
Efficient Compilation Techniques for Large Scale Feature Models

Marcilio Mendonca1, Andrzej Wasowski2, Krzysztof Czarnecki1 and Donald Cowan1

University of Waterloo1, IT University of Copenhagen2

{marcilio,dcowan}@csg.uwaterloo.ca, wasowski@itu.dk, and kczarnec@swen.uwaterloo.ca

Abstract
Feature modeling is used in generative programming and
software product-line engineering to capture the common
and variable properties of programs within an application
domain. The translation of feature models to propositional
logics enabled the use of reasoning systems, such as BDD
engines, for the analysis and transformation of such mod-
els and interactive configurations. Unfortunately, the size of
a BDD structure is highly sensitive to the variable ordering
used in its construction and an inappropriately chosen or-
dering may prevent the translation of a feature model into a
BDD representation of a tractable size. Finding an optimal
order is NP-hard and has for long been addressed by using
heuristics.

We review existing general heuristics and heuristics from
the hardware circuits domain and experimentally show that
they are not effective in reducing the size of BDDs produced
from feature models. Based on that analysis we introduce
two new heuristics for compiling feature models to BDDs.
We demonstrate the effectiveness of these heuristics using
publicly available and automatically generated models. Our
results are directly applicable in construction of feature mod-
eling tools.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques—Computer-aided
software engineering (CASE)

General Terms Design

Keywords Model-driven development, software-product
lines, formal verification, Configuration, feature modeling

1. Introduction
Generators and components support the creation of systems
within system families. A system family is a set of systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-267-2/08/10. . . $5.00

sharing enough common properties to warrant basing their
development on a common set of reusable assets, such as
frameworks, components, and generators. Building such as-
sets requires understanding both the common features and
the varying features of systems within a family. For example,
all e-commerce systems are likely to provide common fea-
tures such as catalog browsing and product checkout. How-
ever, the systems may differ in several respects, e.g., whether
they support selling physical products or electronic products
or both and whether they allow guest or registered checkout
or both.

Feature modeling is a technique for representing the com-
mon and variable features of systems in a system family. A
feature model is a hierarchy of mandatory, optional, and al-
ternative features with possibly additional constraints, such
as implications between pairs of features [19]. Feature mod-
eling is used in system family scoping, i.e., deciding which
features should be supported by the common assets and
which not, identifying architectural variation points, and in
system configuration [10]. Feature models can directly rep-
resent a class of domain-specific languages that are focused
on configuration. Systems can be specified as configurations
of features and such specifications can be used as input to
code generators, e.g., [14], or to configure requirements and
design models [12] or components [6].

Feature models have been semantically related to propo-
sitional logic [5, 13]. The translation of feature models into
logic representations has allowed the use of reasoning tools
for automated feature model analyses [4], such as consis-
tency checks and finding dead features, refactoring [2], re-
verse engineering [13], and interactive configuration [25].
All of these applications require an efficient representation
of the configuration space of the features. Binary Decision
Diagrams (BDDs) [9, 22] are one such representation, which
supports efficient logical tests and interactive guidance algo-
rithms [18]. Interactive configuration is a process of select-
ing a particular variant out of those represented by a model.
The process is interactive since it includes user steps, such
as selecting and eliminating features, and the machine re-
sponses, such as selecting implied features and excluding in-
compatible features. The interactive guidance in this context
is provided by calculating so-called valid domains, i.e., pos-
sible assignments of features given the current state of the

Feature group
with cardinality [1, 1]

b

a1 b1 b3b2

r

Constraint-1: a1 → b3

a
[1, 1]

Mandatory feature

Optional feature

Grouped featuref

Legend

f

f

Figure 1: A feature model

system, and propagating information whenever new choices
are made.

Efficiency is extremely important for some of the above
applications, in particular for detecting refactoring opportu-
nities and for interactive configuration. These two are nor-
mally performed as a part of each interaction and thus should
guarantee response times within milliseconds. Since the re-
sponse time of most of standard algorithms on BDDs re-
quires time proportional to the size of the BDD [3], it is
desirable to devise technologies that can decrease this size
as much as possible. One such approach is a topic of our
present paper.

Each BDD has a fixed variable ordering associated. This
ordering has a dominant influence on its size. A bad order
can be seriously detrimental leading to excessive memory
use, often beyond capabilities of typical workstations. On the
other hand a very good order can dramatically compress the
BDDs (down to kilobytes!), enabling extremely fast process-
ing with interactive algorithms. It is thus natural that quite
a few researchers in various domains have investigated the
ordering minimization problem. In this paper, we approach
this problem by proposing efficient ordering heuristics for
the feature modeling domain. Experimental results show that
the proposed heuristics allow for efficient compilations of
feature models with up to 2,000 features.

We proceed with Section 2 providing a short background
on feature models, and Section 3 introducing the variable
ordering problem. State-of-the-art solutions are reported in
Section 4. Section 5 documents design decisions in choosing
a new reordering heuristics for feature models, followed by
Section 6 presenting the heuristics, experimental analysis
(Section 7) and conclusion (Section 8).

2. Feature Models
A feature model consists of (i) a feature tree and (ii) possibly
one or more extra constraints, which are propositional for-
mulas over features. Fig. 1 depicts a sample feature model.
Its feature tree (top left) has a root feature r, mandatory fea-
tures b and b1, optional features a, and a1, and an exclusive-
OR group containing grouped features b2 and b3. The impli-
cation a1 → b3 labeled Constraint-1 is the extra constraint.

A feature model denotes a set of legal configurations.
A legal configuration is a set of features selected from the
feature model according to its semantics. The set of legal

configurations is given by a conjunction of the extra con-
straints with a propositional formula that is systematically
constructed from the feature tree [5, 13]. The formula is a
conjunction of (i) the root feature, (ii) an implication from
each child feature to its parent, (iii) an implication from each
feature with a mandatory child to that child, (iv) an impli-
cation from a parent with an inclusive-OR (exclusive-OR)
group to a disjunction (pairwise mutual exclusion) of the
group members. Applying this derivation to the sample fea-
ture tree in Fig. 1 yields, after some simplifications, the for-
mula r ∧ b ∧ b1 ∧ (a1 → a) ∧ (b→ b2 xor b3).

Next, we provide definitions that are used throughout the
paper:

DEFINITION 1. The extra constraint representativeness
(ECR) is the ratio of the number of variables in the extra
constraints (repeated variables counted once) to the number
of variables in the feature tree.

ECR for the feature model in Fig. 1 equals 2
7 ' 0.28.

DEFINITION 2. For features f1, ..., fn their lowest common
ancestor, written LCA(f1, . . . , fn), is their shared ancestor
that is located farthest from the root (where a feature is an
anscestor of itself).

For features of Constraint-1 we have LCA(a1, b3) = r.

DEFINITION 3. Given f = LCA(f1, . . . , fn), the roots of fea-
tures f1, ...,fn, written Roots(f1, . . . , fn), is either the set
{f}, if f has no children, or the subset of f’s children that are
ancestors of f1, ..., fn.

In our example Roots(a1, b3) = {a, b}, since features a and
b root the subtrees containing a1 and b3 respectively.

3. BDDs and The Variable Ordering Problem
decision diagram (BDD) [9, 3] is a concise representation
of a Boolean function. BDDs are directed acyclic graphs
(DAGs) having exactly two external nodes representing con-
stant functions 0 and 1, and multiple internal nodes labeled
by variables. For instance, Fig. 2a depicts a BDD for formula
(a→ b). Each internal node has exactly two outgoing edges
representing a decision based on an assignment to the node
variable: the low-edge (a dotted line in the figures) represents
the choice of false, while the high-edge (solid) represents the
choice of true. A path from the root to an external node rep-
resents an assignment of values to variables. For example
the rightmost path in Fig. 2a represents a (non-satisfying)
assignment [a 7→ 1, b 7→ 0]. The paths terminating in the
external node 1 (respectively 0) represent satisfying (respec-
tively unsatisfying) assignments.

A BDD is ordered if every top-down path in the DAG
visits the variables in the same order. In a reduced BDD any
two nodes differ either by labels or at least by one of their
children (uniqueness), and no node has both edges pointing
to the same child (non-redundancy). Notice that the three

01

a

b

0 1

r

b1

b

b2

b3

b3 a

a1

01

a1

b1

b1

b3

b3

b b

r r

b2 b2

b

r

a

Variable order: (a) a < b (b) r < b1 < b < b2 < b3 < a < a1 (c) a1 < b1 < b3 < b < r < a < b2

Figure 2: (a) A simple BDD; (b-c) BDDs for the model in Fig. 1 with two different variable orders

BDDs in Fig. 2 are both reduced and ordered. We shall use
the term BDD as a synonym for ROBDDs from now on.

During the last two decades BDDs have been widely ap-
plied to address large scale combinatorial problems in logic
synthesis, verification, configuration, constraint satisfaction
and optimization. Off-the-shelf BDD libraries are freely
available (e.g. JavaBDD, Buddy, CUDD). What makes
BDDs so appealing is polynomial time algorithms for ap-
plying Boolean connectives and constant time satisfiability
and equivalence checks (recall that these are generally NP-
hard). Crucially for configuration, polynomial algorithms
for computing valid domains are known [16, 17].

Fig. 2b presents a BDD for the formula r∧b∧b1∧(a1 →
a) ∧ (b → b2 xor b3) ∧ (a1 → b3), which corresponds to
the model of Fig. 1. The BDD contains 8 internal nodes, 2
external nodes, and 3 satisfying paths, each representing one
or more solutions.

A major drawback of BDDs is their high sensitivity to
variable ordering. For an illustration of the problem, con-
sider the BDD in Fig. 2c representing the same formula as
Fig. 2b, but with another order. While the original BDD
(Fig. 2b) had only 10 nodes, the new one contains as much
as 16 nodes—60% more! In the worst case this difference is
exponential, which can translate to millions of nodes in prac-
tical applications. Unfortunately, finding an optimal variable
order, which minimizes the size of a BDD, is an NP-hard
problem [7, 22]. For this reason it is typically approached by
heuristic algorithms. Heuristics exploit specifics of the prob-
lem domain in order to compute good orders efficiently. Typ-
ically research communities applying BDDs develop such
heuristics for their domain. In this paper we investigate the
problem for the feature modeling domain, with the goal of

enabling BDD-based feature modeling tools to handle very
large models.

4. A Survey of Variable Ordering Heuristics
A pervasive goal of all the ordering heuristics is placing vari-
ables that are combinatorically related close to each other
in the ordering. This task is nontrivial. Dependencies be-
tween variables often interfere: optimizing the placement of
a variable with respect to one dependency often decreases
the quality of the ordering with respect to the others.

Variable ordering heuristics can be categorized into dy-
namic and static. Dynamic heuristics reorder the variables
on-the-fly during construction and manipulation of a BDD,
usually exploiting library’s garbage collection cycles. Static
heuristics compute a variable order off-line, which is then
applied once to construct and analyze the BDD.

4.1 Static Heuristics
BDDs have been very successful in synthesis and analysis
of digital circuits. Similarly to a BDD, a circuit represents a
Boolean function, and there exist direct translations between
circuits and BDDs in either direction. Since the efficiency of
verification strongly depends on the size of the BDD used, it
is not surprising that the variable ordering problem has been
deeply studied for the circuit domain.

Feature models can be easily translated to Boolean cir-
cuits, which enables the use of existing ordering heuristics
from that domain. Since Boolean connectives directly corre-
spond to gates of the circuit, one can translate feature models
in a syntax directed way. We have implemented this transla-
tion to basic circuits with AND, OR, and NOT gates and
evaluated the usefulness of circuit heuristics described be-
low for the compilation of feature diagrams. The translation

is linear for all the feature model elements except for xor-
groups, for which is it is quadratic in the size of the group.
In our evaluations, the translation produced circuits 3 to 10
times larger than the corresponding feature model.

Fujita’s Heuristic. Fujita-DFS [15] is a heuristic that tra-
verses the circuit from the output to the inputs (which corre-
spond to variables) in a depth-first search (DFS) order. Dur-
ing the traversal, inputs connected to two or more gates are
placed first in the generated variable ordering in the hope that
the remaining nodes in the circuit will form a tree-like struc-
ture for which a standard DFS produces good variable order-
ings. Since a circuit is a directed-acyclic graph (DAG) with
a single output, if nodes connected to many other nodes are
removed from such a rooted DAG, the remaining structure
approximates a tree. Fujita-DFS proved to generate good or-
derings for some circuit benchmarks, e.g. ICAS-85 [8].

Level Heuristic. The level heuristic [21] assigns the depth
level to each circuit node, which is the length of the longest
path from that node to the output. Subsequently, the inputs
are sorted in decreasing order of levels to produce the fi-
nal order. The level heuristic performs particularly well for
multi-level circuits in which the outputs of a sub-network
serve as inputs to the next subnetwork in the chain.

FORCE Heuristic. FORCE [1] is a domain-independent
static heuristic for variable ordering. The heuristic is applied
to a CNF formula and uses a measure called span to assess
quality of placement for related variables. Given a pair of
variables its span is defined to be their distance in a given
variable ordering. The span of a clause is the maximum span
of all pairs of variables occurring in the clause. Finally, the
span of a CNF formula is the sum of spans of all its clauses.

FORCE begins with a random variable ordering and
through successive steps attempts to minimize the formula
span by moving variables near each other. At each iteration
a new order is produced, which serves as input for the next
iteration. It stops when the span value no longer decreases.

In order to apply FORCE, we implemented a simple CNF
translation algorithm that traverses the feature tree in DFS
and generates CNF clauses for each parent-child and feature
group relation, as described in Section 2.

4.2 Sifting
Sifting [26, 22] is a popular domain-independent dynamic
heuristic implemented in most BDD libraries. Unlike a static
heuristic, sifting operates dynamically by trying to reduce
the size of an already existing BDD on demand or on-the-
fly; for example during garbage collection cycles. The main
advantage of sifting is that it can enable the construction of
BDDs that cannot be built with static heuristics.

Sifting is a local search algorithm. It swaps variables
in the BDD if this leads to an improvement of the BDD
size. Despite its merits, sifting has a serious drawback. The
heuristic can be extremely slow in practice. In fact, we ob-
served running times of over an hour for tasks that could be

performed in a few minutes by good static heuristics. This
is primarily caused by the fact that unlike FORCE a swap
in a variable ordering requires a modification of the existing
BDD to obey the new ordering.

5. Variable Orders & Feature Models
Many heuristics adopt the rationale of identifying and short-
ening the distance of dependent variables as a means to pro-
duce good variable orders. For instance, in the Level heuris-
tic connected variables share the same level in the circuit.
Fujita’s heuristic uses a DFS traversal to identify connected
variables in a circuit. As we mentioned before, span is the
measure used by FORCE to approximate connected vari-
ables in a CNF formula. Based on this observation, we char-
acterize the problem of ordering BDD variables in our do-
main as the problem of identifying related variables in fea-
ture models and producing variable orders that minimize the
relative distance of such variables. What makes the prob-
lem particularly challenging is the fact that the relations in
the extra constraints usually connect independent branches
in the feature tree. This causes good orders for the feature
tree to be extremely inefficient for the extra constraints, and
vice-versa. In addition, the larger the ECR (see Definition 1
in Section 2) of a feature model the harder is to find a good
order that suits both the feature tree and the extra constraints.

One way of obtaining an ordering heuristic is to compile
a feature model into an intermediate representation such as a
CNF formula or a circuit and use available heuristics to pro-
cess the ordering. However, this approach would completely
ignore the domain knowledge. For instance, the variables
in the feature tree are arranged hierarchically in a tree, for
which simple traversals produce good orders. At the same
time, as will be seen later, such arrangements are obscured
in a CNF or circuit representation, which prevents the re-
spective heuristics from exploiting them.

Given the BDD variable ordering problem in configura-
tion, we pose the following hypothesis: A significant reduc-
tion in the size and construction time of BDDs representing
feature models can be achieved if the structural characteris-
tics of the models are exploited to order the BDD variables.

In the following, we consider factors that influence devel-
opment of new heuristics for variable ordering in the feature

Figure 3: Feature P and children A, B, C, D

0 1

R

P

A

B

C

D

(a) Pre-order

01

A

B

P

C

R

D

(b) Post-order

0 1

C

A

R R

P

P

D

B

(c) Average-order

Figure 4: BDDs for various traversals of the feature tree

modeling domain. These considerations are then exploited
in the next section when we propose such heuristics.

Structure of relations in the feature tree is explicit. The
feature tree defines the variables in the feature model and
specifies most of its relations. Hence, good orderings for
the feature tree are generally effective for the feature model.
Since relations in the feature tree are well-known and follow
a hierarchical arrangement, compact structural patterns can
be identified for BDDs using simple traversal algorithms.

Mandatory features disturb the analysis. Feature models
allow the specification of mandatory features which might
improve system family documentation but play no role in
variability analysis. Mandatory features can be eliminated
from the analysis as they represent binary bi-implications
and hence can be automatically inferred from other features.
A simplification algorithm safely removes mandatory fea-
tures from the feature tree and updates all references to such
features both in the feature tree and in the extra constraints,
while preserving the core semantics of the model. The reduc-
tion of the number of features in a feature model can signifi-
cantly reduce the size of BDDs since each feature potentially
corresponds to multiple BDD nodes.

Parent-child relations define the connected variables. Fea-
ture tree constraints are expressed in terms of ancestral rela-
tions and groups. Our experiments have revealed that mini-
mizing the distance between sibling features in groups does
not improve BDD sizes. Therefore, we only consider parent-
child relations to identify connected variables. Fig. 3 shows
an example of four parent-child relationships involving a
feature P and its children A, B, C, and D. Since all five
features are optional, relations R1, R2, R3 and R4 repre-
sent binary implications (child → parent). The goal of a
good heuristic for the feature tree should be to minimize

the relative distance between P and each of its children in
the variable order produced. Excessive minimization in one
branch of the tree might cause poor minimization in others.
For instance, one might decide to order variables P, A, B, C,
and D in a straight sequence. However, by doing so features
B, C and D are placed in between A and its children increas-
ing their relative distance. In fact, if this strategy is applied
recursively in the feature tree, BFS traversal of the feature
tree is implemented, which is an extremely poor ordering.

Pre-order produces good BDD patterns. DFS traversals
produce good variable orders for feature trees. However,
much can be done in terms of minimizing the distance be-
tween parent and children features than pre-order. For in-
stance, a better approach would be to place the parent node
in an average distance to its children. Surprisingly, this pro-
duces BDDs with chaotic structures that in many cases are
larger than one expects. We observed that the placement of
parents prior (pre-order) or after (post-order) their children
often produced compact BDD structures. Fig. 4 shows three
BDDs for features Root, P, A, B, C and D from Fig. 3. A
variable order for a pre-order traversal of the feature tree is
shown in Fig. 4a (R indicates the root feature). A BDD of
size 6 is shown and a very compact structure is observed for
pre-order, e.g., if P is true the BDD evaluates to true no mat-
ter the values of its children. Conversely, if P is false, when-
ever A, B, C, or D are true, the BDD evaluates to false. Post-
order also produces compact patterns (Fig. 4b); however, the
BDD structure contains a much higher number of paths to
the one terminal. If P is placed between its children and R
is placed near P (referred to as average-order in Fig. 4c) the
size of the BDD increases to 8 nodes even though the rel-
ative distance between P and its children is reduced. Thus,
we adopt pre-order as the reference variable ordering imple-

(a) Natural Pre-order (b) Sorted Pre-order (c) Clustered Pre-order

Figure 5: Three different arrangements for child features A, B, C, D, E, and F

Table 1: Variable distances for pre-order-based traversals of the feature tree

Feature Tree Traversals Variable Order
Feature Tree (FT) and Extra Constraint (EC) Variable Distances

FT Var. Distance
EC Shortest Distance EC Longest Distance EC Average Var.

DistanceC1 C2 C3 Total C1 C2 C3 Total

Natural Pre-Order P<A<B<C<D<E<F 67 5 5 12 22 12 10 16 38 30
Sorted Pre-Order P<E<F<A<B<D<C 48 9 15 5 29 16 20 9 45 37

Clustered Pre-Order P<D<F<B<E<A<C 54 5 1 1 7 10 8 5 23 15

mentation due to its simplicity and effectiveness. We refer to
this ordering as natural pre-order.

Sorting decreases parent-child distances. A drawback of
the natural pre-order is that it relies on the natural placement
of nodes in the feature tree which is not necessarily good
from the point of view of variable distance minimization.
Consider again the feature model in Fig. 3, showing four
subtrees Ta, Tb, Tc, and Td containing 40, 10, 30, and 20
features, respectively. Natural pre-order would produce the
order: P < A < [Ta] < B < [Tb] < C < [Tc] < D < [Td] where
[Tn] replaces the set of features in subtree Tn. Hence, the
total distance between feature P and its children is 180, i.e., 1
(A to P) + 42 (B to P) + 53 (C to P) + 84 (D to P). However, if
the subtrees rooted by A, B, C and D are sorted in ascending
order of their size the new order would be: P < B < [Tb]
< D < [Td] < C < [Tc] < A < [Ta] and the total distance
of P and its children is reduced to 110. Note that pre-order
is preserved, only the relative order in which children are
visited has changed. We refer to this ordering as sorted pre-
order.

Grouping dependent subtrees minimizes variable distances
in the extra constraints. So far we have focused primarily
on the feature tree. However, in practice feature models can
have a significant number of extra constraints considerably
affecting the size of the BDD. One way to take the extra
constraints into account could be to group the children of a
node together based on identified dependencies among their
subtrees, instead of purely sorting nodes by subtree size.
Fig. 5a shows a parent feature P, its children A, B, C, D,

E, and F, and subtrees Ta, Tb, Tc, Td, Te, and Tf rooted
by each of P’s children. Three extra binary constrains are
shown: C1, C2 and C3. These constraints indicate that some
of the subtrees of P’s children have dependencies: Ta and Tc
for C1, Tc and Te for C2, and Tb and Tf for C3. Different
node arrangements are shown representing the visiting order
of different pre-order-based traversals: natural pre-order (a),
sorted pre-order (b), and clustered pre-order (c), where the
later will be explained shortly.

Table 1 shows the variable orders and the relative variable
distances for the three different traversals depicted in Fig. 5.
The first row shows the distances for the natural pre-order
traversal. The total distance between P and each of its chil-
dren is 67 (column FT Var. Distance). Columns EC Shortest
Distance and EC Longest Distance indicate the shortest and
longest possible distances for extra constraint variables for
each traversal as well as the average parent-child distance,
i.e., the mean of the shortest and longest distances (column
EC Average Var. Distance). For natural pre-order, the short-
est (respectively longest) distance between variables in the
constraint C1 is 5 (respectively 12). In the shortest-distance
case, C1 variables correspond to features X (see bottom-right
feature on subtree Ta in Fig. 5a) and C. In the worst case,
they correspond to features A and Y (see bottom-right fea-
ture on subtree Tc in Fig. 5a). The average total distance of
all variables occurring in the extra constraints is 30 (column
EC Average Var. Distance).

The sorted pre-order traversal (second row in Table 1)
considers sorting child nodes in ascending order of the size
of their subtrees. The distance between P and its children is

reduced to 48. However, since this traversal does not take the
extra constraint into account a bad average distance of 37 is
observed. Fig. 4b shows the new arrangement of P’s children
for sorted pre-order.

The third traversal, clustered pre-order, considers using
extra constraint relations to decide which nodes should be
visited first. Note that in Fig. 5c nodes A, B, C, D, E and F
were rearranged based on the dependencies of their subtrees.
Features E, A, and C were grouped together into clusters
since constraints C1 and C2 connect their subtrees. The same
is observed for features F and B because of constraint C3.
Feature D is isolated as none of its descendants is referred
in the extra constraints. Three clusters are shown in Fig. 5c:
Cluster 1, Cluster 2, and Cluster 3. Note that the clusters
have been sorted according to their size from left to right so
that larger clusters are in the rightmost positions. The size
of a cluster is the total number of nodes of its contained
trees. The combination of these two techniques, sorting and
clustering, can considerably improve the quality of orders
produced by clustered pre-order traversals. In fact, while
clustering enforces distance minimization of extra constraint
variables, sorting aims at parent-child distance minimization
in the feature tree. A slightly higher distance for parent-child
variables is observed for the clustered pre-order when com-
pared to sorted pre-order (54 against 48, respectively), but
still much better than natural pre-order (67). Yet, a signif-
icant improvement on distance minimization for extra con-
straint variables is achieved (15 against 37 for sorted pre-
order and 30 for natural pre-order).

Algorithm 1 Clustering algorithm for the feature tree

For each feature in the feature tree, group its child nodes
into clusters to indicate subtree dependency

Function Process-FT-Clusters()
1: F ← Extra constraints in CNF
2: for (each clause C of F) do
3: A← LCA(C’s Variables)
4: H ← Hypergraph attached to A
5: if (H = NIL) then
6: Create H and attach it to A
7: Add A’s child nodes as vertices in H
8: for (each of A’s child node N) do
9: Add a hyperedge {N} to H

10: end for
11: end if
12: R← Roots(C’s variables)
13: Merge H’s hyperedges that share elements in R
14: Associate set R to the merged hyperedge
15: end for

Algorithm 2 Pre-CL recursive algorithm

O: variable order list
N : feature being visited in the feature model
S: strategy to sort cluster’s internal nodes

Function Pre-CL-Rec(O, N , S) : { }
1: O ← O ∪ {N}
2: H ← Hypergraph attached to N
3: L← {}
4: if (H = NIL) then
5: L ← N ’s children sorted in ascending order of size

(the size of child c corresponds to the total number of nodes in the
subtree rooted by c)

6: else
7: Sorts H’s hyperedges in ascending order of size

(the size of hyperedge E corresponds to the total number of nodes
in the subtrees rooted by each element e ∈ E)

8: if (S = SIZE) then
9: Sorts hyperedge’s elements in ascending order of

size (the size of element e is the total number of nodes in the
subtree rooted by e)

10: else if (S = MIN_SPAN) then
11: use FORCE to sort hyperedge’s element
12: end if
13: for (each sorted hyperedge E) do
14: L← L ∪ {nodes of FT corresponding to E}
15: end for
16: end if
17: for (each node P in L) do
18: Pre-CL-Rec(O,P ,S)
19: end for
20: Return O

6. New Heuristics for Configuration
Based on the considerations previously made we propose
two novel heuristics to order BDD variables in configura-
tion: Pre-CL-Size and Pre-CL-MinSpan. The heuristics rely
on pre-order traversals of the feature tree and use sorting
and clustering. Since the heuristics share many implemen-
tation aspects, a single parameterized algorithm is provided.
In fact, we refer to both heuristics as part of the Pre-CL fam-
ily of heuristics as we hope that the family will gain new
members in the future.

Algorithm 1 implements the clustering process discussed
earlier: function Process-FT-Clusters. Initially, the algo-
rithm iterates over a set of CNF clauses that represent extra
constraint relations (lines 1-2). For each clause, its variables
are used to identify the LCA (Definition 2 in Section 2) node
A in the feature tree (line 3). A hypergraph H is attached to
A containing a hypernode and a hyperedge for each of A’s
children. The hyperedges indicate that each child node is
initially a single cluster (lines 5-11). Next, for each CNF
clause, the Roots (Definition 3 in Section 2) of its variables

(a subset of A’s child nodes) are grouped into a cluster to in-
dicate node dependency (line 12). The hyperedges in H are
merged so that no two distinct hyperedges share any com-
mon elements (line 13). This will make dependent nodes
part of the same cluster. Finally, the dependencies identified
among A’s child nodes are attached to merged hyperedges.

Algorithm 2 implements a recursive pre-order traversal of
the feature tree guided by the clusters processed in algorithm
1. The first call to algorithm 2 takes as input an empty list
(variable order), the root of the feature tree (starting point),
and the strategy to sort clusters’ internal nodes (either SIZE
or MIN_SPAN). Each visited node is immediately added to
the variable order (line 1). For each node N, its clusters are
retrieved from the attached hypergraph H (line 2). Note that
only LCA nodes of extra constraint relations have clusters
attached to them. List L, initially empty, stores the order in
which N’s children are to be traversed (line 3). If N does
not have clusters associated, i.e., hypergraph H is NIL, L
will store N’s child nodes in ascending order of the size of
their subtree (lines 4-5). If N has clusters, its clusters are
initially sorted in ascending order of their size. Subsequently
the internal nodes of each cluster are rearranged based on
two distinct strategies: if strategy S refers to constant SIZE
the internal nodes are to be sorted based on the size of
their subtrees (just as clusters were sorted). Instead, if S
is MIN_SPAN, internal nodes are rearranged so that their
relative distance is minimized (lines 7-12). Note that we use
FORCE in line 11 to sort the internal nodes of clusters. A
CNF formula is encoded for each cluster as follows: the
internal nodes are variables and the relations attached to H’s
hyperdges in line 14 of algorithm 1 are the clauses. FORCE
will try to put internal nodes connected to many others in an
average distance to them. In line 13, N’s clusters, now sorted,
are traversed and the internal nodes, also sorted, are added
to list L (line 13-15). Finally, L’s variables are traversed in
order and a recursive call to Pre-CL-Rec is made to address
the remaining variables (features).

7. Experiments & Analysis
We conducted several experiments to evaluate the perfor-
mance of the Pre-CL heuristics against the most competitive
heuristics discussed in Section 4. An AMD Turion system
with a 1.6 GHz processor and 1 GB RAM and running Win-
dows XP supported the experiments. The testing tool [23]
was developed in Java using JRE 1.4.2 and ran on 650 MB
of dedicated memory. The JavaBDD package [27] version
1.0b2 (JFactory instance) supported BDD manipulation.1

The experiments used both automatically-generated and
publicly-available feature models. Five feature models pre-
viously published in the literature were considered as shown
in Table 2. Generated models were grouped into collections
based on the ECR and the number of features. The odds for

1 The initial size and incremental factor for the BDD node table was set to
5 million nodes and 0.2 (20%), respectively, for all test cases.

Table 2: Feature Models from Literature
Model Number of Features ECR[%]

Model Transformation [11] 71 0%

Weather Station [6] 18 22%

Web Portal [24] 35 25%

e-Shop [20] 213 15%

Graph Product Line [5] 16 81%

mandatory, optional, inclusive-OR, and exclusive-OR fea-
tures were 25%, 35%, 20% and 20%, respectively. Extra
constraint relations were generated in 2-CNF so that each
clause corresponded to a individual constraint. Clause vari-
ables were selected randomly in the feature tree. In addition,
extra constraint relations were modularized at levels 0, 1, 2,
and 3 (15%, 30%, 50%, and 5%, respectively) in the fea-
ture tree. We say a constraint is modularized at level n if
the LCA of its variables is a node at level n in the tree. All
feature models were then simplified by having their manda-
tory features safely removed. For further details on the ex-
periments including tool support please refer to the project
website [23].

Quality of BDD Size Reduction. Table 3 shows average
space and time values for five different heuristics. We do not
include the results for the level heuristic, as it performed ex-
tremely poorly. Fifty feature models of 500 features and 20%
ECR were used in the tests. Columns Heur. Time and BDD
Time indicate the percentage of the total running time for
producing the variable order and building the BDD, respec-
tively. The total time in milliseconds and the size of BDDs
are shown in columns Total Time and BDD Size. The Best
Results column indicates the number of test cases in which
the heuristic had the best performance among all others. Fi-
nally, column Failures shows the number of test cases that
resulted in overflow errors.

BDD sizes for Pre-CL-MinSpan and Pre-CL-Size were
significantly smaller than for any other heuristic. For in-
stance, average reduction rates of 95% and 61% were
achieved when compared to natural pre-order that ranked
third. Pre-CL-MinSpan led to smaller BDDs in 84% of the
cases, while Pre-CL-Size and Fuj-DFS performed best in
12% and 4% of the cases (column Best Results). In terms of
BDD reduction, Fuj-DFS was slightly worse but still com-
petitive with natural Pre-order. FORCE produced poor re-
sults mainly due to its random starts. BDDs for FORCE were
76 times larger, on average, than those for Pre-CL-MinSpan.

In none of the 50 test cases BDD construction failed for
any of the Pre-CL heuristics. FORCE and Fuj-DFS could not
complete in 10% and 4% (column Failures) of the test cases
due to memory overflows. Pre-order had the best heuristic
running time due to its very simple algorithm that performs
linearly on the size of the feature tree. However, Pre-CL
heuristics were not far behind, just a few milliseconds worse

Table 3: Average running times and BDD sizes for 50 feature models with 500 features and 20% ECR
Heuristic Heur. Time [%] BDD Time [%] Total Time [ms] BDD Size Best Results Failures

Pre-CL-MinSpan 0.9 99.1 816 5186 42 0

Pre-CL-Size 0.6 99.4 937 43036 6 0

Pre-Order 0.1 99.9 1253 111307 0 0

FORCE 55.1 44.9 29828 394595 0 5

Fuj-DFS 0.6 99.4 1246 120608 2 2

Table 4: Scalability Measures for Pre-CL Heuristics

Heuristic
Feature Tree Size[ECR%]

1000 [20%] 1000 [30%] 2000 [10%] 2000 [20%] 2000 [30%] 5000[10%]

Pre-CL-MinSpan

Successes [%] 100 98 100 46 20 0
Memory Overflows [%] 0 2 0 54 80 100

Pre-CL-Size

Successes [%] 82 72 64 20 2 0
Memory Overflows [%] 18 28 36 80 98 100

but achieved better total running times than Pre-order. Fuj-
DFS also required low running times for producing variable
orders. Again, FORCE did not performed well. For all test
cases, FORCE required more time to produce orders than to
build the BDD (55.1% and 44.9%, respectively). In a typical
run, the algorithm took 96 steps to reduce an initial span of
147,153 to a minimum span of 17,361. Each step took about
0.27 milliseconds to run which led to a total running time of
27 seconds.

In another experiment, we tried to use FORCE to im-
prove the orders produced by Pre-CL heuristics. FORCE
was given initial orders produced by Pre-CL-MinSpan and
Pre-CL-Size and strived for improvements based on span
minimization. Despite the lower spans obtained FORCE was
unable to improve the quality of Pre-CL heuristic orders for
84% of the cases. This suggests that Pre-CL heuristics al-
ready produce high quality orders.

Real Feature Models. We applied with the heuristics in
Table 3 on five real feature models previously published in
the literature (Table 2). The results observed mirrored those
for automatically-generated feature models (see Fig. 6).
Pre-CL-MinSpan and Pre-CL-Size heuristics produced the
smallest BDDs in all the cases allowing an average BDD
size of 275 and 354 nodes, respectively. The space reduction
was substantial even when compared to the heuristic on third
place (FORCE)—around 86% less nodes.

Fujita-DFS was competitive to Pre-order in most of
the cases however a poor performance for the e-Shop fea-
ture model ranked the heuristic in the last spot. Similarly,
FORCE had performance comparable to Pre-order but its

Figure 6: BDD Sizes for Real Feature Models

better order for the e-Shop feature model ranked the heuris-
tic in third place.

Scalability. Table 4 shows the results of scalability tests
for Pre-CL heuristics. Table columns indicate feature models
with different sizes and ECRs. Rows indicate the completion
of failure due to memory overflow to build the BDD. Both
heuristics performed well for feature models with 1000 fea-
tures and up to 30% ECR. While Pre-CL-MinSpan failed in
only 2% of the cases (1 model), Pre-CL-Size observed mem-
ory overflows in 28% of the cases (14 models). For features
models with 2000 features, we observed that the number of
failures grew proportionally to the increase of the ECR. Pre-
CL-MinSpan handled a 10% ECR without a single failure
but struggled with ECRs of 20% and higher (54% and 80%
failures). Pre-CL-Size was only effective in 64% of the cases
for ECRs of 10% or less. None of the heuristics were able to

generate BDDs for feature models with 5000 features for the
test cases provided.

Sifting. Space was not an issue for Pre-CL heuristics to
generate BDDs for feature models containing up to 1000
features. Hence, we only considered using sifting for larger
models. A collection with 50 feature models of 2000 features
each and ECR of 20% (the same used in the scalability tests)
was considered. Pre-CL heuristics produced the initial vari-
able orders and the only change made was to the experiment
configuration was the enabling of sifting in the JavaBDD li-
brary. The results shown were not encouraging. Even though
memory overflows were prevented successfully none of the
50 test cases completed after 1 hour of processing. Recall
that Pre-CL-MinSpan was still able to generate BDDs for
46% of the models (average generation time of about 35 sec-
onds). We observed many calls to the sifting algorithm dur-
ing the BDD building process each taking several minutes to
complete. Therefore, we do not see any real benefits of using
sifting to build BDDs for feature models.

8. Conclusion
We have discussed the importance of BDDs to support effi-
cient automated analysis of feature models. We argued that
because BDDs are very sensitive to the orderings of its vari-
ables it is critical to learn how to order BDD variables in
the domain of interest, in our case, the feature modeling do-
main. We reviewed dynamic and static heuristics including
those applied in the domain of logic circuits. Several issues
related to ordering BDD variables for feature models were
addressed and two new heuristics introduced. We showed
experimentally that the heuristics produce high quality vari-
able orders that enable the compilation of large feature mod-
els with up to 2,000 features, which was not possible with
the previously known heuristics.

References
[1] F. A. Aloul, I. L. Markov, and K. A. Sakallah. FORCE: a fast

and easy-to-implement variable-ordering heuristic. In Proc.
of the 13th ACM Great Lakes symposium on VLSI, 2003.

[2] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and
C. Lucena. Refactoring product lines. In GPCE, 2006.

[3] H. R. Andersen. Binary Decision Diagrams. Technical
University of Denmark, 1997. Lecture notes for 49285,
Advanced Algorithms, E97.

[4] D. Batory, D. Benavides, and A. Ruiz-Cortes. Automated
analysis of feature models: challenges ahead. Communica-
tions of the ACM, 2006.

[5] D. S. Batory. Feature models, grammars, and propositional
formulas. In SPLC, 2005.

[6] D. Beuche and M. Dalgarno. Software product line
engineering with feature models. In Software Acumen,
2006. http://www.methodsandtools.com/PDF/
mt200604.pdf.

[7] B. Bollig and I. Wegener. Improving the variable ordering
of OBDDs is NP-Complete. IEEE Transac. on Computers,
1996.

[8] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinato-
rial benchmark circuits and a target translator in FORTRAN.
In In Int. Symposium on Circuits and Systems, 1985.

[9] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, 1986.

[10] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
Boston, MA, 2000.

[11] K. Czarnecki and S. Helsen. Classification of model
transformation approaches. In Proc. of the 2nd OOPSLA
Workshop on Generative Techniques in the Context of MDA,
2003.

[12] K. Czarnecki and K. Pietroszek. Verifying feature-based
model templates against well-formedness OCL constriants.
In GPCE, 2006.

[13] K. Czarnecki and A. Wąsowski. Feature models and logics:
There and back again. In SPLC 2007. IEEE Press.

[14] K. Czarnecki et al. Generative programming for embedded
software: An industrial experience report. In GPCE, 2002.

[15] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and
improvement of boolean comparison method based on binary
decision diagrams. In ICCAD, 1988.

[16] T. Hadzic, R. Jensen, and H. R. Andersen. Notes on
calculating valid domains. Manuscript online http:
//www.itu.dk/~tarik/cvd/cvd.pdf, 2006.

[17] T. Hadzic et al. Fast backtrack-free product configuration
using a precompiled solution space representation. In PETO
Conference, 2004.

[18] T. Hadzic et al. Calculating valid domains for BDD-based
interactive configuration. CoRR, abs/0704.1394, 2007.

[19] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study.
Technical Report CMU/SEI-90-TR-21, 1990.

[20] S. Q. Lau. Domain analysis of e-commerce systems using
feature-based model templates. Master’s thesis, Dept. of
ECE, University of Waterloo, Canada, 2006.

[21] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-
Vincentelli. Logic verification using BDDs in a logic
synthesis environment. In ICCAD, 1988.

[22] C. Meinel and T. Theobald. Algorithms and Data Structures
in VLSI Design. Springer-Verlag, 1998.

[23] M. Mendonca. Efficient compilation techniques for large
scale feature models, 2008. http://csg.uwaterloo.
ca/~marcilio/fmcompilation/index.html.

[24] M. Mendonca, T. T. Bartolomei, and D. Cowan. Decision-
making coordination in collaborative product configuration.
In ACM 23rd Symposium on Applied Computing (SAC’08),
2008.

[25] J. Moller, H. R. Andersen, and H. Hulgaard. Product
configuration over the internet. http://citeseer.ist.

psu.edu/531891.html.

[26] R. Rudell. Dynamic variable ordering for ordered binary
decision diagrams. In ICCAD, 1993.

[27] J. Whaley. The JavaBDD library, 2003–2008. http:
//javabdd.sourceforge.net/.

