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Statecharts Compiler

Content:

e Environment:
— visualSTATE tool
— visualSTATE language
e The problem
— Multitarget transitions
— Dynamic scopes problem
e The solution: an algorithm
e Evaluation
— Basic properties of the algotihm
— Relation to standard UML
— A bit on compile-time analysis
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Resource Constrained
Embedded Systems

e Wide perspective — RCES: high level programming language
technology for embedded software.

e Narrower — SCOPE: efficient code synthesis for reactive concurrent
control algorithms

— aware of usage of resources (mainly memory)

— meeting space constraints

— control the trade-off between speed and size
e Concretely:

— UML is a promising framework for that

— Source language: UML-like statecharts

— Target language: 1SO C99 (perhaps more)
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IAR visualSTATE

e Industrial CASE tool for to development of embedded software
— UML-like statechart language
— design environment
— model-checker
— animating debugger
— code generator
e Compilation scheme:

model —= code generator

% compile-time
777777 Y T 7 rundtime
runtime _runtime
representation interpreter

Remark: Moving some work from run-time to compile-time (across the dashed line)
is a fundamental software optimization approach.
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VisualSTATE Statecharts

e State hierarchy:
— parallel and sequential decompositions
The 100t is an and-state

Basic states (leaves) are and-states

State type alternation

— Orthogonal states: NCA is an and-state.
e Entry/exit actions.
e Transitions:

— condition side: event + guard

— executable side: action + targets

[e(}{}]1/a:H
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Multitarget Transitions: example

[F3{E}]/

[e{F}{}]/a: G !
o @

e UML conditions on targets relaxed
e Enter a state orthogonal to source of the transition
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VisualSTATE Statecharts (I1)

e Transitions guards:
g u= true| gAs|gA-s
where s stands for any state name.
e Textual notation for transitions:

t: [e posnegl/a :sy.5k

t optional rule name, neg must-be-inactive states
e triggering event, a action,
pos must-be-active states, s; targets

e Differences from standard UML:
— no fork and join transitions,
— generalized multiple targets

Scope of Firing a Transition
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[e{F}{}]/a:G
T ~= G

[F3{31/

[FO{E}]/

e Two transitions on the left fire within region C' (the scope)
e Scope is important because it determines exit and entry actions
e Multiple targets yield multiple scopes
e Scopes for the left transition are regions B and C'
— B is the scope for target
— (' is the scope for target G
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Scope of Firing a Transition (ll)
A |
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e{F}{}1/a: G
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e Targets statically annotated with scopes:

tvocle AD,F} {}y ]/ o o [BIE[CIG
ta :[f {(Fr 0 1 - [Cla
ts :[f {¢y {ey 1/ - [ClF

e Cannot always be done

— The scope occasionally depends on current configuration.
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Dynamic Scope: example (11)

a) b) 0

Dynamic Scope: example

e Three legal configurations activating the transition.
e All contain D.
e Also contain one of F', H or [

i ‘
L8] lc]
) |
[e{(}{}]/a:H ;

e Scope of target F is always B
e Scope of target H depends on active configuration of C' ....

-
=

IT University of Copenhagen 10

- o
“=IT University of Copenhagen

The Problem and The Solution

e Dynamic scope can only be identified at runtime.
e Detection algorithm is complicated
— efficiency suffers
— quality/security issues (trusted code base)
e Also all normal transitions with static scopes suffer (the majority).
e If dynamic scopes are bad — get rid of them!

Identify dynamically scoped transitions
Remove them from the model

Add new, equivalent, statically scoped transitions.

Use scope annotations at runtime
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The Problem and The Solution (1)

The problematic transition in our example:

can be rewritten with two rules:

[e{D,F}{}]/a : [BIE[CIH
[e{D.G}{}]/a : [BIE[G'H

Adding extra positive conditions can ensure static scopes.

Let's make it automatic ...
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Algorithm: overview

e Describe hierarchy as a boolean formula
— For each and-state s and children sy, ..., s conjoin
(s= 81 A .e Asp) A (s = =81 A ... A -isg)
— For each or-state s and children s, ..., s; conjoin
(s = $1 XOR ... XOR s) A (18 = =81 A ... A —sg)

— Conjoin a simple term (root), where root is the top state of the

hierarchy.

Restrict it with the transition's guard.

e Eliminate irrelevant variables.

e Check the number of satisfiable assignments:
— no solutions: transition will never fire

— single solution: determine the static scope
— multiple solution: the scope is dynamic
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An example

B

[e{t{}]1/a:H )

Hierarchy structure:

¢ = AN(A=BAC) A (B=DXORE) A (C= FXORG) A
AN(G&G) AN (G=HXXRI)A (-G =-H N —I) .
Constrained with guard:
¢'(t)=oAD
Existentially quantifed over all non-ancestors and non-target:

¢”(t> = (EIDvFa I) ¢l(t)
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Identify Branch Exclusions
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Guard propagation ensures a regular shape of solutions.
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Identify Branch Exclusions (II)
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e Decorate transitions with branch exclusions

[e{D,C}{G}]/a - [BJE[CIH
[e{D,G}{H}]/a : [BIE[G'H
[e{D,G.H}{}]/a = [BIE[G'NH

e Cases b) and c) can be unified with little effort (disjoin conditions)
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Efficiency

e The problem solved is substantially smaller than typical model-
checking problems:
— Only static structure is considered (no time progressing).
— Only a subset of states needs to be represented.
— The number of solutions is bound by the depth of hierarchy.

e 2.5s to compile a 200 transitions model
(SCOPE, all incurred translation cost included)

Characteristics

e Can entirely be performed at compile time

e Multiplies transitions only occasionally

e Multiplicity is small (and bound by depth of the hierarchy)
e Preserves the semantics

New guards are stronger than original

Newly added transitions are mutually exclusive

Disjunction of new guards is equivalent to original guard.

— Other components of transition (action, targets) remain
unmodified.

e Can be conveniently combined with other model transformations

— guard minimization, transition compaction, message elimination,
etc

e Demands a boolean logics SAT-solver
— We use Binary Decision Diagrams (BDDs)
— Implementation Buddy/Muddy
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Applications for UML

e Multitarget transitions more efficient than UML broadcasts
— at least two microsteps are needed in message passing

e Multitarget transitions perform similar communication task as
message passing.
— RTC semantics allows to replace message passing with multitarget
transition

e Conclusion: multitarget transitions may play role in compact runtime
representations for statechart models.
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Advocating Compile-time Analysis

model —> code generator
% compile-time
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e We moved scope resolution algorithm from runtime to compile time.

A fundamental approach in compiler optimizations.

Is it possible to propose more shifts like that?
— Concurrent transition compaction

— Sequential transition compaction

— Collapsing of entry/exit rules.

e Model-checking ...
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The End

Questions?
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