, and −→must ⊆ Q×A×Q isthe must transition relation, −→must ⊆ −→may.Systems of relativized inequalities 
an be seen as sets of 
onstraint triples
{(P1, S1, F1), . . . , (Pm, Sm, Fm)} over the solutionE. The 
onstraints evolve whenany of their 
omponents, in
luding the unknown E, takes an a
tion. This evo-lution 
omprises not only state 
hanges of the I/O automata, but also removingand introdu
ing 
onstraints. Legal a
tions of the unknown 
omponent E in anyof its states are dependent on the states of the 
onstraints�on what all the Pi's,
Si's and all the Fi's 
an do. This is why we label states of our modal transitionsystems with systems of inequalities (sets of 
onstraints). All the steps that areallowed by the 
onstraints, but are not stri
tly required (like a possibility toprodu
e an output) should give rise to may transitions in the modal transitionsystem. While all the steps that are stri
tly required (like input a
tions enfor
edby input-enabledness) give rise to 
orresponding must transitions.Formally three I/O automata P, S, F indu
e a modal transition system E =
(Q,A0,−→may,−→must), where elements of Q are sets of 
onstraints over statesof P , S and F, enri
hed with a distin
t primitive 
onstraint False denoting anempty set of solutions. The initial state A0 is equal to the set {(P1, S1, F1), . . . ,
(Pm, Sm, Fm)} of initial 
onstraints, and the transition relations are de�ned a
-
ording to the following rules:

E a!−−→mayE′ if and only if both of the following rules are satis�ed:For all (P, S, F ) ∈ E su
h that a ∈ outE \ inSIf ∃F ′. F a!−−→F ′ and ∃P ′. P a−→P ′ then (P ′, S, F ′) ∈ E′Else if ∃P ′.P a?−−→P ′ and F a!6−−→ then False ∈ E′



For all (P, S, F ) ∈ E and all S′ su
h that a∈outE ∩ inSIf S a?−−→S′ also (P, S′, F ) ∈ E′

E a?−−→mustE′ and E a?−−→mayE′ i� both of the following rules are satis�ed:For all (P, S, F ) ∈ E and all F ′ su
h that a ∈ inE \ outSIf F a?−−→F ′ and P a!−−→P ′ then (P ′, S, F ′) ∈ E′For all (P, S, F ) ∈ E su
h that a ∈ inE ∩ outSIf S a!−−→S′ then (P, S′, F ) ∈ E′Ea
h state E ∈ Q of E is minimal su
h that it satis�es the above transition rulesand the following 
losure rules :For all (P, S, F ) ∈ E and a ∈ extS ∩ extFIf ∃S′. S a−→S′ and ∃F ′. F a−→F ′ and ∃P ′. P a−→P ′then also (P ′, S′, F ′) ∈ E.For all (P, S, F ) ∈ E and a ∈ extS ∩ extFIf S a!−−→S′ and F a!6−−→ and ∃P ′. P a?−−→P ′ then False ∈ E.The two may rules dis
uss E making an output transition 
on
erning anexternal output, or an internal 
ommuni
ation with S respe
tively. The mustrules state that E needs to a

ept all the inputs from the outside and from Srespe
tively. Finally the 
losure rules allow S to advan
e without any interferen
ewith E on its own external a
tions. Whenever there is a possibility of violationof the relativized tra
e in
lusion, we add false to the target state of E, hintingthat E should not be allowed to make that step.De�nition 19. The state 
onsisten
y relation S over a modal transition system
E = (Q,A,−→may,−→must) is the maximal subset of Q su
h that if E ∈ S thenFalse /∈ E and whenever E a−→mustE′ then E′ ∈ S.De�nition 20. A 
onsistent set of transitions T of a modal transition system
E = (Q,A,−→may,−→must) with respe
t to 
onsisten
y relation S is a maximalsubset of −→may, where whenever (s, a, s′) ∈ T then s ∈ S and s′ ∈ S.Theorem 21. Let C(E) be a system of inequalities as required above, and E =
(Q,A,−→may,−→must) be the modal transition system indu
ed by C. Then themaximal solution of C(E) is an I/O automaton E su
h that its set of states
statesE is a maximal 
onsisten
y relation over E,

startE ={(F1, S1), ..., (Fm, Sm)},

inE =

m
⋃

i=1

(inFi
\ inSi

) ∪
m
⋃

i=1

(outSi
\ outFi

)

outE =

m
⋃

i=1

(outFi
\ outSi

) ∪
m
⋃

i=1

(inSi
\ inFi

),



ST0 |= � | SC0 6 ET0SC0 |= � | ST0 6 EC0ST1 |= � | SC1 6 ET1SC1 |= � | ST1 6 EC1 ST5 |= � | SC1 6 ET5SC1 |= � | ST5 6 EC1ST0 |= � | SC0 6 ET0SC0 |= � | ST0 6 EC0ST1 |= � | SC1 6 ET1SC1 |= � | ST1 6 EC1 ST4 |= � | SC1 6 ET4SC1 |= � | ST4 6 EC1
ST2 |= � | SC1 6 ET2SC1 |= � | ST2 6 EC1 ST3 |= � | SC1 6 ET3SC1 |= � | ST3 6 EC1 TRUEtrnsmt? trnsmt?na
k!a
k! trnsmt?

a
k!
trnsmt? trnsmt?Fig. 6. The resulting modal transition system for the 
omputation of EnvComp1 .and its set of transitions stepE is a maximal 
onsistent set of transitions of Ewith respe
t to statesE. If the maximal state 
onsisten
y relation of E is emptythen C has no solutions.The set S 
an be found by a simple maximal �xpoint 
omputation. In pra
ti
ethe 
onsisten
y of the initial state may be de
ided in a lo
al fashion without
onstru
ting the entire modal transition system.Figure 6 shows the 
onsistent part of the modal transition system indu
edby (EnvTryTwice ,SpecTryTwice)|(EnvClient ,SpecClient ). It 
an then be minimizedin order to obtain EnvComp1 , shown in Fig. 3. Similarly SpecComp1 from Fig. 3has been obtained by minimizing SpecTryTwice |SpecClient .6 Interfa
e AutomataThe relation of our theory to interfa
e automata [5, 6℄ requires spe
ial attention,as we address several issues of that work; most importantly the representationof assumptions and guarantees within a single automaton. We 
learly separateassumptions from guarantees, and the pairs of assumptions and guarantees 
anbe 
onstru
ted independently. In [6℄ Alfaro and Henzinger dis
uss stati
 As-sume/Guarantee interfa
es featuring a similar split, however they do not persuethe idea to the dynami
 
ase.In a larger perspe
tive our work 
an be seen as a study of building interfa
etheories as su
h: starting with a sele
tion of the building blo
ks, going throughrequirements analysis, deriving the 
omposition operator, and studying its gen-erality. Let us review this pro
ess brie�y. We begin with sele
ting importantingredients su
h as a 
omponent model, an interfa
e model, an implementationrelation and a re�nement relation. The parti
ular 
hoi
e of input-enabled sys-tems and (relativized) tra
e in
lusion is not 
ru
ial for our developments. In fa
twe believe that a similar theory 
an be built using (relativized) simulation, or fortimed automata. We 
hoose I/O automata and tra
e in
lusion be
ause they arevery di�erent from Alfaro and Henzinger's interfa
e automata, so we in
iden-tally provide a 
omponent theory for a di�erent 
ommunity�the I/O automata
ommunity. At the same time our 
hoi
e 
hallenges some opinions expressed in[5, 6℄ that building su
h a theory, espe
ially supporting 
ontravariant re�nement,is impossible using language in
lusion 
riteria or in a non-blo
king setting.



Furthermore we show how the 
omposition operator 
an be derived fromrequirements (by analysis, redu
tion and automated solving), while Alfaro andHenzinger introdu
e this operator in a rather ad ho
 manner. After having de-rived our operator we dis
uss its generality, and 
on
lude that it is indeed themost general operator possible, meeting our requirements with respe
t to tra
ein
lusion, with respe
t to the � re�nement, and with respe
t to 
ompatibilitywith other 
omponents. We 
onje
ture that the operator of our prede
essors isalso the most general in their setting, however they never make that 
laim.Let us now draw a formal 
orrespondan
e between the two interfa
e theories.De�nition 22 (after [6℄). An interfa
e automaton is a six-tuple S = (statesS ,startS , inS , outS , intS , stepsS), where statesS is a �nite set of states, startS ∈statesS is an initial state, inS, outS, and intS are three pairwise disjoint sets ofinput, output, and internal a
tions respe
tively, and stepsS ⊆ statesS × a
tS ×statesS is an input-deterministi
 transition relation, with a
tS = inS∪outS∪intSNoti
e that the transition relation of interfa
e automata may be non input-enabled. Synta
ti
 
omposability of interfa
e automata is governed by the samerule as the 
omposability of I/O automata, de�ned on p. 4. The 
omposed inter-fa
e is 
omputed by taking a produ
t of the two automata, and removing fromit all in
ompatible states. A state of the produ
t is an error state if one of its
omponents 
an produ
e a shared output, that the other is unable to re
eive. Astate of the produ
t is in
ompatible if it 
an rea
h an error state by an exe
utionover internally 
ontrollable transitions (transitions labeled with a
tions from:intS1|S2
∪ outS1|S2

).De�nition 23. Two synta
ti
ally 
omposable interfa
e automata S1 and S2 are
ompatible i� removing all in
ompatible states from their produ
t leaves an in-terfa
e automaton with a non-empty set of rea
hable states.The fun
tion unzip de�ned below translates an interfa
e automaton to anI/O automaton interfa
e. If A is an interfa
e automaton then unzipA := (E,S),where statesS = statesE = statesA∪{T }, startS = startE = startA, inS = outE =inA, outS = inE = outA, intS = intE = intA. The transition relations of E and
S are 
reated from the transition relation of A by making it input-enabled onthe respe
tive input sets:stepsE = stepsA ∪ {(s, a, T )|s ∈ statesA, a ∈ inE , s

a6−−→A}stepsS = stepsA ∪ {(s, a, T )|s ∈ statesA, a ∈ inS , s
a6−−→A}Theorem 24. If A1 and A2 are two 
ompatible interfa
e automata, then unzipA1and unzipA2

are 
ompatible I/O automata interfa
es.The zip fun
tion is a reverse of unzip: it translates an I/O automata interfa
einto a single interfa
e automaton, by 
omputing the produ
t of the two partsusing the 
lassi
 algorithm [11, 
hpt. 4.2℄ from automata theory: zip(E,S) := A,where statesA = statesE × statesS , startA = (startE , startS), inA = inS , outA =outS , intA = intS ∪ intE , and stepsA = {((s, e), a, (s′, e′))|s a−→s′ and e a−→e′}.



Theorem 25. If (E1, S1), (E2, S2) are 
ompatible deterministi
 I/O automatainterfa
es, then zip(E1,S1), zip(E2,S2) are 
ompatible interfa
e automata.The fa
t that our 
ompatibility only implies 
ompatibility in the interfa
eautomata sense for unzippings of deterministi
 interfa
es is not surprising. It isa
tually expe
ted, due to the very di�erent nature of the re�nement relationsused in the two theories: tra
e in
lusion and alternating simulation [12℄.Alfaro and Henzinger 
hoose alternating simulation to support 
ontravarianttreatment of inputs and outputs. We stress that input-enabledness and rela-tivized tra
e in
lusion already guarantee 
ontravariant treatment of behaviorsin a very similar spirit. Still our theory somewhat stri
tly requires that im-plementations of an interfa
e have pre
isely the same sort as their interfa
es,so it is te
hni
ally not possible to substitute a ri
her 
omponent in pla
e of asimpler one, if they are the same on shared fun
tionality. We stress that thisde�
ien
y is not inherent, while it simpli�es the presentation. Contravariant sig-nature extensions 
an be easily realized with relativized tra
e in
lusion in theinput-enabled setting. Instead of requiring inI = inS and outI = outS in Def. 3,insist on inS ⊆ inI and outI ⊆ outS . In fa
t the only signi�
ant 
hange requiredin later developments is the addition of a side 
ondition to the independentimplementability rule:
∀I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2 andinI1 ∩ outS2

⊆ inS1
and inI2 ∩ outS1

⊆ inS2
implies E |= I1|I2 6 S . (6)This is the very same side 
ondition that Alfaro and Henzinger add to indepen-dent implementability in order to support 
ontravariant signature extensions. Itensures that even though the implementation allows additional inputs, it willonly be used as des
ribed in this interfa
e. The other 
omponents will not 
om-muni
ate with it on these additional inputs.7 Other Related WorkOur work relates dire
tly to the original version of interfa
e automata [5, 6℄,whi
h was later extended with time and resour
e information in [13℄ and [14℄.To strengthen the 
ase, we have used some examples from [6℄ adapting themto our framework, and aligned the terminology with [5, 6℄ as mu
h as possible.Another approa
h to 
ompatibility for blo
king-servi
es is taken by Rajamaniand Rehof in [2℄ targeting 
ompatibility of web servi
es. We work in the input-enabled asyn
hronous setting of I/O-automata [15℄, whi
h is semanti
ally 
loserto implementations of embedded systems. To the best of our knowledge similarproperties have not been studied in the I/O automata 
ommunity yet.The notion of relativized re�nement and equivalen
e, or more pre
isely sim-ulation and bisimulation, is due to Larsen [16, 17℄. It was so far applied in thesetting of proto
ol veri�
ation [18℄, automati
 testing [19℄ and modeling softwareprodu
t lines [7℄. Here we adapt it to a language in
lusion based re�nement.



The general method of solving systems of behavioral equations using disjun
-tive modal transition systems and bisimulation as a requirement was publishedin [20℄. The method presented in se
tion 5 is an adaptation of this earlier work toan input-enabled setting and language-in
lusion based re�nement. The originalmethod does not assume determinism of pro
esses in the system of 
onstraints.The preliminary version of this paper [21℄ featured a stronger de�nition of mu-tual deadlo
k freeness: E|S1 6 E2 and E|S2 6 E1. Being stronger, this formula-tion also implies independent-implementability, but it rules out many useful 
om-positions as in
ompatible. The relativized version proposed here (2) is weaker,but still strong enough to imply independent implementability. As we have seenin the previous se
tion, it behaves reasonably allowing roughly the same kindof 
ompatible interfa
es as interfa
e automata. The present paper, 
ompletelyrewritten, reworks the theory with this new 
hara
terization, adding asso
iativ-ity, re�nement of interfa
es, a new method for solving systems of inequalities,
ontravariant signature extension, and the 
orresponden
e to interfa
e automata.8 Con
lusionWe have proposed an interfa
e theory for distributed networks of asyn
hronous
omponents modeled as I/O automata. The 
hara
teristi
 feature of our inter-fa
es is an expli
it separation of assumptions from guarantees. Apart from theusual engineering advantages o�ered by su
h a separation of 
on
erns, it alsoallows modeling of families of interfa
es implemented by software produ
t lines.We demonstrated that it is possible to build a reasonably behaved interfa
etheory in an input-enabled setting, with language in
lusion as re�nement. Weemphasize that our derivation of interfa
e 
omposition is systemati
: we staterequirements for 
omposition and redu
e the problem to �nding a solution of a
orresponding system of behavioral inequalities. We also dis
uss the generalityof the 
onstru
ted interfa
e, 
on
luding that it exhibits the weakest assumptionsand the strongest guarantees that are possible with our requirements. Finallywe des
ribe a method for solving systems of inequalities arising in our setup anddraw a formal 
orresponden
e between the present work and interfa
e automata.Referen
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