
Compile-time Scope Resolution for

Statecharts Transitions

Andrzej Wasowski and Peter Sestoft

30th September 2002

IT University of Copenhagen

Resource Constrained

Embedded Systems

• Wide perspective – RCES: high level programming language
technology for embedded software.

• Narrower – SCOPE: efficient code synthesis for reactive concurrent
control algorithms

– aware of usage of resources (mainly memory)

– meeting space constraints

– control the trade-off between speed and size

• Concretely:

– UML is a promising framework for that

– Source language: UML-like statecharts

– Target language: ISO C99 (perhaps more)

IT University of Copenhagen 1

An Optimization for

Statecharts Compiler

Content:

• Environment:

– visualSTATE tool

– visualSTATE language

• The problem

– Multitarget transitions

– Dynamic scopes problem

• The solution: an algorithm

• Evaluation

– Basic properties of the algotihm

– Relation to standard UML

– A bit on compile-time analysis

IT University of Copenhagen 2

IAR visualSTATE

• Industrial CASE tool for to development of embedded software

– UML-like statechart language

– design environment

– model-checker

– animating debugger

– code generator

• Compilation scheme:

model code generator

runtime
representation

runtime
interpreter

compile-time

run-time

Remark: Moving some work from run-time to compile-time (across the dashed line)

is a fundamental software optimization approach.

IT University of Copenhagen 3

VisualSTATE Statecharts

• State hierarchy:

– parallel and sequential decompositions

– The root is an and-state

– Basic states (leaves) are and-states

– State type alternation

– Orthogonal states: NCA is an and-state.

A

B C

GF

G’

H I

D E

• Entry/exit actions.

• Transitions:

– condition side: event + guard

– executable side: action + targets

B

E

D

C

I

H

G

F

A

ED

[e {} {}] / a : H

IT University of Copenhagen 4

VisualSTATE Statecharts (II)

• Transitions guards:

g ::= true | g ∧ s | g ∧ ¬s ,

where s stands for any state name.

• Textual notation for transitions:

t : [e pos neg] / a : s1...sk

t optional rule name,

e triggering event,

pos must-be-active states,

neg must-be-inactive states

a action,

si targets

• Differences from standard UML:

– no fork and join transitions,

– generalized multiple targets

IT University of Copenhagen 5

Multitarget Transitions: example

B C

F G
[f {} {}] /

[f {} {E}] /

ED

[e {F} {}] / a : G

A

• UML conditions on targets relaxed

• Enter a state orthogonal to source of the transition

IT University of Copenhagen 6

Scope of Firing a Transition

B C

F G
[f {} {}] /

[f {} {E}] /

ED

[e {F} {}] / a : G

A

• Two transitions on the left fire within region C (the scope)

• Scope is important because it determines exit and entry actions

• Multiple targets yield multiple scopes

• Scopes for the left transition are regions B and C

– B is the scope for target E

– C is the scope for target G

IT University of Copenhagen 7

Scope of Firing a Transition (II)

B C

F G
[f {} {}] /

[f {} {E}] /

ED

[e {F} {}] / a : G

A

• Targets statically annotated with scopes:

t1 : [e {D,F} {}] / a : [B]E [C]G
t2 : [f {F} {}] / − : [C]G
t3 : [f {G} {E}] / − : [C]F

• Cannot always be done

– The scope occasionally depends on current configuration.

IT University of Copenhagen 8

Dynamic Scope: example

• Three legal configurations activating the transition.

• All contain D.

• Also contain one of F , H or I

B C

G

H I

F

G’

D

E

[e {} {}] / a : H

A

A

B C

GF

G’

H I

D E

• Scope of target E is always B

• Scope of target H depends on active configuration of C

IT University of Copenhagen 9

Dynamic Scope: example (II)

C

GF

H

E

A

F

I

E

B

E GF

G’

H

D

A

I

G’

C

D

B

A

C

G

G’

H

D

B

I

a) b) c)

B C

G

H I

F

G’

D

E

[e {} {}] / a : H

A

IT University of Copenhagen 10

The Problem and The Solution

• Dynamic scope can only be identified at runtime.

• Detection algorithm is complicated

– efficiency suffers

– quality/security issues (trusted code base)

• Also all normal transitions with static scopes suffer (the majority).

• If dynamic scopes are bad – get rid of them!

– Identify dynamically scoped transitions

– Remove them from the model

– Add new, equivalent, statically scoped transitions.

– Use scope annotations at runtime

IT University of Copenhagen 11

The Problem and The Solution (II)

The problematic transition in our example:

B C

G

H I

F

G’

D

E

[e {} {}] / a : H

A

can be rewritten with two rules:

[e {D,F} {}] / a : [B]E [C]H
[e {D,G} {}] / a : [B]E [G′]H

Adding extra positive conditions can ensure static scopes.

Let’s make it automatic ...

IT University of Copenhagen 12

Algorithm: overview

• Describe hierarchy as a boolean formula

– For each and-state s and children s1, ..., sk conjoin
(s ⇒ s1 ∧ ... ∧ sk) ∧ (¬s ⇒ ¬s1 ∧ ... ∧ ¬sk)

– For each or-state s and children s1, ..., sk conjoin
(s ⇒ s1 xor ... xor sk) ∧ (¬s ⇒ ¬s1 ∧ ... ∧ ¬sk)

– Conjoin a simple term (root), where root is the top state of the
hierarchy.

• Restrict it with the transition’s guard.

• Eliminate irrelevant variables.

• Check the number of satisfiable assignments:

– no solutions: transition will never fire

– single solution: determine the static scope

– multiple solution: the scope is dynamic

IT University of Copenhagen 13

An example

B C

G

H I

F

G’

D

E

[e {} {}] / a : H

A

A

GF

G’

I

D E

H

CB

Hierarchy structure:

φ = A ∧ (A ⇒ B∧C) ∧ (B ⇒ D xor E) ∧ (C ⇒ F xor G) ∧

∧ (G ⇔ G′) ∧ (G′ ⇒ H xor I) ∧ (¬G′ ⇒ ¬H ∧ ¬I) .

Constrained with guard:

φ′(t) = φ ∧ D

Existentially quantifed over all non-ancestors and non-target:

φ′′(t) = (∃D,F, I). φ′(t)

IT University of Copenhagen 14

Identify Branch Exclusions

A

B C

E G

G’

H

A

B C

E

G’

H

A

B C

E G

G’

H

G

c)b)a)

Guard propagation ensures a regular shape of solutions.

IT University of Copenhagen 15

Identify Branch Exclusions (II)

A

B C

E G

G’

H

A

B C

E

G’

H

A

B C

E G

G’

H

G

c)b)a)

B C

G

H I

F

G’

D

E

[e {} {}] / a : H

A

• Decorate transitions with branch exclusions

[e {D,C} {G}] / a : [B]E [C]H
[e {D,G} {H}] / a : [B]E [G′]H
[e {D,G, H} {}] / a : [B]E [G′]H

• Cases b) and c) can be unified with little effort (disjoin conditions)

IT University of Copenhagen 16

Characteristics

• Can entirely be performed at compile time

• Multiplies transitions only occasionally

• Multiplicity is small (and bound by depth of the hierarchy)

• Preserves the semantics

– New guards are stronger than original

– Newly added transitions are mutually exclusive

– Disjunction of new guards is equivalent to original guard.

– Other components of transition (action, targets) remain
unmodified.

• Can be conveniently combined with other model transformations

– guard minimization, transition compaction, message elimination,
etc

• Demands a boolean logics SAT-solver

– We use Binary Decision Diagrams (BDDs)

– Implementation Buddy/Muddy

IT University of Copenhagen 17

Efficiency

• The problem solved is substantially smaller than typical model-
checking problems:

– Only static structure is considered (no time progressing).

– Only a subset of states needs to be represented.

– The number of solutions is bound by the depth of hierarchy.

• 2.5s to compile a 200 transitions model
(SCOPE, all incurred translation cost included)

IT University of Copenhagen 18

Applications for UML

• Multitarget transitions more efficient than UML broadcasts

– at least two microsteps are needed in message passing

• Multitarget transitions perform similar communication task as
message passing.

– RTC semantics allows to replace message passing with multitarget
transition

• Conclusion: multitarget transitions may play role in compact runtime
representations for statechart models.

B C

G

H I

F

b

b

b
G’

D

E

[e {} {}] / a : ^b

A

IT University of Copenhagen 19

Advocating Compile-time Analysis

model code generator

runtime
representation

runtime
interpreter

compile-time

run-time

• We moved scope resolution algorithm from runtime to compile time.

• A fundamental approach in compiler optimizations.

• Is it possible to propose more shifts like that?

– Concurrent transition compaction

– Sequential transition compaction

– Collapsing of entry/exit rules.

– ...

• Model-checking ...

IT University of Copenhagen 20

The End

Questions?

IT University of Copenhagen 21

