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Abstract. Building on the theory of interface automata by de Alfaro
and Henzinger we design an interface language for Lynch’s I/O automata,
a popular formalism used in the development of distributed asynchronous
systems, not addressed by previous interface research. We introduce an
explicit separation of assumptions from guarantees not yet seen in other
behavioral interface theories. Moreover we derive the composition oper-
ator systematically and formally, guaranteeing that the resulting com-
positions are always the weakest in the sense of assumptions, and the
strongest in the sense of guarantees. We also present a method for solv-
ing systems of relativized behavioral inequalities as used in our setup and
draw a formal correspondence between our work and interface automata.

1 Introduction

A suitably expressive interface language lies at the very center of any component-
oriented development framework. Interfaces are abstractions of components, car-
rying all essential information necessary to establish cross-component compat-
ibility. Instead of reasoning about components directly, one typically examines
compatibility of their interfaces, while the adherence of a particular implemen-
tation to its interface is tested separately. This, not only allows for independent
development of components, but also by introducing compositionality helps to
combat the state space explosion problem in various automatic analyses.

Type annotations, type checking, and type inference have traditionally been
used to decide compatibility of components soundly with respect to memory
safety. However, static type correctness in this traditional sense fails to guar-
antee more elaborate properties, like correctness of communication, or deadlock
freeness. This observation has inspired a long line of research on behavioral type
systems and behavioral interface languages suitable for specification of highly
trusted computer systems (see [1 4] and references therein for examples).

We follow de Alfaro and Henzinger [5,6] in studying an automata based
interface language, or interface automata. Unlike them however, we explicitly
separate, in the interface description, the assumptions that a component may
make about its use from the guarantees that it needs to commit to. Assumptions
describe the possible behaviors of the component’s external environment, while
guarantees describe the possible behaviors of the component itself.

* Partly supported by Center for Embedded Software Systems (CISS) in Aalborg.
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Each interface in our theory consists of two I/O automata. The first, called
the environment, represents assumptions. The second, called the specification,
describes guarantees. Figure 1 shows an interface for a Client component con-
sisting of the automata Envciient and Spec cyen:- The arrows incoming to or
outgoing from the box surrounding each of the automata visualize their static
types, or signatures. The environment Enuvcyen: Specifies that even though the
static type does allow a fail action, the emission of this action is disallowed for
all compliant execution environments. The only legal input is send. One can still
use the Client component in a context that syntactically permits fail, but the
behavior of the Client is only guaranteed in environments that do not fail.

Alfaro and Henzinger model assumptions about the use of a component by
the interface’s inabilities to receive inputs. The output transitions of the very
same interface automaton describe its guarantees. Since we separate the two, we
alleviate the need for blocking. Our automata are input enabled—accepting any
input from their signature in every state. In order to avoid clutter we usually do
not draw loop transitions, which correspond to ignoring an input. There is one
such implicit transition 1-=",1 in Env cpiens and three in Spec cyion:-

Two interfaces can be combined into a composite interface, describing a new
set of assumptions and guarantees. Interface TryTwice, presented in Fig. 2 can
be composed with Client. The two components do not form a closed system, but
are intended for use together with a further unspecified LinkLayer component.

Composition of interfaces is a central construction in any interface theory.
One of our contributions is that the composition is derived systematically: we
formally state requirements for it in the form of a system of inequalities, and
derive a result of the composition as a maximal solution of this system. Conse-
quently properties of the composition hold by construction.

Figure 3 shows the interface resulting from composing Client and TryTwice.
Later we shall explain how it has been computed. Now observe that any com-
ponent legally interacting with this new interface may not send a nack twice
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in response to the transmt request a simple consequence of the fact that this
would make TryTwice respond with a fail to Client, violating the assumptions of
the latter. The additional state T manifests the fact that the computed environ-
ment expresses the weakest assumptions. It allows receiving arbitrary behavior
after a second transmt in a row, because any compliant implementation would
never send it, and thus would never be affected by the subsequent behaviour.

An advantage of separating assumptions from guarantees is that one of the
automata can be changed without affecting the other. Thus the same guarantees
can be used for multiple interfaces. In [7] we have argued that this is useful for
modeling software product lines: a family of component variants may be specified
using a single specification (guarantee) and multiple environmental restrictions
(assumptions). An advanced compiler may use the assumptions to derive special-
ized versions of the component from the same source code. Let us illustrate this
with an example. Figure 4a gives an alternative environment Env y,nack for the
SPEC pryTwice SPecification. This environment disallows the sending of a nack as
a response to a trnsmt request. Any implementation of TryTwice is also an im-
plementation of (Env noNack, Spec TryTwice). If it is only used in Env yonack, then
it could be automatically specialized to these specific circumstances. The error
handling code could be removed as it is not needed in such a context. The com-
position Comp2 = (Env NoNacks SPEC 1y Tuice )| (ENV Client s SPEC cyent) has exactly
the same specification part as the Compl composition. The resulting environ-
ment Env compe (Fig. 4b) disallows the generation of the nack input even though
the static type permits this.

As we have also argued in [7] the separation supports a simple declarative
style of modeling assumptions: simple properties can be modeled as standalone
automata and combined using the process algebraic operators of sum and prod-
uct, corresponding to disjunction and conjunction of properties respectively.

An interesting theoretical side effect of our exposition, is an informal corre-
spondence drawn between blocking and non-blocking interface theories. A single



blocking interface automaton of [5] expresses both the assumptions of a compo-
nent and its commitments. When a blocking interface automaton is unable to ac-
cept an input, it effectively assumes that any compatible environment will never
provide it. In the theory for non-blocking systems the interfaces are composed of
two non-blocking automata, and the same effect is achieved by explicitly using
one of the automata for describing the permissible behavior of the surroundings.
The paper develops as follows. Section 2 defines I/O automata and interfaces.
Section 3 discusses refinement of interfaces. The most central section, Section 4,
is devoted to composition, while a more technical section, Section 5, is devoted
to systems of inequalities used in section 4 and is a contribution in itself. But
reading it is not essential for appreciating our interface theory. Section 6 draws
a correspondence between interface automata and our interfaces, while section 7
discusses other related work. We conclude in section 8. A particularly interested
reader can find the proofs of all our claims in an upcoming BRICS report.

2 1I/0 Automata and Their Interfaces

Definition 1. An I/0 automaton S=(statess, starts, ing, outs, ints, stepsg) is
a 6-tuple, where statess is a set of states, starts € statess is an initial state,
ins is a set of input actions, outs a set of output actions, and ints is a set
of internal actions. All of the action sets are mutually disjoint. We abbreviate
exts = ingUouts and actg = extgUintg. Then stepsg C statess X actg X statesg
is the set of transitions. I/0 automata are input enabled: for every state s and
any action i € ing there exists a state s’ and a transition (s,i,s’) € stepsg.

We write ¢-%>5 ¢’ if (¢,a,q’) € stepsg. We often explicitly suffix external ac-
tions with direction of communication writing ¢-%-g ¢’ if a € outg, and ¢-2>g ¢’
if a € ing. Notice that the labels a! and a? still denote exactly the same action,
and we can drop the suffixes whenever the direction of communication is irrele-
vant. We write g-%4, meaning that there is no ¢’ such that ¢-2-¢’.

Definition 2. An execution of an 1/O-automaton S starting in a state ¢° is a
finite sequence of labels ¢°,ag,q", a1,¢%, az,...,q" Y, an_1,q" such that all ¢*’s
are members of statesg, all a;’s are members of actg and for every k =0...n—1
it is the case that ¢® % g ¢"T'. A trace o of S is an execution ) of S starting
in the initial state, with all the states and internal actions deleted: o = | extg,
where ¢ | X denotes a sequence created from 1 by removing symbols that are
not in set X. The set of all traces of automaton S is denoted Trg.

Two I/O-automata S, and Ss are syntactically composable if their input and
output sets do not overlap and their internal actions are not shared: ing,Ning, =
outs, Nouts, = ints, Nacts, = acts, Nints, = 0. Two syntactically composable
automata Sy = (statess, , starts, , ins, , outs, , ints, , stepsg ) and Sy = (statess,,
starts,, ing,, outs,, ints,, stepsg, ) can be composed into a single product automa-
ton S = S1|S2, where S=(statess, starts, ing, outs, intg, stepsg) and statess =
statess, x statess,, starts = (starts,, starts,), ing = ing, U ing, \ ouls, \ outs,,



outg = outs, U outg, \ ing, \ ins,, intg =intg, Uints, U (exts, Nextg, ), and stepsg
are defined by the following rules:

(qllv q2)
if g2-% 5, q5 and a € actg, \ acts, then (q1, q2)-% 5,15, (q1, q5)

if Q1le qi and qQL)Sz qIZ then (QIv qQ)L)S1|S2 (qllv qé)

if g1-%s5, ¢; and a € actg, \ acts, then (q, q2)-%5,15,

In practice unreachable states may be removed from the product, without af-
fecting the results presented below.

Our composition (same as in [6]) differs from the standard I/O automata com-
position in that it applies hiding immediately. It is equivalent with the standard
composition as long as each action is only shared by at most two components.

We define an interface model to be a pair (E,S) of I/O automata:

Definition 3. A pair of I/0 automata (E,S) is an interface if E|S is a closed
system, i.e. ing=outs and outg =1ing.

The environment automaton E drives the specification automaton S. Any
implementation I of S must conform to S as long as it is receiving input that
conforms to E. The behavior of I on sequences of inputs that cannot be provided
by E is not constrained. We formalize this using relativized refinement:

Definition 4. An I/O automaton I implements an interface (E,S), written
EETILS, iff outy = outs and iny = ing and Trg N Tr; C Trg.

3 Refinement of Interfaces

We establish a hierarchy on interfaces in order to quantify their generality.

Definition 5. Let (E1,51) and (E2,S2) be two interfaces with the same signa-
tures. We will say that (E1,51) is a stronger interface than (Ea,Ss2), written
(E1,S51) = (E2,52), if (E1,S1) has less implementations than (E2,S2), so for
any I/0 automaton I: Ey =1 < Sy implies By =1 < Ss.

The refinement of interfaces can be seen as a subtyping relation in a behav-
ioral type system for components. In such an interpretation we would say that
(E1,51) is a subtype of (Fa, S2). We propose several simple sound characteriza-
tions of the above refinement that are useful in making proofs:

Theorem 6. Let (E1,S1), (E2,S2) be interfaces with identical signatures. Then

1. Trg,N Trs, = Trg,N Trs, implies (E1,S51) < (E2,S2) and (E3, S2) = (E1,51)
2. Trg, C Trg, A\ Trs, C Trs, implies (F1,51) < (F2,52)
3. Trg,\ Trs, 2 Trg,\ Trs, implies (E1,S1) = (F2,S2)

The above characterizations are convenient in establishing subtyping rela-
tions among interfaces in many concrete cases. However none of them are com-
plete. The refinement of interfaces can be characterized in a sound and complete
manner using a notion of tests that resembles failure traces of Hoare [8], but
determinized, relativized with respect to the environment, and suffix closed.



Definition 7. The set of conformance tests of interface (E,S) is defined as:
testp,sy={0-aloc Trg N Trs, o -ac Trg \ Trs} - exty ,
where X* denotes the set of all finite sequences over alphabet X .

Theorem 8. Let (E1,S1) and (E2,S2) be two interfaces with identical signa-
tures. Then test g, g,) 2 test( g, s,) iff (E1,51) = (F2, Sa).

Without spelling out the details, we remark that a finite automaton, such
that testp ) is its accepted language, can be computed in quadratic time, and
can be used for testing containment in applications of the above theorem.

4 Interface Compositions

We would like to abstract compositions of components by compositions of their
interfaces. For any two compatible interfaces (Fy, S1) and (E2,S2) we should be
able to derive an interface of their composition (E,S), the one that is imple-
mented flawlessly by any two implementations of (E7,S1) and (Es, Se).

Two interfaces are syntactically composable if the I/O automata comprising
them are pointwise syntactically composable. This guarantees that any compo-
nents I; and I implementing syntactically composable interfaces (F7,S1) and
(E2,S3), are also syntactically composable. The question that we want to ad-
dress is the dynamic compatibility of I; and I5: can I; violate the environmental
assumptions expressed in E5? Can Iy violate the assumptions in F;?

We may be tempted to say that the composite interface is the composition
of the interface parts: (E,S) = (E1|Ea, S1]S2). This construction, however, is
unsound. It is possible to find two compliant implementations that, when com-
posed together, violate (E,S). In order to arrive at a sound and complete notion
of composition, we will state the requirements for the composite interface, and
then derive the construction from them. The three requirements are: independent
implementability (6], mutal deadlock freeness, and associativity.

Independent implementability means that (F,S) is such, that the implemen-
tations of (F1,51) and (Ea,S2) can be developed independently of each other,
and their composition will implement the composition of their interfaces:

For all Il,IQ. E1 ': Il g 51 and E2 ': IQ g SQ 1mplle§ E ': 11|IQ < S . (1)

Mutual deadlock freeness means that any two correct implementations, when
composed and embedded in an environment that obeys the assumptions of F,
will not violate each other’s assumptions:

For all Il,IQ.El ': Il < 51 and EQ ': IQ < 52
implies [1y = E|ls < Ey and I = E|I; < B2 . (2)

You may find it useful to refer to the flowgraph on Fig. 5a, while studying the
above rule. Observe that in the composed system I; is indeed the environment
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in which E|I, operates. The composition E|Is is also the environment for I; and
it is supposed not to violate any of the assumptions expressed in Ej.

Finally, associativity means that in whatever order compositions are applied,
they give rise to equivalent interfaces:

((E1,51)| (B2, S2)) | (E3,53)
(E1,81) | (B2, S2) | (B3, S3))

(E1,51) [ ((E2, S2) | (E3,S3))

=
= ((E1,51) | (B2, 52)) | (E3,S3) - (3)

A disadvantage of the above requirements is that they are not constructive.
They rely on quantification over all implementations, which makes them useless
for computing the composition. Fortunately the quantification can be eliminated.
The following theorem reduces the property of mutual deadlock freeness of all
implementations to mutual deadlock freeness of the interfaces being composed:

Theorem 9. Any environment E fulfills the requirement (2) iff it fulfills the
following condition:

Sl ': E|SQ < E1 and SQ ': E|Sl < E2 . (4)

The above reduction is very fortunate, as (4) also implies independent im-
plementability with the choice of the guarantees component to be Sp|Ss:

Theorem 10. Let (E1,S1) and (Es, S2) be syntactically composable interfaces,
and E be an environment I/0O automaton satisfying property (4). Then for all I
and Iy such that By =11 < 51 and Es | Io < S2 we have E = I |Io < 51]5%.

Consequently if we were able to find an environment E satisfying (4), then
the interface (F, S1]S2) would satisfy mutual deadlock freeness and independent
implementability a good candidate for the composition of environments. How-
ever, the environment satisfying (4) may not always exist. This is the case, if S;
unconditionally, independently of E’s behavior, violates the assumptions of S,
expressed in Fs. In this case (Eq,S1) and (E2,S2) are said to be incompatible.

Definition 11. Interfaces (FE1,51), (Ea,S2) are incompatible if there exists no
I/0 automaton E such that: S; = E|S2 < E7 and Sz = E|S1 < Es.

Figure 5b shows an interface AlwaysFail, which has a signature compati-
ble with the signature of Client. Nevertheless the dynamic types of Client and
AlwaysFail are incompatible in that they share only one nonempty trace, con-
sisting of one step, and this trace ends in a deadlock.



In fact there typically exist many pairs (F,S) that satisfy all our require-
ments. For example an interface (M, U), consisting of a mute environment M
never producing any outputs and a universal system specification U generating
all possible traces, would satisfy the composition requirements of any two com-
patible interfaces. The interface (M, U) allows any implementation it says that
its implementations will behave in an arbitrary fashion (U), not allowing any
external stimulation (M). Clearly, as a component interface, (M, U) is useless.

We should ensure that our composition operator produces the interface that
carries over all the information available from its components. It must have the
smallest possible set of implementations, while still satisfying all our require-
ments. Similarly, it must maximize the set of components compatible with it (as
opposed to the set of components implementing it). We shall call this optimal
interface the most general. Intuitively to achieve this optimality we need an en-
vironment, F satisfying the requirements such that it is maximal with respect to
trace inclusion. By increasing the set Trgp we make it easier for components to
be compatible with our interface. Similarly we make it harder to implement the
composite interface, as increasing the set of traces of E decreases the assump-
tions that an implementation can make. The following theorem says that such a
maximal F always exists for compatible interfaces:

Theorem 12. Let (E1,S1) and (E2,S3) be two syntactically composable inter-
faces. If there exists an I/O automaton E enjoying property (4) then there also
exists a maximal such environment with respect to trace inclusion.

Theorem 13. The composition operator mapping interfaces (E1,S1) and (Eq, S2)
to (E,S1|S2), where E is the mazimal solution of (4), is associative.

Theorems 12 13 together with our earlier observations suggest that the inter-
face (E, S1|S2), where E is this maximal solution of equations (4), is even more
likely to be the most general interface that we are searching for. A maximal
solution of (4) can be found algorithmically for finite state interfaces. Section 5
describes a method that can be used for this purpose.

As increasing the environment E makes the interfaces more general, so does
decreasing the specification S (within the limits set by the requirements). For
any particular selection of E satisfying (1), no S can be smaller (relative to E)
than S7|S2, because S and So themselves are valid implementations. So S1|S2
is the smallest possible specification of the composite interface with respect to
any particular choice of E. This observation can be generalized to a claim that
(E, S1|S2) is the most general interface possible:

Theorem 14. Let (Ey1,S1), (E2,S2) be interfaces. Let E be the maximal so-
lution to (4) and let (E',S") satisfy independent implementability and mutual
deadlock freeness. If (E',S") is compatible with (E",S") then also (E, 51|S2) is
compatible with (E",S").

Having concluded that (E,S1|S2), where E is a maximal solution of (4), is
well defined and the most general, we can use it as a definition of the composition
operator. We will denote this composite interface by (E1,.51)|(E2, S2).

Furthermore our composition of interfaces is complete in the following sense



Theorem 15. For compatible interfaces (E1,S1), (Ea,S2) and any (E',S") sat-
isfying independent implementability and mutual deadlock freeness:

(E1, S1)|(E2, S2) < (E',S") .

We remark that our composition would not be complete if we only required
independent implementability. It seems likely from the work presented in [9] that
it is indeed impossible, for our setting, to be complete in the above sense using
only independent implementability. Similarly we would not be complete if we
only required mutual deadlock freeness, simply because it does not restrict the
S component, which can then be taken to be mute, likely yielding a smaller
interface than ours. Still our composition is sound and complete with respect
to both requirements combined. Requirements (2) and (3) have been introduced
solely for their inherent usefulness. Their interplay guaranteeing soundness and
completeness is a pleasant side effect.

Definition 16. Let (E1,S51), (E2,S2) be syntactically composable interfaces.
Their composition, denoted (E1,S1)|(E2, S2), is an interface (E, S1]S2), where
E has the same signature as F1|E2, and is a mazimal solution of (4).

The operator of Def. 16 is associative, supports independent implementability
and mutual deadlock freeness, and produces the most general interfaces.

5 Solving Behavioral Inequalities

Computing compositions of interfaces requires a method for finding solutions
of systems of relativized linear inequalities. In particular we are interested in
systems of inequalities of the following form:

P EE|Si<F
C(E) : (5)

P, = E|Sn < F,

where {P;}iz1..m, {Si}i=1.m and {F;}i—1..m are states of the three I/O automata
P, S and F and E is a single unknown automaton. We are interested in finding
a greatest such E with respect to <, or in reporting incompatibility between
components, if no solutions exist. Since in (4) various components of inequalities
come from separate automata, in order to apply the method below we need to
construct three automata P, S and F' as the disjoint unions of the automata that
appear in the given place of the constraints in (4). We introduce three convenient
mapping functions in, out and ezt which from a state of the two automata F' and
S return respectively the set of input, output or external actions of the automata
that this state originates from in the disjoint union computation. We will use
them in the algorithm below to recover some of the signature information lost
by making the disjoint union.

For simplicity of exposition we shall also assume that all I/O automata in-
volved in the systems are deterministic. Otherwise they can be determinized



without loss of information, as long as our refinement criterion is based on lan-
guage inclusion. This assumption is not inherent to the method, though.

We should now state a property similar to Theorem 12, but formulated for
systems of inequalities in general. We expand it to any number of constraints
and do not require that all the I/O automata come from the same interfaces.

Theorem 17. Let C(E) be a finite system of relativized inequalities:

P =E|Si<F
C(E) :
P, EE|S, < Fpn

If C(E) has a solution (an I1/O automaton satisfying all the constraints), then
C(E) also has a greatest solution with respect to trace set inclusion.

We begin with constructing a modal transition system [10] corresponding
to C(E), and then choose a maximal solution from its states and transitions.
From our perspective modal transition systems are automata with two transition
relations —s 0y and —s pyst.

Definition 18. A modal transition system is a quadruple S = (Q, A, —may,
—smust), Where Q is a set of systems of constraints (states), A is a set of actions,
—may C Q X A X Q is the may transition relation, and —ust € Q X A X Q) is
the must transition relation, — must C —may-

Systems of relativized inequalities can be seen as sets of constraint triples
{(P1,51, F1), ..., (Pm,Sm, Fm)} over the solution E. The constraints evolve when
any of their components, including the unknown F, takes an action. This evo-
lution comprises not only state changes of the I/O automata, but also removing
and introducing constraints. Legal actions of the unknown component, £ in any
of its states are dependent on the states of the constraints on what all the P;’s,
S;’s and all the F;’s can do. This is why we label states of our modal transition
systems with systems of inequalities (sets of constraints). All the steps that are
allowed by the constraints, but are not strictly required (like a possibility to
produce an output) should give rise to may transitions in the modal transition
system. While all the steps that are strictly required (like input actions enforced
by input-enabledness) give rise to corresponding must transitions.

Formally three I/O automata P, S, F' induce a modal transition system &=
(Q, Aoy —may; —must), where elements of @ are sets of constraints over states
of P, S and F, enriched with a distinct primitive constraint FALSE denoting an
empty set of solutions. The initial state Ag is equal to the set {(P1,S1, F1),...,
(Py Sy Fi) } of initial constraints, and the transition relations are defined ac-
cording to the following rules:

E“—!>m,,,y E'’ if and only if both of the following rules are satisfied:

For all (P, S,F) € E such that a € outg \ ing
If 3F'. F%SF" and 3P'. P2, P’ then (P',S,F') € E'
Else if IP'.P-2"5P" and F-%4 then FALSE € E’



For all (P, S,F) € E and all S’ such that a € outg N ing
If S-9%.,5" also (P,S',F) € E’

B st B and B, E' iff both of the following rules are satisfied:

For all (P,S,F) € E and all F’ such that a € ing \ outg
If F<,F and P-%- P’ then (P',S,F') € E'

For all (P, S,F) € E such that a € ing N outg
If S-25" then (P,S',F) € E'

Each state E € @ of £ is minimal such that it satisfies the above transition rules
and the following closure rules:

For all (P,S,F) € E and a € exts N extp
If358’. 52,58 and IF'. F 2, F' and IP'. PP’
then also (P’,S’, F') € E.
For all (P,S,F) € E and a € extsNextp
If S-9.5" and F-%4 and 3P'. P-*5 P’ then FALSE € E.

The two may rules discuss E making an output transition concerning an
external output, or an internal communication with S respectively. The must
rules state that E needs to accept all the inputs from the outside and from S
respectively. Finally the closure rules allow .S to advance without any interference
with F on its own external actions. Whenever there is a possibility of violation
of the relativized trace inclusion, we add false to the target state of F, hinting
that E should not be allowed to make that step.

Definition 19. The state consistency relation S over a modal transition system
€ = (Q, A, —may, —must) is the mazimal subset of Q such that if E € S then
FALSE ¢ E and whenever E-%s ., E' then E' € S.

Definition 20. A consistent set of transitions T of a modal transition system
E = (Q, A, —may, —must) With respect to consistency relation S is a mazimal
subset of —s may, where whenever (s,a,s’) € T then s € S and s’ € S.

Theorem 21. Let C(E) be a system of inequalities as required above, and £ =
(Q, A, —may, —must) be the modal transition system induced by C. Then the
mazimal solution of C(E) is an I/O automaton E such that its set of states
statesp is a mazimal consistency relation over &,

startg ={(F1,51)s s (FinySm)}s

m m

ing = U(mpi \ing,) U U(outsi \ outp,)
i=1 i=1
m m

outp = U(outpi \ outg,) U U(insi \ing),

i=1 =1



|

STO |= 0| SCO < ETO
SCO |= 0| STO < ECO

ST1 =0 SC1 < ET1

ST5 =0 | SC1 < ET5
SC1 =0 | ST5 < EC1
STO =0 | SC0 < ETO
SO0 =0 | ST0 < ECO

ack!

ST4 =0 | SC1 < ET4
SC1 |- 0| ST4 < EC1

SC1 |= 0| ST1 < EC1 | STL =0 SC1 < ET1
P SC1 |= 0| ST1 < ECL
ack! .~ 0
trnsmt? e trnsmt?
Y - trnsmt? trnsmt? Y
ST2 =0 | SC1 < ET2 nack! |ST3 =0|SC1 < ET3
LSCI):D\STZQECI ***** #1501 =0 ST3 < EC1 [TRUE]
< 4

trnsmt?

Fig. 6. The resulting modal transition system for the computation of Envcomp:.

and its set of transitions stepy is a mazimal consistent set of transitions of £
with respect to statesg. If the mazimal state consistency relation of £ is empty
then C has no solutions.

The set S can be found by a simple maximal fixpoint computation. In practice
the consistency of the initial state may be decided in a local fashion without
constructing the entire modal transition system.

Figure 6 shows the consistent part of the modal transition system induced
by (Env Ty Twices SPEC Ty Tusice ) (ENV Client , SPEC Gijent)- 1t can then be minimized
in order to obtain Envcompi, shown in Fig. 3. Similarly Specy,,,; from Fig. 3
has been obtained by minimizing Spec g, ryice | SPECrient-

6 Interface Automata

The relation of our theory to interface automata [5, 6] requires special attention,
as we address several issues of that work; most importantly the representation
of assumptions and guarantees within a single automaton. We clearly separate
assumptions from guarantees, and the pairs of assumptions and guarantees can
be constructed independently. In [6] Alfaro and Henzinger discuss static As-
sume/Guarantee interfaces featuring a similar split, however they do not persue
the idea to the dynamic case.

In a larger perspective our work can be seen as a study of building interface
theories as such: starting with a selection of the building blocks, going through
requirements analysis, deriving the composition operator, and studying its gen-
erality. Let us review this process briefly. We begin with selecting important
ingredients such as a component model, an interface model, an implementation
relation and a refinement relation. The particular choice of input-enabled sys-
tems and (relativized) trace inclusion is not crucial for our developments. In fact
we believe that a similar theory can be built using (relativized) simulation, or for
timed automata. We choose I/O automata and trace inclusion because they are
very different from Alfaro and Henzinger’s interface automata, so we inciden-
tally provide a component theory for a different community the I/O automata
community. At the same time our choice challenges some opinions expressed in
[5, 6] that building such a theory, especially supporting contravariant refinement,
is impossible using language inclusion criteria or in a non-blocking setting.



Furthermore we show how the composition operator can be derived from
requirements (by analysis, reduction and automated solving), while Alfaro and
Henzinger introduce this operator in a rather ad hoc manner. After having de-
rived our operator we discuss its generality, and conclude that it is indeed the
most general operator possible, meeting our requirements with respect to trace
inclusion, with respect to the < refinement, and with respect to compatibility
with other components. We conjecture that the operator of our predecessors is
also the most general in their setting, however they never make that claim.

Let us now draw a formal correspondance between the two interface theories.

Definition 22 (after [6]). An interface automaton is a siz-tuple S = (statesg,
startg, ing, outs, intg, stepsg), where statess is a finite set of states, starts €
statess is an initial state, ing, outs, and intg are three pairwise disjoint sets of
input, output, and internal actions respectively, and stepsg C statess X actg X
statesgs is an input-deterministic transition relation, with acts = ingUoutgUintg

Notice that the transition relation of interface automata may be non input-
enabled. Syntactic composability of interface automata is governed by the same
rule as the composability of I/O automata, defined on p. 4. The composed inter-
face is computed by taking a product of the two automata, and removing from
it all incompatible states. A state of the product is an error state if one of its
components can produce a shared output, that the other is unable to receive. A
state of the product is incompatible if it can reach an error state by an execution
over internally controllable transitions (transitions labeled with actions from:

intg, |5, U outg, |s, ).

Definition 23. Two syntactically composable interface automata Sy and S are
compatible iff removing all incompatible states from their product leaves an in-
terface automaton with a non-empty set of reachable states.

The function unzip defined below translates an interface automaton to an
I/O automaton interface. If A is an interface automaton then unzipa := (E, S),
where statess = statesg = statesAU{T}, startg = startg = starta, ing = outg =
ina, outs = ing = outy, intg = intg = inty4. The transition relations of E and
S are created from the transition relation of A by making it input-enabled on
the respective input sets:

stepsy = steps, U{(s,a,T)|s € statess,a € ing,s-%5a}

stepsg = steps, U{(s,a,T)|s € statess,a € ing,s-25 4
s A

Theorem 24. If Ay and Ay are two compatible interface automata, then unzipa,
and unzipa, are compatible I/0 automata interfaces.

The zip function is a reverse of unzip: it translates an I/ automata interface
into a single interface automaton, by computing the product of the two parts
using the classic algorithm [11, chpt. 4.2] from automata theory: zipg gy := A4,
where statesy, = statesg X statesg, starty = (startE, starts), mg = ing, ouly =
outs, inta = intg U intg, and steps, = {((s,e),a, (¢, €¢’))|s—%s" and e-%e’}.



Theorem 25. If (Eq,51), (E2,S2) are compatible deterministic 1/0 automata
interfaces, then 2ip(g, s,), 2iP(E,,s,) are compatible interface automata.

The fact that our compatibility only implies compatibility in the interface
automata sense for unzippings of deterministic interfaces is not surprising. It is
actually expected, due to the very different nature of the refinement relations
used in the two theories: trace inclusion and alternating simulation [12].

Alfaro and Henzinger choose alternating simulation to support contravariant
treatment of inputs and outputs. We stress that input-enabledness and rela-
tivized trace inclusion already guarantee contravariant treatment of behaviors
in a very similar spirit. Still our theory somewhat strictly requires that im-
plementations of an interface have precisely the same sort as their interfaces,
so it is technically not possible to substitute a richer component in place of a
simpler one, if they are the same on shared functionality. We stress that this
deficiency is not inherent, while it simplifies the presentation. Contravariant sig-
nature extensions can be easily realized with relativized trace inclusion in the
input-enabled setting. Instead of requiring in; = ing and out; = outg in Def. 3,
insist on ing C in; and out; C outs. In fact the only significant change required
in later developments is the addition of a side condition to the independent
implementability rule:

VIl,IQ.El ': Il < Sl and E2 ': .[2 < SQ and
inr, N outs, C ing, and ing, N outs, C ing, implies E = I;|I; < S . (6)

This is the very same side condition that Alfaro and Henzinger add to indepen-
dent implementability in order to support contravariant signature extensions. It
ensures that even though the implementation allows additional inputs, it will
only be used as described in this interface. The other components will not com-
municate with it on these additional inputs.

7 Other Related Work

Our work relates directly to the original version of interface automata [5,6],
which was later extended with time and resource information in [13] and [14].
To strengthen the case, we have used some examples from [6] adapting them
to our framework, and aligned the terminology with [5,6] as much as possible.
Another approach to compatibility for blocking-services is taken by Rajamani
and Rehof in [2] targeting compatibility of web services. We work in the input-
enabled asynchronous setting of I/O-automata [15], which is semantically closer
to implementations of embedded systems. To the best of our knowledge similar
properties have not been studied in the I/O automata community yet.

The notion of relativized refinement, and equivalence, or more precisely sim-
ulation and bisimulation, is due to Larsen [16,17]. It was so far applied in the
setting of protocol verification [18], automatic testing [19] and modeling software
product lines [7]. Here we adapt it to a language inclusion based refinement.



The general method of solving systems of behavioral equations using disjunc-
tive modal transition systems and bisimulation as a requirement was published
in [20]. The method presented in section 5 is an adaptation of this earlier work to
an input-enabled setting and language-inclusion based refinement. The original
method does not assume determinism of processes in the system of constraints.

The preliminary version of this paper [21] featured a stronger definition of mu-
tual deadlock freeness: E|S; < Es and E|S2 < E;. Being stronger, this formula-
tion also implies independent-implementability, but it rules out many useful com-
positions as incompatible. The relativized version proposed here (2) is weaker,
but still strong enough to imply independent implementability. As we have seen
in the previous section, it behaves reasonably allowing roughly the same kind
of compatible interfaces as interface automata. The present paper, completely
rewritten, reworks the theory with this new characterization, adding associativ-
ity, refinement of interfaces, a new method for solving systems of inequalities,
contravariant signature extension, and the correspondence to interface automata.

8 Conclusion

We have proposed an interface theory for distributed networks of asynchronous
components modeled as I/O automata. The characteristic feature of our inter-
faces is an explicit separation of assumptions from guarantees. Apart from the
usual engineering advantages offered by such a separation of concerns, it also
allows modeling of families of interfaces implemented by software product lines.

We demonstrated that it is possible to build a reasonably behaved interface
theory in an input-enabled setting, with language inclusion as refinement. We
emphasize that our derivation of interface composition is systematic: we state
requirements for composition and reduce the problem to finding a solution of a
corresponding system of behavioral inequalities. We also discuss the generality
of the constructed interface, concluding that it exhibits the weakest assumptions
and the strongest guarantees that are possible with our requirements. Finally
we describe a method for solving systems of inequalities arising in our setup and
draw a formal correspondence between the present work and interface automata.
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