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Abstract

Feature models are a popular variability modeling nota-

tion used in product line engineering. Automated analyses

of feature models, such as consistency checking and inter-

active or offline product selection, often rely on translating

models to propositional logic and using satisfiability (SAT)

solvers.

Efficiency of individual satisfiability-based analyses has

been reported previously. We generalize and quantify these

studies with a series of independent experiments. We show

that previously reported efficiency is not incidental. Unlike

with the general SAT instances, which fall into easy and

hard classes, the instances induced by feature modeling are

easy throughout the spectrum of realistic models. In par-

ticular, the phenomenon of phase transition is not observed

for realistic feature models.

Our main practical conclusion is a general encourage-

ment for researchers to continued development of SAT-

based methods to further exploit this efficiency in future.

1 Introduction

“Variability modeling is a central technique required to

put software product line engineering into practice.” [39,

p. 88] Indeed, variability modeling and variability models

partake in almost all phases and activities of a software

product line life cycle: domain analysis, scoping, product

selection, product derivation, runtime and evolution. Fea-

ture models [29, 17] and their derivatives are a popular nota-

tion for variability models, as exemplified by tool offerings

of businesses like pure-systems GmbH and BigLever Soft-

ware Inc., and a plethora of related research in proceedings

of the Software Product Lines Conference series.

As a modeling language, feature models undergo a quick

maturation process. Tools begin to flourish [12, 30, 4, 45,

31], new applications show up [5], and first voices calling

for standardization can be heard [40]. Computer supported

variability modeling introduces important benefits over in-

formal modeling. The major advantage is that formal vari-

ability models support automation of the built process [17]

of family members. Another advantage is possibility of au-

tomatic transformation and analysis of models [6].

We look into a broad category of analyses and trans-

formations of feature models: those based on satisfiability

solving (SAT) techniques, including consistency checking,

finding dead and common features, model entailment and

equivalence checking, and interactive and batch configura-

tion. Many research groups [43, 27, 9, 35, 21, 33] have used

these techniques in analysis tools observing very good per-

formance even in the case of large-scale models. This fact

is somewhat intriguing as the SAT problem, which is the

underlying technical problem solved for these analyses, is

well known to be intractable [15].

The satisfiability solving community has studied practi-

cally interesting subclasses of the SAT problem observing

that the hardness is not well distributed across all instances.

Many real world problems are either over-constrained (in

terms of variability: they have no realizable products) or

under-constrained (they have many easily identifiable re-

alizations). These problems are easy to solve for solvers

in practice. The difficult problems lie in the middle of the

spectrum, in the so called transition phase [26].

Our main goal is to make such a hardness study for sat-

isfiability problems that arise in analysis of feature models.

We want to identify hard and easy classes and to under-

stand how feature models can be characterized in terms of

hardness. Are feature models hard to analyze? Is it well

founded to use SAT solvers in implementing analyses for

feature modeling tools? Is the efficiency observed by tool

builders accidental, or is it a general phenomenon? Can in-

dependent experiments confirm efficiency of the analyses

cited above?
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Figure 1. Model of a search engine family

We conclude that large-scale realistic feature models

pose no significant difficulty for SAT solvers. Surprisingly

even, the phase transition phenomenon is not observed in

feature modeling. We show that across the entire hardness

spectrum, from over-constrained to under-constrained, fea-

ture models are easy to analyze for satisfiability solvers.

The potential impact of our work has multiple facets. We

contribute towards understanding of what realistic models

are (as opposed to what models can be created in the lan-

guage). Most importantly, we justify the widespread use of

SAT solvers and SAT-based systems such as Alloy analyzer

in works by others, e.g., [43, 21, 27, 33]. We increase the

confidence in using SAT solvers for analyses, and thus we

encourage their further use for this purpose.

The primary recipients of this paper are designers of

analyses for feature models, builders and vendors of model-

ing tools, and designers of variability modeling languages.

In the long run, we hope to indirectly benefit the end users,

i.e., developers applying the aforementioned tools.

We continue introducing feature models in Section 2 and

surveying analyses techniques in Section 3. Section 4 for-

mulates our main research question. Section 5 gives back-

ground on hardness of the general SAT problem, while Sec-

tions 6–7 define the class of realistic feature models and

study the hardness of the SAT problem for this class. Sec-

tion 8 covers threats to validity and Section 9 discusses re-

lated work. We conclude in Section 10.

2 Feature Models

Figure 1 depicts a simple feature model of a Web search

engine product line. It consists of a feature tree (top) and

cross-tree constraints (bottom-left). In the tree, nodes rep-

resent features; edges describe feature relations. A single

root node, here search-engine, represents the domain con-

cept being modeled. It is included in every product de-

scribed by the model. Optional features are decorated with

a hollow circle, e.g., video. Such features can only be part

of products that also contain their parent features. For in-

stance, video can be included in products containing doc-

type. In contrast, mandatory features, e.g., html, decorated

with filled circles, appear in all products containing their

parents. Here, html appears in all products containing doc-

type.

Feature models allow specification of cardinality rela-

tions in the form of [n,m] feature groups, which enforce

that at least n and at most m features in a group must be

present in any product containing their parent (1 ≤ n ≤ m,

and m is never greater than the number of feature in the

group). Feature groups are illustrated as labeled dashed

rectangles in the figure. For instance, features Spanish, En-

glish and French form an or-group (cardinality [1,3]): at

least one of them must be present in any product containing

search-by-lang. Features gif and svg form an exclusive-or-

group (cardinality [1..1]): only one of them can and must

be included in products containing image.

Additional constraints often accompany a feature model

to complement the relations of the feature tree. We refer to

these additional constraints as cross-tree constraints. The

set of all relations in a feature model is thus specified by

conjoining the relations of its feature tree with its cross-tree

constraints. There are two cross-tree constraints in Fig-

ure 1. The first one, search-by-lang → page-translation,

reads “search-by-lang requires page-translation”. The sec-

ond one, page-preview → ¬svg, reads “page-preview ex-

cludes svg”.

We define cross-tree constraint ratio (CTCR) as the ratio

of the number of features in the cross-tree constraints to the

number of features in the feature tree. The CTCR is usually

expressed as a percentage value. For instance, the CTCR of

the model in Figure 1 is 30%(= 4

13
).

Individual products conforming to a feature model are

specified as sets of its features. For instance S1 =
{search-engine, doc-type, html} describes a Web search

engine system of our product line. Configuration C1 is le-

gal: it does not violate any of the constraints in the model.

On the other hand, configuration C2 = {search-engine,

doc-type, html, search-by-lang, page-preview} is illegal. It

violates the requirement that presence of search-by-lang

2



requires presence of at least one of Spanish, English

or French. Also, the choice of search-by-lang requires

inclusion of page-translation according to the cross-tree

constraint search-by-lang → page-translation, yet page-

translation is not part of the specification.

3 Automated Analyses of Feature Models

Existing analyses of feature models fall into two main

classes: correctness checking and configuration support.

Examples of correctness checking include consistency

checking and finding dead or common features. A model

is inconsistent if its feature constraints prevent any prod-

uct configurations. A model is incorrect if it contains dead

features [44], i.e., features that do not belong to any legal

product. The dual case are common features: features that

are shared by all products in the product line. Their pres-

ence in feature models is sometimes undesirable. Analyses

such as model entailment or equivalence checking are used

to assess the effects of edits on feature models [43, 8]. For

example, the application of a refactoring to a model should

yield a differently structured, but semantically equivalent

model [2].

Automatic analyses are also used to support derivation of

products, also known as product configuration. Two kinds

of configurations are distinguished: interactive and offline

(batch). In interactive configuration, a user makes config-

uration decisions to derive a product, while the tool guides

her in making consistent choices. A configuration system

automatically validates and propagates user’s decisions in

order to enforce that she always eventually reaches a le-

gal configuration. Crucial to interactive configuration is the

computation of valid domains [25, 23, 27], i.e., the possible

values (e.g. true/false or selected/deselected) for features

that have not been previously configured by the user. Al-

gorithms for computing valid domains on feature models

are known [33, 4, 27]. Slightly different from interactive

configuration is configuration completion or batch configu-

ration. In this case, the configuration system automatically

completes a partial configuration without undertaking any

further interaction with the user.

The need for effective techniques to analyze and manipu-

late feature models has attracted the attention of researchers

in the field [6]. An important step in this context was the

provision of rules for translating feature models to propo-

sitional logic [7, 18], which has opened many interesting

research opportunities in the use of logic-based systems to

reason on feature models, including off-the-shelf technol-

ogy such as satisfiability solvers.

Table 1 shows the rules for translating a feature model

to a propositional formula [7]. The features in the model

are the formula variables; the feature tree and the cross-

tree constraints represent the formula relations. The root

feature is represented by a simple formula (r). There is an

implication from every child to its parent. A mandatory fea-

ture is implied by its parent. Inclusive-or and exclusive-or

groups are represented by an implication from the parent

feature to the respective cardinality relation (fifth and sixth

rows; predicate 1-of-n is expanded to a full propositional

constraint generalizing xor to n arguments [7]). To obtain

the semantics of the entire model, which represents the set

of legal configurations, all the formulas for individual syn-

tactic elements are conjoined together with the conjunction

of cross-tree constraints .
If the rules in Table 1 are applied to the feature model in

Figure 1 the following formula ϕ is obtained:

search-engine ∧ (page-translation → search-engine) ∧ (1)

(doc-type → search-engine) ∧ (2)

(search-by-lang → search-engine) ∧ (3)

(page-preview → search-engine) ∧ (html → doc-type) ∧ (4)

(image → doc-type) ∧ (video → doc-type) ∧ (5)

(Spanish → search-by-lang) ∧ (6)

(English → search-by-lang) ∧ (7)

(French → search-by-lang) ∧ (8)

(gif → image) ∧ (svg → image) ∧ (9)

(search-engine → doc-type) ∧ (doc-type → html) ∧ (10)

(search-by-lang → (Spanish ∨ English ∨ French)) ∧ (11)

(image) → (gif ∧ ¬svg ∨ ¬gif ∧ svg) ∧ (12)

(search-by-lang → page-translation) ∧ (13)

(page-preview → ¬svg) (14)

Lines 13–14 represent the cross-tree constraints in the

model.

SAT-based Analyses Boolean satisfiability is a decision

problem to check whether a Boolean formula evaluates to

true for any of the assignments to its variables. If there is

such assignment the formula is said to be satisfiable, other-

wise it is unsatisfiable. For instance, (a ∧ b) is satisfiable

as witnessed by the assignment {a=true, b=true}. Formula

(a ∧ b ∧ ¬a) is unsatisfiable: no value for variable a causes

the formula to evaluate to true.

Table 1. Feature models as Boolean formulas

Feature model relation Corresponding formula

r is the root feature r

p is parent of feature c c → p

m is a mandatory subfeature of

p

p → m

p is the parent of [1..n] grouped

features g1, . . . , gn

p → (g1 ∨ . . . ∨ gn)

p is parent of [1..1] grouped

features g1,. . . ,gn

p → 1-of-n(g1, . . . , gn)

Cross-tree constraints already Boolean formulas

3



SAT solvers are systems used to decide satisfiability.

They have been extensively studied for decades. The core

decision procedure behind many modern SAT solvers is

the DPLL algorithm [19]. State-of-the-art SAT solvers ex-

tend it with optimizations techniques allowing them to pro-

cess large instances efficiently. SAT solvers usually process

problems encoded in the conjunctive normal form (CNF),

i.e., as conjunctions of clauses, where each clause is a dis-

junction of literals, and a literal is a variable or its negation.

Formula (a ∨ b) ∧ (¬a ∨ ¬b) is a CNF formula over a and

b, comprising two clauses with two literals each.

DPLL is a backtracking search algorithm. It successively

assigns Boolean values to variables in the formula, as long

as none of the clauses is violated. If an assignment vio-

lates one or more clauses, the algorithm backtracks, assign-

ing another value to the offending variable (and perhaps to

previously assigned variables if this is insufficient). The

procedure stops when all variables have been successfully

assigned, or when all assignments have been tried without

finding a satisfiable one. Besides search, unit propagation is

an important part of DPLL. It propagates each variable as-

signment to other clauses as far as possible, even to clauses

not directly related to the propagated assignment.

Since feature models can be translated to propositional

logic (and then to CNF), one can use a SAT solver to reason

about feature models. For instance, consistency of a model

can be decided by checking satisfiability of its correspond-

ing formula. Detecting whether a feature f is dead reduces

to checking satisfiability of ϕ ∧ f , where ϕ is the feature

model formula. If ϕ ∧ f is unsatisfiable, conclude that fea-

ture f is dead; otherwise, it is live. Similar reasoning can

be applied to check if f is common: simply check satisfia-

bility of ϕ ∧ ¬f , concluding that f is common if the result

is negative, or concluding that f not common otherwise.

Finally, batch configuration, i.e., configuration completion,

requires running a single satisfiability check for the formula

ϕ restricted and simplified with respect to a partial configu-

ration.

Some feature model analyses such as checking model

consistency or checking whether a given feature is dead or

common require a single SAT check; other analyses may

involve several satisfiability checks. For instance, in order

to analyze the entire feature model for existence of dead or

common features or for computing valid domains [27, 33],

several SAT checks are necessary. These SAT checks ver-

ify whether selecting or deselecting a given feature violates

some constraint or can lead to a legal configuration. Also,

techniques exist to perform model entailment or equiva-

lence checking by multiple SAT checks, each checking a

formula ϕ1 ∧ ϕi, where ϕ1 is the formula of the first model

and each ϕi is a small conjunction of literals derived from

the second model (see [43] for details). Consequently, since

making these analyses for the entire model may require

thousands of SAT checks, we want each SAT check to be

processed in a small fraction of a second.

Researchers [21, 43, 27]1 have observed very good per-

formance of SAT solvers in performing SAT checks on

large feature models containing thousands of features. This

fact has naturally encouraged researchers to explore other

kinds of SAT-based algorithms for feature model analy-

ses. In particular, our own experience with developing

such algorithms served to confirm the results of previous

research. For instance, we computed consistency checks

on models with up to 10,000 features and a large num-

ber of cross-tree constraints and in the worst-case scenario

the SAT solver took about 0.4 seconds to complete the

check. In addition, we developed an algorithm for comput-

ing valid domains and observed processing times of about

22 seconds for models with 5,000 features and a fairly large

number of cross-tree constraints. Currently, the aforemen-

tioned algorithms are used to support analyses and prod-

uct configuration services at the SPLOT web portal (see

http://www.splot-research.org for details).

4 Research Problem

Despite the relative success of the use of SAT solvers to

perform automated analyses of feature models, a sensitive

issue related to the use of these systems has been consis-

tently neglected. Satisfiability is a difficult computational

problem (NP-complete [15]). A SAT solver may take an

infeasible amount of time to check satisfiability of certain

kinds of instances. It is known that while some classes of

instances can be solved efficiently (e.g., 2-SAT—the class of

SAT problems consisting of only binary constraints) other

classes quickly become intractable with grows of parame-

ters such as number of variables and clauses.

These facts naturally raise the question of whether or

not SAT problems derived from realistic feature models can

ever become intractable. While previous research has sug-

gested the opposite, researchers have failed to provide a

strong evidence of the tractability of those problems. As

a consequence, we still do not know precisely whether re-

ported results are accidental or justified.

Therefore, we pose the following research question that

shall be addressed in this paper: Are SAT problems derived

from realistic feature models indeed tractable? If so, what

evidence supports this fact?

Addressing this question is crucial to improve the level

of confidence in using SAT technology to reason on feature

models, especially large ones. In other words, without a

good evidence of the efficiency of SAT solvers in the feature

1While paper [21] uses small models the authors have confirmed in

personal communication that Alloy analyzer (SAT solver) performs well

on models with up to 2000 features.

4



Figure 2. Phase transition of random 3-SAT

modeling domain one cannot fully rely on the use of these

systems for a serious purpose.

Methodology. Our approach to answering the research

question is as follows. We first analyzed published feature

models to determine their structural complexity character-

istics, such as the hierarchy branching factor, the CTCR,

and the size of the cross-tree constraint clauses. We refer to

models with characteristics similar to those of the published

models as realistic. We then design and run experiments on

generated large-scale models that are realistic or even more

complex. The experimental design was guided by the prior

work studying the hardness of the SAT problem.

5 Hardness of SAT problems

Hardness of SAT problems has been studied in the past

primarily with an outlook on improving performance of

SAT solvers. In this context, hardness is directly related

to the number of steps required by a SAT solver to perform

satisfiability checks. Obviously, the harder the instance, the

higher the number of required steps. Conversely, the easier

the instance, the lower the number of required steps. For all

known algorithms, the number of required steps is exponen-

tial in the worst case, and large worst case instances cannot

be solved in feasible time.

As a result, hardness of satisfiability for subclasses of in-

stances has been studied [22, 1, 37, 36, 46]. In particular,

researchers have attempted to determine hardness thresh-

old values for k-SAT [36, 20], i.e., the class of SAT prob-

lems consisting of CNF clauses containing exactly k liter-

als. These thresholds are related to parameters such as the

number of variables and clauses in the problem and repre-

sented crossover points in which an “easy” SAT instance

becomes “hard”, and vice-versa.

An important finding relates hardness of random k-SAT

instances to the phase transition phenomenon [26, 42, 48].

It characterizes the transition of a random k-SAT instance

from a satisfiable to an unsatisfiable state given the variation

of a specific order parameter. The main parameter consid-

ered in this context is clause density, i.e., the ratio α of the

number of clauses m to the number of variables n in an in-

stance: α = m

n
. Probability of a random k-SAT instance to

become unsatisfiable grows together with its clause density.

The notable finding was that during the phase transition k-

SAT instances (k > 2) follow an “easy-hard-easy” pattern,

i.e., a SAT solver that had been working efficiently starts

to struggle as the clause density is increased up to a point

that the problem becomes intractable, and as the clause den-

sity value continues to grow, the solver starts to perform ef-

ficiently again. The peak in hardness coincides with the

50% threshold point (so-called crossover point), i.e., the

point where random k-SAT instances switch from an “al-

most always satisfiable” state (underconstrained problem)

to an “almost always unsatisfiable” state (overconstrained

problem). This transition is known to be sharp and its size

varies according to the number of variables in the problem.

For the purpose of our analysis, we are particularly inter-

ested in random instances of the 3-SAT problem, as will be

argued in the next section. Nowadays, approximate bounds

for the phase transition of uniform random 3-SAT prob-

lems (simply referred to as random 3-SAT from now on)

are known. An instance of a random 3-SAT formula is built

by selecting three different random variables for each clause

and negating each with probability 0.5. The maximum num-

ber of clauses is then 8
(

n

3

)

, where n represents the number

of variables in the problem. For random 3-SAT the phase

transition occurs for values of α varying from 3.42 to 4.506

as shown in Figure 2. The critical value is ≈ 4.25 that rep-

resents the crossover point which, as mentioned, coincides

with the peak in hardness of SAT algorithms, i.e., the point

where problems are most likely to become intractable. The

figure also shows the easy-hard-easy pattern followed by

3-SAT problems as the clause density parameter increases.

In practice, these problems can quickly become intractable.

For instance, we ran an experiment using a modern SAT

solver [11] and a random 3-SAT instance containing 300

variables and 1275 clauses (clause density of 4.25) and ob-

served that the solver did not complete after an hour of pro-

cessing.

6 SAT Problems Induced by Feature Models

One challenge in analyzing hardness of SAT instances

induced by feature models is lack of large scale real mod-

els for our analysis. It is known that such models exist [6],

but access to them is rarely granted. We were able to com-

pile [32, p. 111] a collection of about 20 small to medium

scale models (sizes ranging from 11 to 287 features; avail-

able for download at http://fm.gsdlab.org) from papers and
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published case studies, and we studied their characteristics

to support automatic generation of random models for our

experiments.

Before we delve into the details of sample generation,

let us discuss some relevant properties of feature models.

First, it is known that well-formed feature trees are always

satisfiable [32, p. 77]. A SAT solver still has to perform the

usual search procedure, but this operation takes only linear

time in the number of features (variables) [32, p. 107]. This

fact is a clear indication of the tractability of SAT problems

induced by feature trees; however, conjoining the cross-tree

constraints with the feature tree can still make the induced

SAT instances hard. Hence, it is important that we consider

the structure of the cross-tree constraints. Most importantly,

we have observed that in all of the 20 published models we

studied, the cross-tree constraints consisted of a mix of bi-

nary and ternary CNF clauses. Typically, these clauses re-

sulted from the translation of implication relations involv-

ing two or more features (variables) to CNF. For instance,

if relation (a → b ∧ c) is translated to CNF, the resulting

formula contains two clauses: (¬a ∨ b) ∧ (¬a ∨ c).

Based on this study of published models, we concluded

that realistic models will have a mix of binary and ternary

CNF clauses as cross-tree constraints. For the purpose

of our experiments, however, we decided to focus on 3-

CNF feature models, or 3-CNF-FMs: feature models whose

cross-tree constraints are limited to be 3-CNF formulas. A

SAT problem derived from a 3-CNF-FM is typically harder

than those derived from the studied sample of published

models since all cross-tree constraints of the 3-CNF-FM

are made of ternary clauses. In addition, our experiments

use very large models containing up to 10,000 features and

with up to 30% CTCR (see Section 2), while most of the

published models are usually much smaller and with lower

CTCR.

Sample Generation. Our tool generates 3-CNF-FMs in

two phases. First, a random feature tree with a speci-

fied number of features n is built, with different odds for

mandatory, optional, inclusive-OR, and exclusive-OR fea-

tures. For our models, we indicated an equal likelihood of

0.25 for each type. We also limited a branching factor for

the tree by specifying a minimum of 2 and maximum of 10

children per parent feature. This parameter is reasonable for

generating realistic trees since branching factors in the pub-

lished models were usually smaller than 10. The process

stops when n features are added to the feature tree.

Second, the tool builds a random 3-CNF formula over a

subset of features in the tree, depending on the CTCR. For

instance, for a model with 1,000 features and 30% CTCR,

300 distinct variables are selected randomly from the model

and combined randomly into ternary CNF clauses. Vari-

ables are negated in each clause with 0.5 probability and

Figure 3. Crossover points for 3-CNF-FMs

identical clauses are not permitted. The number of clauses

is controlled by clause density. For instance, given clause

density of 2.3 for a model of 1,000-features, we generate

690 (= 2.3×300) random ternary clauses. The clause den-

sity refers to the density of clauses in the cross-tree con-

straints not in the formula induced by the entire feature

model

Phase Transition of 3-CNF Feature Models. Our first

analysis consisted of determining phase transition thresh-

olds for 3-CNF-FMs, i.e., the crossover points in which

a 3-CNF-FM instance has 0.5 probability of being

(un)satisfiable. Recall from Section 5 that it is near these

thresholds that random 3-SAT instances become hard. By

determining these thresholds for 3-CNF-FMs, we are in-

deed finding the clause density values in which those mod-

els are most likely to derive hard (and perhaps intractable)

SAT problems.

Experiment #1: Crossover points for 3-CNF-FMs. For

this experiment, 100 models were generated for each com-

bination of size (1,000, 2,000, 3,000, 5,000 and 10,000),

CTCR (10%, 20% and 30%) and clause density (from 0.1 to

3.5 in increments of 0.1). We want to examine how the hard-

ness of feature model SAT instances increase as new clauses

are added to the cross-tree constraints. In total, 52,500 mod-

els were generated during the experiment (some of which

are available online (http://fm.gsdlab.org/). The SAT solver

(SAT4J [11]) was given 30 seconds to complete satisfiabil-

ity checks on generated models.

Due to space concerns, we report only the most essential

findings here. For a complete list of the crossover points

identified for 3-CNF-FMs, please refer to [32, p. 141].

Figure 3 shows the results of the crossover-point compu-

tation for three classes of feature models containing 1,000

(10% CTCR) and 10,000 (10% and 30% CTCR) features.

The graph shows the percentage of satisfiable models (ver-

tical axle) as the clause density of the 3-SAT cross-tree con-
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straint formula increases from 0.1 to 3.5 (horizontal axle).

Each point in the graph has been computed using 100 gen-

erated models.

The crossover-point line is shown as a horizontal line in

the 50% satisfiability point on the vertical axis. The three

crossover points indicated in the figure (0.50, 1.30 and 2.35)

represent the median density values within the range in

which at most 70% and at least 30% of the models analyzed

represented satisfiable instances. Each of these points refers

to a specific class of models with fixed size and CTCR. For

instance, consider the models with 1,000 features and 10%

CTCR (rightmost series). At density values 2.0 and 2.7 no

more than 70% and no less than 30%, respectively, of the

models analyzed were satisfiable. The median value was

then the average of the two middle values 2.3 and 2.4 which

resulted in the crossover point of 2.35 (see this value in Fig-

ure 3). This value suggests that if the CNF formula corre-

sponding to a feature tree containing 1,000 nodes is con-

joined to a random 3-SAT formula containing 100 of the

feature tree variables (10% CTCR) and 235 clauses (den-

sity of 2.35), the resulting SAT instance has 50% of chance

of being satisfiable.

Results. The first finding in this experiment is that for a

fixed model size, the higher the CTCR the earlier the feature

model instance reaches the crossover point and becomes

unsatisfiable. Consider the two models in Figure 3 con-

taining 10,000 features. The one with higher CTCR (30%)

reaches the crossover point at density 0.5 while the other

with CTCR of 10% reaches the same point at a higher den-

sity of 1.30. This result was expected since increasing the

number of variables and clauses in the cross-tree constraints

also increases clause density of the formula induced by the

model.

Second, for a fixed CTCR, the larger the model the

earlier the feature model instance reaches the crossover

point and becomes unsatisfiable. This finding is interesting

since the number of variables in the cross-tree constraints

is equally proportional to the size of the models (i.e., fixed

CTCR), but yet larger models are more sensitive to the ad-

dition of clauses to the cross-tree constraints than smaller

ones. Recall that for 3-SAT problems the crossover point

happens about density 4.25 no matter the size of the prob-

lem (number of variables). Yet, the size of the feature tree

influences the crossover thresholds of 3-CNF-FMs with the

same CTCR value. Figure 3 illustrates this scenario. Given

two models with CTCR of 10% and containing 1,000 and

10,000 features, the one with higher number of features

reaches the crossover point first at 1.30 against density 2.35

of the other (see these values in the figure).

The most important result of this experiment is determin-

ing hardness thresholds for 3-CNF-FMs, i.e., critical den-

sity values for which models should induce hard SAT prob-

lems. These thresholds will be used in our hardness tests

Figure 4. Times of satisfiability checks

shown in the next section.

7 Hardness of 3-CNF Feature Models

In the second experiment, we examine the hardness of

SAT instances derived from 3-CNF-FMs taking into ac-

count the crossover points identified for those in the pre-

vious experiment. We focused the analysis on very large

feature models with 10,000 features and the highest CTCR

in the previous experiment (30% CTCR). We believe that

these two parameters are large enough to generate SAT in-

stances that are much harder than the vast majority of real-

istic feature models.

In addition, since typical SAT-based feature model anal-

yses such as detecting dead and common features and com-

puting valid domains usually require the solver to use a par-

ticular value order during the search procedure, we decided

to also test different value orders for the SAT solver. For in-

stance, it makes sense to set up the solver with value order

{true, false} when computing dead features since the goal

in this analysis is to find as many true variables as possible

in each solution provided by the solver. By doing so, one

eliminates all these variables from the next rounds of satisfi-

ability checks since it is known they are not dead. The same

rationale applies to common features, but with the opposite

value order, i.e., {false, true}. In other situations, the value

order might not be important; thus, we also tested random

value orders.

Experiment #2: Tractability of 3-CNF-FMs. For this

experiment, we used 20 feature models with 10,000 features

and 30% CTCR for each density value within the range

from 0.1 to 5.0 in increments of 0.1. In total, 1,000 mod-

els were generated during the experiment. The SAT solver

(SAT4J [11]) was given 30 seconds to complete satisfiabil-

ity checks. It was configured with three different value or-

ders: {true, false}, {false, true}, and random. The variable
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order indicated to the SAT solver was obtained by a depth-

first traversal on the feature tree.

Results. The crossover point for models with 10,000 fea-

tures and 30% CTCR was 0.5, as shown in Figure 3. Fig-

ure 4 shows the median running time of SAT4J performing

satisfiability checks for various clause density values and

for three different value orders. As it can be observed in the

figure, the SAT solver was extremely efficient regardless of

the density or the value order considered. That is, the me-

dian running time for satisfiability checks was never higher

than 42 ms. The worst absolute running times were never

higher than 400 ms in any of the test cases. In particular,

there was no decline in performance of the SAT solver for

instances near the critical density value of 0.5, the feature

model crossover point (see label (A) in the figure). This

finding provides a strong evidence that SAT problems de-

rived from 3-CNF-FMs can be solved efficiently by a stan-

dard SAT solver.

Another interesting point illustrated in Figure 4 (see

label (B)) shows that when the cross-tree constraint for-

mula (in isolation) reaches its phase transition (from 3.42

to 4.506) and becomes computationally hard to solve, the

SAT solver observes no decline in performance. Therefore,

we can conclude that when an intractable 3-SAT formula is

conjoined to a feature tree the resulting feature model for-

mula is unsatisfiable and easily solvable.

8 Threats to Validity

Let us now briefly discuss threats to validity of our work.

Validity of the experimental approach. The experimen-

tal analysis of performance, by its very nature, cannot prove

the timing behavior of techniques for all possible cases. An

alternative would be to study complexity-theoretic proper-

ties of feature models as constraint systems. Due to in-

herent difficulty of satisfiability, an experimental approach

has been previously adopted by the SAT solving community

[22, 37, 46]. We follow that adoption here.

Applicability of results for realistic models. Generating

models that resemble published models can be risky for our

analysis of problem hardness since we would assess the ex-

pected case behavior. It is more relevant to build a class of

models that share essential properties of real models (e.g.,

consisting of a feature tree and cross-tree constraints), but

that can induce much harder SAT problems than most of the

realistic models. This class would inform us about worst-

case performance for human-constructed models. We have

mitigated this threat by generating instances that are harder

than those seen in published models, and shown that even

these instances are easily solvable.

Limitations of our conclusion. We have concluded that

satisfiability problems induced by feature models are easy

to solve; however, since feature models are complete with

respect to propositional logics [13] one can certainly encode

intractable SAT problems in feature models. In fact, this

can be done easily if the children-per-parent parameter is

increased to a point where the feature tree has depth 1.

It is important to emphasize that our conclusions only

apply to “realistic models,” as defined in Section 6 and re-

flected in our generation procedure, and not to all models

that can be designed in the language. In particular, our class

of realistic models was inspired by a sample of published

feature models, and it is unclear how well this sample re-

flects the models that are used in actual industrial practice.

Also note that if hard time bounds are needed, then it

is more suitable to consider alternative analysis techniques

such as BDDs, which may be slower on average, but guar-

antee a fast response time, if the BDD for the problem has

been constructed up front (offline). This is possible for

some use cases, for example for interactive configuration

[25, 24].

Applicability to other analyses Our results apply to SAT-

based analyses that work with relatively small adjustments

of the CNF formula induced by the feature model, such as

adding few new clauses. Consistency checking, detection

of dead or common features, and computation of valid do-

mains are analysis that require no or small adjustments. If

a method applies major manipulations to the formula or if

it uses a different decision/optimization problem (such as

MAX-SAT [38, chpt. 9]) then the results do not carry over

automatically.

9 Related Work

We have extensively reported about SAT-based tech-

niques for analysis of feature models throughout the pa-

per. For the sake of completeness, we mention here relevant

sources that do not use SAT directly.

Automated analyses were also applied to extended fea-

ture models, i.e., models that contain non-Boolean at-

tributes associated to features [10]. Non-Boolean models

are naturally described as a constraint satisfaction problem.

Similar analysis are possible on those models such as check-

ing consistency or computing valid domains. Constraint

optimization systems have been used to detect and repair

errors in inconsistent configurations [47]. It would be inter-

esting to carry out a similar kind of tractability analysis to

ours for systems based on constraint solving.

Alternative approaches are based on Binary Decision Di-

agrams (BDDs) [14, 3]. BDDs are efficient for some algo-

rithms often difficult for SAT solvers: counting legal con-

figurations, computing valid domains [24], or reverse engi-
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neering models [18]. Observe, that one can hardly use a

SAT solver to count legal configurations efficiently. Sim-

ilarly, no SAT-based techniques are known for reverse en-

gineering. A typical advantage of BDD based methods is

guaranteed efficient response time of analyses used in user

interaction. Recall that the worst case response time for

SAT solvers is exponential.

BDDs suffer from intractability, too. There the in-

tractability, manifested in space rather than time, is shifted

to the compilation phase performed offline. In order to ad-

dress it, variable ordering heuristics for compiling feature

models have been studied [34, 32]. Currently, it is known

that models with up to 2,000 features (for CTCR of 10%)

can be successfully compiled to BDDs.

Analyses tools that compare different reasoning tech-

niques for feature models are available [9][32, p. 145].

In such tools, one can easily incorporate new techniques

and reasoning algorithms and compare their strengths and

weaknesses.

10 Conclusion and Future Work

We have presented a brief survey of analysis methods

for feature models and an extensive experimental study of

efficiency of SAT-based methods for analyses. We have ob-

served that these analyses essentially reduce to satisfiability

problems; thus, it suffices to study this more abstract prob-

lem to obtain conclusions about the analyses.

Our main technical conclusion is that SAT instances in-

duced by feature models are easy for solvers. This find-

ing has been demonstrated by (1) a series of experiments

analyzing parameter combinations that identify crossover

points, and (2) by studying hardness of randomly generated

instances in a large interval around these points. Our in-

stances were harder than realistically met models. Surpris-

ingly, we have observed no phase transition phenomenon

for problems induced by realistic feature models.

Our findings confirm and justify the high-performance of

SAT solvers in analyses observed by independent research

groups [43, 21, 28]. Indeed SAT solving scales well for

these problems, even for models containing up to 10,000

features. There is now experimental evidence indicating

that it will continue to scale well for analyses yet to be de-

veloped. We believe that our findings will encourage the

development of new SAT-based algorithms in the future.

One way to further develop the work presented here is to

analyze the problem theoretically. Perhaps the class of re-

alistic feature models can be reduced to one of the PTIME-

decidable subclasses of satisfiability described by Shaefer

[41][16, p. 52].
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