Compile-time Scope Resolution for
Statecharts Transitions

Andrzej Wasowski and Peter Sestoft

30th September 2002

21T University of Copenhagen

An Optimization for
Statecharts Compiler

Content:

e Environment:
— visualSTATE tool
— visualSTATE language
e The problem
— Multitarget transitions
— Dynamic scopes problem
e The solution: an algorithm
e Evaluation
— Basic properties of the algotihm
— Relation to standard UML
— A bit on compile-time analysis

- Y
g

IT University of Copenhagen 2

Resource Constrained
Embedded Systems

e Wide perspective — RCES: high level programming language
technology for embedded software.

e Narrower — SCOPE: efficient code synthesis for reactive concurrent
control algorithms

— aware of usage of resources (mainly memory)

— meeting space constraints

— control the trade-off between speed and size
e Concretely:

— UML is a promising framework for that

— Source language: UML-like statecharts

— Target language: 1SO C99 (perhaps more)

==Ir University of Copenhagen 1

IAR visualSTATE

e Industrial CASE tool for to development of embedded software
— UML-like statechart language
— design environment
— model-checker
— animating debugger
— code generator
e Compilation scheme:

model —= code generator

% compile-time
777777 Y T 7 rundtime
runtime _runtime
representation interpreter

Remark: Moving some work from run-time to compile-time (across the dashed line)
is a fundamental software optimization approach.

= University of Copenhagen 3

VisualSTATE Statecharts

e State hierarchy:
— parallel and sequential decompositions
The 100t is an and-state

Basic states (leaves) are and-states

State type alternation

— Orthogonal states: NCA is an and-state.
e Entry/exit actions.
e Transitions:

— condition side: event + guard

— executable side: action + targets

[e(}{}]1/a:H

(e V' =)

Multitarget Transitions: example

[F3{E}]/

[e{F}{}]/a: G !
o @

e UML conditions on targets relaxed
e Enter a state orthogonal to source of the transition

-
=

IT University of Copenhagen

-
=

IT University of Copenhagen

VisualSTATE Statecharts (I1)

e Transitions guards:
g u= true| gAs|gA-s
where s stands for any state name.
e Textual notation for transitions:

t: [e posnegl/a :sy.5k

t optional rule name, neg must-be-inactive states
e triggering event, a action,
pos must-be-active states, s; targets

e Differences from standard UML:
— no fork and join transitions,
— generalized multiple targets

Scope of Firing a Transition

- Lc]
e ./‘\'

[e{F}{}]/a:G
T ~= G

[F3{31/

[FO{E}]/

e Two transitions on the left fire within region C' (the scope)
e Scope is important because it determines exit and entry actions
e Multiple targets yield multiple scopes
e Scopes for the left transition are regions B and C'
— B is the scope for target
— (' is the scope for target G

- o
“=IT University of Copenhagen

<3 N
“=7IT University of Copenhagen

Scope of Firing a Transition (ll)
A |

(8]
e{F}{}1/a: G

T D)

e Targets statically annotated with scopes:

tvocle AD,F} {}y]/ o o [BIE[CIG
ta :[f {(Fr 0 1 - [Cla
ts :[f {¢y {ey 1/ - [ClF

e Cannot always be done

— The scope occasionally depends on current configuration.

N
“IT University of Copenhagen

Dynamic Scope: example (11)

a) b) 0

Dynamic Scope: example

e Three legal configurations activating the transition.
e All contain D.
e Also contain one of F', H or [

i ‘
L8] lc]
) |
[e{(}{}]/a:H ;

e Scope of target F is always B
e Scope of target H depends on active configuration of C'

-
=

IT University of Copenhagen 10

- o
“=IT University of Copenhagen

The Problem and The Solution

e Dynamic scope can only be identified at runtime.
e Detection algorithm is complicated
— efficiency suffers
— quality/security issues (trusted code base)
e Also all normal transitions with static scopes suffer (the majority).
e If dynamic scopes are bad — get rid of them!

Identify dynamically scoped transitions
Remove them from the model

Add new, equivalent, statically scoped transitions.

Use scope annotations at runtime

2T University of Copenhagen 11

The Problem and The Solution (1)

The problematic transition in our example:

can be rewritten with two rules:

[e{D,F}{}]/a : [BIE[CIH
[e{D.G}{}]/a : [BIE[G'H

Adding extra positive conditions can ensure static scopes.

Let's make it automatic ...

Y
P

IT University of Copenhagen

12

Algorithm: overview

e Describe hierarchy as a boolean formula
— For each and-state s and children sy, ..., s conjoin
(s= 81 A .e Asp) A (s = =81 A ... A -isg)
— For each or-state s and children s, ..., s; conjoin
(s = $1 XOR ... XOR s) A (18 = =81 A ... A —sg)

— Conjoin a simple term (root), where root is the top state of the

hierarchy.

Restrict it with the transition's guard.

e Eliminate irrelevant variables.

e Check the number of satisfiable assignments:
— no solutions: transition will never fire

— single solution: determine the static scope
— multiple solution: the scope is dynamic

- o
“=IT University of Copenhagen

13

An example

B

[e{t{}]1/a:H)

Hierarchy structure:

¢ = AN(A=BAC) A (B=DXORE) A (C= FXORG) A
AN(G&G) AN (G=HXXRI)A (-G =-H N —I) .
Constrained with guard:
¢'(t)=oAD
Existentially quantifed over all non-ancestors and non-target:

¢”(t> = (EIDvFa I) ¢l(t)

- Y
g

IT University of Copenhagen 14

Identify Branch Exclusions

&
&
o

BiC B B
3 b))

Guard propagation ensures a regular shape of solutions.

.)IT University of Copenhagen 15

Identify Branch Exclusions (II)

'y
(8]

5
>
5

% % g KK 2 jra
\ Co O
/G /G /G le(01/a:H
0 -)
3 b) 3

e Decorate transitions with branch exclusions

[e{D,C}{G}]/a - [BJE[CIH
[e{D,G}{H}]/a : [BIE[G'H
[e{D,G.H}{}]/a = [BIE[G'NH

e Cases b) and c) can be unified with little effort (disjoin conditions)

Y
P

IT University of Copenhagen 16

Efficiency

e The problem solved is substantially smaller than typical model-
checking problems:
— Only static structure is considered (no time progressing).
— Only a subset of states needs to be represented.
— The number of solutions is bound by the depth of hierarchy.

e 2.5s to compile a 200 transitions model
(SCOPE, all incurred translation cost included)

Characteristics

e Can entirely be performed at compile time

e Multiplies transitions only occasionally

e Multiplicity is small (and bound by depth of the hierarchy)
e Preserves the semantics

New guards are stronger than original

Newly added transitions are mutually exclusive

Disjunction of new guards is equivalent to original guard.

— Other components of transition (action, targets) remain
unmodified.

e Can be conveniently combined with other model transformations

— guard minimization, transition compaction, message elimination,
etc

e Demands a boolean logics SAT-solver
— We use Binary Decision Diagrams (BDDs)
— Implementation Buddy/Muddy

2T University of Copenhagen 17

- Y
==

IT University of Copenhagen 18

Applications for UML

e Multitarget transitions more efficient than UML broadcasts
— at least two microsteps are needed in message passing

e Multitarget transitions perform similar communication task as
message passing.
— RTC semantics allows to replace message passing with multitarget
transition

e Conclusion: multitarget transitions may play role in compact runtime
representations for statechart models.

= University of Copenhagen 19

Advocating Compile-time Analysis

model —> code generator
% compile-time
777777 Y " 7 nundtime
runtime _runtime
representation interpreter

e We moved scope resolution algorithm from runtime to compile time.

A fundamental approach in compiler optimizations.

Is it possible to propose more shifts like that?
— Concurrent transition compaction

— Sequential transition compaction

— Collapsing of entry/exit rules.

e Model-checking ...

21T University of Copenhagen 20

The End

Questions?

2T University of Copenhagen 21

