
Efficient Interactive Configuration
of Unbounded Modular Systems

Erik Roland van der Meer
IT University of Copenhagen

ervandermeer@itu.dk

Andrzej Wasowski
IT University of Copenhagen

wasowski@itu.dk

Henrik Reif Andersen
IT University of Copenhagen

hra@itu.dk

ABSTRACT
Interactive configuration guides a user searching through a
large combinatorial space of solutions to a system of con-
straints. We investigate a class of very expressive underly-
ing constraint satisfaction problems: modular recursive con-
straint systems of unbounded size. A precomputation step
is used to obtain a configuration algorithm for such systems
that supports the user efficiently with bounded response
time. This precomputation step determines all solutions for
each module, which are computed and stored in compact
data structures such as Binary Decision Diagrams (BDDs),
in order to eliminate run-time search. The precomputation
step also detects ill-behaved module collections that have no
finite solutions. The runtime interaction algorithm scales
well as its response time only depends on the amount of the
information passed locally between the modules, and not on
the size of the entire configured structure. Our algorithm
was implemented and tested on an industrial example, and
gives good response times. We believe this is the first known
sound and complete algorithm for solving unbounded inter-
active configuration problems, with bounded response time
per interaction.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Logic and constraint pro-
gramming; I.2.1 [Artificial Intelligence]: Applications and
Expert Systems

General Terms
Algorithms, Languages, Performance

Keywords
Interactive configuration, Constraint satisfaction

1. INTRODUCTION
Difficulty in configuring complex software or devices is a

major obstacle in increasing sales of many technologically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

advanced products. Computer assisted configuration gains
attention, as many products become more customizable and
more complex. Interactive configurators are applied in elec-
tronic sales, power supply restoration, customization of con-
trollers for embedded systems, ERP software, etc.

An interactive configurator assists its user in her search
through a combinatorial space of configurations for a given
wanted solution. The search progresses by repeated choices
of values for variables in the underlying Constraint Satis-
faction Problem. The guidance takes the form of comput-
ing projections of the future valid choices down to the do-
mains of the variables in the CSP, based on the already made
choices. In this way the supporting program offers its user
only valid choices for all variables throughout the configu-
ration process. The underlying problem is that of deciding
satisfiability and unsatisfiability for propositional logic and
is therefore NP-hard and co-NP-hard. For systems of fixed
size, a precomputation step can factor the NP-hardness out
of the problem so that only a polynomial problem is solved
during user interaction, even if the solution space is expo-
nentially large [5, 10, 4]. But restriction to fixed size and
structure precludes modeling of systems built of an arbitrary
number of components, such as power-supply equipment for
data centers, air conditioning or cooling installations, stor-
age furniture, pumping systems, etc. In all these examples
any concrete installation is finite and has a fixed structure;
but in general there is no limit on the size of structures that
can be constructed. Such systems cannot at all be cast as
classical CSP problems involving a finite number of variables
over finite domains. Traditional CSP models can only repre-
sent a finite number of legal configurations whereas the ex-
amples mentioned previously have virtually infinitely many
solutions.

Recursion is the way typically used in programming lan-
guage theory to express unboundedness. We show how the
precomputation method can be extended to a rich class of
unbounded CSP-problems able to represent the applications
mentioned above. The problems investigated are described
by recursive modules that can generate CSP-instances of
unbounded size. Our interactive modular configuration al-
gorithms enjoy guaranteed response times, which can be pre-
computed offline. Crucially for scalability, the response time
only depends on the amount of information passed locally
between neighbor modules, and is independent of the size of
the entire tree. According to our knowledge this is the first
complete algorithm for solving an unbounded interactive
configuration problem, with bounded response time. The
precomputation algorithm also identifies ill-behaved solu-

tion subspaces that would necessarily lead to unbounded in-
stances. Our algorithms have been implemented, and show
very good performance on a case study from the air condi-
tioning industry.

Consider an example of a modular recursive configura-
tion problem representing a simplified USB tree consisting
of hubs, printers, and exactly one keyboard. It is given in
the source language of our prototype modular configurator.
The main module usb describes a usb port, which can be
unused, used to connect a keyboard, or a printer, or may be
a hub, which opens two new usb ports. The type of the mod-
ule is modeled by the type variable with the values unused,
keyboard, printer, and hub in its domain. The variable
keybd models the presence of a keyboard on the bus. It in-
dicates whether or not the tree rooted at the given instance
of the module contains a keyboard.

module usb;

define type : unused, keyboard, printer, hub;
define keybd : yes, no;
export keybd;

import keyboard if type = keyboard;
import printer if type = printer;
import usb as hub1 if type = hub;
import usb as hub2 if type = hub;

ensure type = unused -> keybd = no ;
ensure type = keyboard -> keybd = yes;
ensure type = printer -> keybd = no ;
ensure type = hub -> ((hub1.keybd=no |hub2.keybd=no) &

(keybd = yes <-> (hub1.keybd=yes|hub2.keybd=yes)));

The usb module imports the keyboard, printer, and usb

modules depending on the value of type. Two instances of
module usb, called hub1 and hub2, are imported recursively
when type = hub. The constraints (ensure) define the be-
havior of keybd. In particular, the last one states that at
most one port has a keyboard, and that a hub has a key-
board if one port does. These are standard CSP constraints.

For simplicity of the example, the keyboard and printer
modules are kept empty, basically stating that we are inter-
ested only in presence of the respective devices, and not in
their specific properties. In a more realistic model one could
require that the keyboards and printers were of a particular
kind, for instance supporting the communication over USB,
thus introducing structure also inside these basic modules.

module keyboard;
module printer;

Finally, a root module is added, ensuring that there is ex-
actly one keyboard in the entire configuration tree:

module root;
import usb;
ensure usb.keybd = yes;

The configurator initiates the interaction by creating a
root node, with the only variable usb.keybd set to yes (au-
tomatically inferred from the constraint) and the uncondi-
tionally imported usb submodule instantiated. The user
can choose to configure the currently focused module root,
but since all its variables are assigned, a better choice is to
move the focus to the usb child, where values for variables
can still be chosen. If just a keyboard is required, assign

usb

root
keyboard

printer

if type = keyboard

if type = printer

if type = hub if type = hub
[hub2.keybd/keybd]

[usb.keybd/keybd]

[hub1.keybd/keybd]

Figure 1: A multigraph for the USB example

type = keyboard and the keyboard submodule is automat-
ically instantiated, finalizing the configuration. Assignment
of type = printer is not allowed by the tool, as the configu-
ration created in this way does not fulfill the constraint that
there is exactly one keyboard in the system.

The most essential properties of our configurator are: (1)
only valid choices are allowed (no risk of global inconsisten-
cies), (2) as soon as the instantiation constraint of a module
is satisfied, the submodule is instantiated, and (3) all pos-
sible finite configurations can be constructed. In effect, the
user does not risk being restricted in his choices, while being
free from the annoyances of backtracking.

We formalize the problem in section 2. The factoring al-
gorithm is presented in section 3. The interactive algorithms
are shown and analyzed in sections 4–5. Section 6 discusses
related work and concludes.

2. MODULAR CONFIGURATION
We shall now precisely define the modular configuration
problem and the nature of its solutions.

Definition 1. A standalone constraint satisfaction prob-
lem (CSP) is a triple P (X,D, C) comprising a finite totally
ordered set of variables X={x1, . . . , xm}, a finite set of cor-
responding finite domains D = {d1, . . . , dm}, and a finite
set of constraints C = {cY1 , . . . , cYm}. A constraint cY has
a scope Y = {y1, . . . , yk} ⊆ X, and is a finite set of tuples
cY ⊆dy1 × · · · × dyk

.

We denote the projection of a tuple s onto a set of vari-
ables Y by s↓Y . We also lift the ↓ operator to sets of tuples.

Definition 2. An assignment for a CSP P (X,D, C) is
a tuple from the product domain d1×· · ·×dm. An assignment
s satisfies a constraint cY ∈C iff s↓Y ∈cY . A solution to P
is an assignment satisfying all the constraints in C.

A modular configuration problem is a directed multigraph,
where vertices represent standalone CSPs (modules) and
edges represent imports. The edges are directed from im-
porting toward imported modules. The graph may contain
cycles, loops, and multiple edges between any two vertices.
Edges are labeled by instantiation constraints and interfaces
(shared variables of incident modules). We write src e and
dst e for the source and the destination vertex of e respec-
tively. A graph is rooted if it has a designated root vertex.

Definition 3. A modular configuration problem is a tu-
ple M(G(V, E, v0), P, I, J), where G(V, E, v0) is a finite di-
rected multigraph rooted in v0. P is a map associating each
vertex v∈V with its standalone CSP Pv(Xv, Dv , Cv), I as-
sociates each edge e∈E with its instantiation constraint Ie,
while J associates e with its interface Je—a partial bijective
map Je=[x1 7→ y1, . . . , xk 7→ yk] between shared variables of
src e and dst e: {xi}i=1..k ⊆Xsrc e, and {yi}i=1..k ⊆Xdst e.

usb
printer

usb

root

printer

usb

root
keyboard

printer

Figure 2: A realization of the USB example graph

Fig. 1 shows the multigraph for the usb example. The
instantiation constraint for one of the self loop edges on the
usb vertex is the set of tuples satisfying type = hub, and a
usb module is instantiated when this constraint is satisfied.

An interface Je relates the names of the variables in two
neighbouring standalone CSPs. Once e has been instanti-
ated, the shared variable assignment of its source must be
the same as the target variable assignment modulo the re-
naming of Je. In the usb example, qualified names are used
to define Je implicitly. A variable usb.keybd in the root

module is called keybd in its usb submodule. Note that
there is a real need for renaming variables across modules,
to distinguish between variables of several imported children
of the same type (like hub1.keybd and hub2.keybd).

Though technically an interface is a map between variable
sets, we often use it as two projections and a permutation,
which allows direct applications to sets of assignments. If
e=(v1, v2), we write A↓Jv1 for a projection of sets of tuples
A on variables in the domain of Je and A↓Jv2 for projection
of A on variables in the range of Je. Similarly, we apply Je

as a permutation indicating the direction of renaming. For
example Jv1→v2 (A↓Jv1) means that the set of tuples A is
first restricted to the variables of v1 that are shared with v2,
and then each tuple is permuted, becoming a projection of
an assignment to a shared subset of Xv2 . We take the free-
dom to indicate the direction of permutation and projection
sides with whatever unambiguously indicates it in the con-
text: vertices in a graph, nodes in a configuration tree, or
names of sets of tuples.

A configuration is a tree with nodes and arcs created by
unfolding the problem multigraph:

Definition 4. Let T (N, A) be a tree, G(V, E, v0) be a di-
rected rooted multigraph, tN be a map from the set of nodes
N to the set of vertices V , and tA be a map from the set
of arcs A to the set of edges E. We say that the triple
(T, tN , tA) is a realization of G, written T vtN ,tA G, iff:

1. (tN , tA) is a homomorhpism from T to G: for each arc
a∈A it holds that tN (src a)=src tA(a), tN (dst a)=dst tA(a)

2. tA restricted to the arcs adjacent to any single node n
(tA↓adj n) is an injection (so tA is locally injective).

The first requirement ensures that T is a proper unfolding of
G (can be generated from G), while the second makes sure
that for each of the nodes in T there is only one neighbour
of a particular kind (at most one parent and at most one
child corresponding to each child in G).

Consider the example of Fig. 2. The tree in the lower
part of the figure is a correct realization of the previously

printer

usb

root

printerkeyboard

use.keybd=yes

type=hub, keybd=yes
hub1.keybd=yes, hub2.keybd=no

type=hub, keybd=yes
hub1.keybd=no, hub2.keybd=yes

usb

Figure 3: A configuration of the USB model

discussed problem multigraph for the USB example. The tN

map is implicitly represented by the names of the nodes, i.e.
each node in the tree is mapped to a node in the graph with
the same name. The arc map tA is visualized by means of
dotted arrows.

Definition 5. A configuration of a modular configura-
tion problem M(G(V, E, v0), P, I, J) is a tuple φ(T (N,A), tN ,

tA, s), where s maps each node n to a solution sn of the stan-
dalone CSP PtN (n) and:

[RL] T vtN ,tAG and ∃n0∈N such that tN (n0)=v0.

[LC] All nodes are locally consistent: ∀n ∈ N. sn ∈ Sol PtN (n)

[AC] φ is arc consistent:
∀a(n1, n2)∈A. Jn1→n2 (sn1↓Jn1)=sn2↓Jn2

[WF] φ is well-formed: ∀n1∈N. ∀e∈out tN (n1). sn1 ∈ItA(a)

iff ∃n2∈N.tN (n2) = dst e and there is an arc a(n1, n2) ∈ A

A configuration is finite iff the set of nodes N is finite.

Figure 3 presents one possible configuration of the USB
model. It models a USB hub with one printer connected
to the first port and another hub connected to the second
port. A keyboard and a printer are connected to the latter.
Observe that there are more nodes in the configuration tree
than in the original problem graph. Values of variables, for
modules that have variables, are presented in boxes adjacent
to respective nodes. The arc map, tA, is not shown in order
to avoid clutter.

Notice that the realization tree of Fig. 2 is not a proper
configuration. First, it lacks information about the variable
assignments—in fact no consistent variable assignment for
that tree exists due to the lack of the keyboard node. Sec-
ond, it was not properly instantiated—the second usb node
on the path from the tree was missing one child instantiaton.
The model requires two sub modules for any hub, while this
node only has one.

3. OFFLINE PRECOMPUTATION
Let us now introduce two auxiliary notions involving in-

terfaces and a central property of directional consistency:

Definition 6. If A, B are sets of assignments, s∈A,
and J is an interface between them, then s ∈JA→B B iff
∃s′ ∈ B. JA→B(s ↓JA) = s′ ↓JB .

Definition 7 (Semi-Join). If A, B are sets of assign-
ments, s ∈ A, and J is an interface between them, then
A nJA→B B := {s ∈ A | s ∈JA→B B}.

Definition 8 (Directional Arc Consistency). Let
A and B be sets of assignments, s ∈ A, and J an interface
between them. Then A ⊆JA→B B iff ∀s ∈ A. s ∈JA→B B.

Intuitively, A nJA→B B is the largest subset of A, such
that each of its members has a compatible assignment in B,
while A ⊆JA→B B means that each assignment in A has a
compatible assignment in B.

Compilation finds, for each standalone CSP, the subset of
solutions to that CSP that can be used in valid configura-
tions with that CSP at the root. The Compile algorithm
first solves the separate CSPs in the configuration problem,
and stores them in the SPv sets. Then it determines which of
these solutions can be used in finite configurations that sat-
isfy all contraint types. The algorithm relies on a minimum
fixpoint computation, which incrementally adds assignments
for which these properties can be established:

Compile(M(G(V, E, v0), P, I, J))

1 for each v ∈ V do SPv ← Sol(Pv)
2 Sv ← ∅
3 repeat for each v ∈ V do S′

v ← Sv

4 for each v ∈ V do Sv ← step(v)
5 until S = S′

6 return S

where the function step(v) is defined as:

step(v) =
\

e(v,v′)∈out v

((SPv ∩Ie) nJv→v′
S

′

v′) ∪ (SPv \Ie) (1)

The solutions to the CSP of a module v can enter the solu-
tion set of that module (Sv) iff there already are compatible
solutions in the solution sets of all the submodules that they
would instantiate. The step function is monotonic, and is
iterated over a finite lattice, which guarantees termination.

The compiler warns the designer if any of the sets of so-
lutions Sv computed by Compile is empty. If Sv = ∅ then
module v can never be instantiated at runtime, which hints
at a bug in the product model. Moreover, if the root set Sv0

is empty, then no interaction is possible and no configuration
can be created at all: the compiler fails with an error.

4. INTERACTIVE CONFIGURATION
The configurator initializes the global data structures us-

ing Init. The user can find out what options are still open
for each variable in the current focus node using Valid-
Domains. She can then assign permitted values using As-
sign, and move the focus using Move. The algorithms del-
egate instantiation to Instantiate. They assume that the
configuration problem M(G(V, E, V0), P, I, J) and the com-
pilation result S are globally visible. They also assume that
the following mutable data structures are globally available:
a tree T (N, A), the maps tN , tA, and R, and the focus f .

Init(M(G(V, E, v0), P, I, J))

1 Empty tree T (N, A), empty maps tN , tA, R
2 Create a node n0 in T
3 tN (n0)← v0

4 Rn0 ← Sv0

5 f ← n0

6 Instantiate()

Valid-Domains()

1 Let X = {x1 . . . , xk} be the variables of f (in order)
2 return (Rn↓x1, . . . , Rn↓xk)

Assign (x: variable in f , v: value in the valid domain of x)

1 Rf ← {s ∈ Rf | sx = v}
2 Instantiate()

Move (n: node adjacent to f)

1 Rn ← Rnnn→fRf

2 f ← n
3 Instantiate()

Instantiate()

1 for each edge e ∈ E from tN (f)
2 do if Rf ⊆ Ie and ∀a ∈ A from f , tA(a) 6= e
3 then create a node n′ in T
4 create an arc a(f, n′) in T

5 tN (n′)← dst e
6 tA(a)← e
7 Rn′ ← Sdst e

The algorithms do not rely on any particular set repre-
sentation (list of tuples, cartesian product representation,
decision diagrams, etc). Our implementation uses binary
decision diagrams (BDDs) [3], which in our experience are
good for representing sets arising in configuration. Below we
discuss the complexity of our BDD-based implementation.

BDDs only represent constraints over binary variables di-
rectly. Variables with bigger finite domains are modeled by
sets of binary variables. Let bv denote the number of bits
needed to represent variables involved in all interfaces inci-
dent with vertex v, counting variables shared among inter-
faces only once. In practice bv tends to small for well struc-
tured models, as they usually pass very little information
across the nodes. The maximum size of a BDD representing
a set of interface tuples is: Jv := O(2bv).

Let Sv denote the size of the BDD representing the set Sv.
The sizes of BDDs representing the Rn sets during interac-
tion are bound by Rn := O(2bTN (n) ·StN (n)), as any of these
BDDs can be created by a conjunction of a BDD containing
bv variables and a BDD of size Sv. This constant can be big,
but after compilation it is known.

We will denote the maximum size of a BDD representing
the instantiation constraint for an import in node n as In.
The dominating operation of Instantiate is the inclusion
test in line 2. It is implemented by constructing the BDD
for Rf =⇒ Ie and checking it for tautology. The tautology
check is constant time, but the construction of the impli-
cation is linear in the size of both Rf and Ie. As this is
repeated for every potential submodule of the focus node f ,
the running time of Instantiate is O(Rf If · | out tN (f)|),
where all the components are statically known. Since both
If and the number of imports in a single module tend to be
small, the running time is dominated by Rf .

The first line of Move can be implemented by the simulta-
neous existential quantification, substitution, and conjunc-
tion. Existential quantification is linear in the size of the
original BDD (Rf) and exponential in the number of BDD
variables remaining after the quantification (bound by bn).
Denote the bound on this operation by: Ef→n := O(2bf→n),
where bf→n is the number of bits on the interface between
f and n. Again, Ef→n is small if the interfaces are narrow.

Substitution can be implemented in linear time for the
specific use in the above algorithms. The cost of conjunction
is linear in the size of both operands: O(Jf Rf). Finally, the
worst case running time of Move(n), including its call to

n4n3f

n1

n2 n5

n6

Jf→n1
⊇

Jf→n2
⊇

⊆Jn4→n6

⊆Jn4→n5

⊆Jf→n3
⊆Jn3→n4

Figure 4: DAC holds from the focus f outwards.

Instantiate, is O(Rf Ef→n + Jf Rf + Rf In · | out tN (f)|).
Observe that Move operates entirely locally. Its running
time is independent of the size of the entire configuration
problem, the global topology of the network, etc. So if the
configuration problem is well structured, we can give good
time bounds for the responsiveness of the user interface.

The restriction operation implementing the first line of
the call to Assign(x, v) is realized by the BDD restrict op-
eration, which is linear in the size of the BDD represent-
ing the solution space (bounded by RtN (n)). Consequently,
the worst-case running time of Assign is dominated by the
running time of Instantiate, and is equal to O(RtN (f) +
RtN (f)ItN (f)| out tN (f)|) = O(RtN (f)ItN (f)| out tN (f)|).

The user interface wants to query the engine for valid do-
mains of variables each time an assignment or a move is
made. A naive O(RtN (f) ·

P

v∈XtN
(f) | dv |) BDD algorithm

for Valid-Domains can be implemented by performing a
tentative assignment (without instantiating) and testing sat-
isfiability for each value in the focus node. Improvements to
this algorithm are known and we use one of them.

Observe again that the bounds are exponential in con-
stants, which makes it possible to establish the feasibility
of using the tool for a given problem before testing it on
actual users. Guaranteed response times can be computed.
The response does not become slower with the growth of the
tree being constructed. All complexity bounds depend on
local parameters only, and not on the global structure.

5. CORRECTNESS
We assume that the problem M has been annotated with

solution sets Sv returned from the compilation process. Par-
tial configurations of annotated problems are built by con-
secutive applications of Move and Assign algorithms.

Definition 9. A partial configuration of an annotated
modular configuration problem M(G(V, E, v0), P, I, J, S) is
a tuple γ(T (N,A), tN , tA, R, f), where f ∈ N is the current
focus node, R maps nodes to sets of remaining solutions,
and:

[RL] Realization: T vtN ,tA G

[LC] Local consistency: ∀n∈N.Rn⊆StN(n) and Rn 6=∅

[DAC] Directional arc consistency: ∀a(n1, n2)∈A. if n1 is
closer to f than n2 then Rn1 ⊆Jn1→n2

Rn2 else Rn2 ⊆Jn2→n1
Rn1

[WT] Well-trimmedness: ∀a(n1, n2) ∈ A. Rn1 ∈ ItA(a)

A partial configuration is finite if N is finite.

Figure 4 gives an intuition about the [DAC] requirement:
if Rn1 ⊆Jn1→n2

Rn2 , then each solution in Rn1 has a com-
patible solution in Rn2 , which in turn means that whatever
the user will configure locally in the focus node f , will not
cause inconsistency in any other node in the tree (DAC is
transitive). Move and Assign preserve properties of par-
tial configurations, which means that DAC is an invariant of

both algorithms. Exhaustive application of Move and As-
sign reaches a particularly interesting class of partial config-
urations—directly corresponding to configurations of Def. 5:

Definition 10. A partial configuration is final if it is fi-
nite, all its Rn sets are singleton, and all the children of any
node are instantiated: ∀n1 ∈ N.∀e ∈ out tN (n1). Rn1 ⊆Ie iff
∃n2 ∈ N. tN (n2) = dst e and there is an arc a(n1, n2) ∈ A.

Since for each vertex Sv⊆Sol Pv, the only (and negligible)
difference between final partial configurations and configu-
rations is that the former store assignments in singleton sets
(map R), while the latter store them directly (map s).

We state properties of our configurator analyzing the pos-
sible results of sequences of user actions consisting of As-
signs and Moves. All considered sequences begin in an
initial partial configuration γ0, which is created by calling
Init. The following theorem states that all reachable final
partial configurations are correct configurations (i.e. there
is no risk of misconfiguration):

Theorem 11 (Soundness). Any final partial configu-
ration γ reachable from the initial partial configuration γ0

by a sequence of calls to Move and Assign applied to the
initial partial configuration, is a configuration of the original
modular configuration problem.

Furthermore it is not possible to reach an inconsistent state:

Theorem 12 (Conflict freeness). Any partial con-
figuration γ reachable from the initial partial configuration
γ0 by a sequence of calls to Move and Assign contains no
contradiction: for each node n in γ the set Rn is nonempty.

This has a tremendously important usability implication:
the configurator will never enforce back-tracking. The user
can always continue, without getting stuck in the state,
when no steps are allowed without violating constraints:

Theorem 13 (Backtrack freeness). In any non-
final partial configuration γ it is possible to perform a fi-
nite sequence of Move operations after which either a final
configuration is obtained, a call to Assign is possible (the fo-
cus node is not finalized), or moves to not previously visited
nodes are possible.

But what if the only configurations reachable are infinite?
Will the user be forced to continue forever? An attractive
property of Compile is that it removes inherently infinite
configurations, so they are never offered as a choice. The
user can always be sure that he can complete his current
configuration:

Theorem 14 (Terminability). From any non-final
partial configuration γ it is possible to reach a final configu-
ration γ′ by applying a finite sequence of Move and Assign
operations. The configuration γ′ obtained in that manner is
guaranteed to be finite itself.

Finally, our configurator is complete: it permits the con-
struction of any finite configuration of a given problem:

Theorem 15 (Finitary completeness). Any finite con-
figuration γ of a modular configuration problem M can be
constructed by a finite number of Move and Assign oper-
ations applied to the initial partial configuration γ0.

6. RELATED WORK & CONCLUSION
The success of decomposition techniques [6, 9] proves that

configuration problems often contain an internal tree-like
structure. Both [6, 9] try to discover and exploit this struc-
ture automatically in compilation-based configurators. In-
stead, we allow the designer to specify the structure explic-
itly, which gives us more precise information than in the
decomposition approaches.

The unique feature of this work is the introduction of re-
cursion, and thereby unboundedness, while retaining com-
pilation and appealing theoretical properties that have a di-
rect impact on user experience: soundness, completeness,
conflict-freeness, backtrack-freeness, and terminability (pro-
tection against entering subspaces without finite final con-
figurations). The response times are bounded with statically
computable constants, which is crucial for user interaction.

To the best of our knowledge, no similar result is known
for interactive CSP [8, 7, 4], where usually recursion is not
supported, or systems work with backtrack search, or either
conlict-freeness, completeness, or stringent run-time bounds
are not provided.

The semantics of the configuration language used in the
introduction has been studied in [1]. The implementation
has been evaluated in an industrial case study, exhibiting
imperceptible response times (31 modules and 247 variables
at compile time, only counting shared variables once). Our
configurator and the case study are described in [2].

7. REFERENCES
[1] E.R. van der Meer and H.R. Andersen. BDD-based

recursive and conditional modular interactive product
configuration. In Proceedings of the International
Workshop on CSP techniques with Immediate
Application, pages 112–126, Toronto, Canada,
September 2004.

[2] Erik R. van der Meer. Modular Configuration. PhD
thesis, ITU University of Copenhagen, 2005.
Submitted.

[3] R.E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on
Computers, 35(8):677–691, 1986.

[4] H. Fargier and M.-C. Vilarem. Compiling CSPs into
tree-driven automata for interactive solving. In
Proceedings of the 3rd International Workshop on
User-Interaction in Constraint Satisfaction, pages
44–55, 2003.

[5] T. Hadzic, S. Subbarayan, R.M. Jensen, H.R.
Andersen, J. Møller, and H. Hulgaard. Fast
backtrack-free product configuration using a
precompiled solution space representation. In
Proceedings of the International Conference on
Economic, Technical and Organisational Aspects of
Product Configuration Systems, pages 131–138,
Copenhagen, Denmark, June 2004.

[6] J. Nejsum Madsen. Methods for interactive constraint
satisfaction. Master’s thesis, University of
Copenhagen, 2003.

[7] D. Magro. Interactive configuration capability in a
sale support system: lazyness and focusing
mechanisms. In Proceedings of the Configuration
Workshop held at IJCAI-2001, pages 57–63, Seattle,
Washington, August 2001.

[8] D. Sabin and E.C. Freuder. Configuration as
composite constraint satisfaction. In Proceedings of the
1st Artificial Intelligence and Manufacturing Research
Planning Workshop, pages 153–161, 1996.

[9] S. Subbarayan and H.R. Andersen. Linear functions
for interactive configuration using join matching and
CSP tree decomposition. In Proceedings of the
Configuration Workshop held at IJCAI-2005, pages
7–12, Edinburgh, Scotland, July 2005.

[10] S. Subbarayan, R.M. Jensen, T. Hadzic, H.R.
Andersen, H. Hulgaard, and J. Møller. Comparing two
implemenations of a complete and backtrack-free
interactive configurator. In Proceedings of the
International Workshop on CSP techniques with
Immediate Application, pages 97–111, Toronto,
Canada, September 2004.

