
Modeling, Simulation,

Verification & Code Generation

with IAR visualSTATE

Kim G Larsen
Jens Frederik D. Nielsen

Henrik Schiøler
Arne Skou

Andrzej Wa,sowski

http://www.mini.pw.edu.pl/~wasowski/

21 November 2003

IT University of Copenhagen Aalborg University

http://www.mini.pw.edu.pl/~wasowski/

Outline

• Introducing the modeling language (air conditioner example).

• Tool demo (modeling, simulation, verification and code generation).

• Discussion of generated code.

• Usage contexts (specialization, validation, monitored execution).

IT University of Copenhagen Aalborg University 1

Outline

• Introducing the modeling language (air conditioner example).

• Tool demo (modeling, simulation, verification and code generation).

• Discussion of generated code.

• Usage contexts (specialization, validation, monitored execution).

IT University of Copenhagen Aalborg University 2

Trivialized Air Conditioning System

• Components:

• heater

• cooler

• fan

• user interface

• goal temperature display

• current fan speed display

• User can set a goal temperature in the room.

• System uses the heater and cooler to achieve the temperature.

• Efficiency of conditioning is controlled by the speed of fan.

• manual mode: user controls the speed

• automatic: a fixed, factory predefined speed

• fast: fan at maximum speed.

IT University of Copenhagen Aalborg University 3

Heater

Entry / HeaterOn()
Exit / HeaterOff()

hon

hoff

[t>wantedT]
TEMP(t)TEMP(t)

[t<wantedT−delta]

• Heater is initially in hoff.

• A periodic process supplies TEMP(t) regularly.

• Value t is the current temperature returned by the sensor.

• Variable int wantedT stores current goal temperature.

• Constant int delta gives the acceptable error.

• Heater is activated (HeaterOn), whenever hon is entered.

• Heater is deactivated (HeaterOff) on exit from hon.

IT University of Copenhagen Aalborg University 4

Heater & Cooler

Cooler and heater are analogous and independent.

hoff

hon

Entry / HeaterOn()
Exit / HeaterOff()

coff

Entry / CoolerOn()
Exit / CoolerOff()

con

heater cooler

TEMP(t)
[t<wantedT-delta] TEMP(t)

[t>wantedT]

[t>wantedT+delta]
TEMP(t)

[t<wantedT]
TEMP(t)

Compose them together.

IT University of Copenhagen Aalborg University 5

User Interface

H

auto

manual

fast

mode
AUTO() /

SetFS(autoFS)

TURBO() /
SetFS(maxFS)

Manual() /
SetFS(manFS)

• Buttons: AUTO, TURBO, TINC, TDEC, FSINC, FSDEC.

• Button group: Manual = { FSINC, FSDEC }.

• Variable manFS stores fan speed manually adjusted by user.

• Constant autoFS specifies factory-set automatic mode speed.

• Constant maxFS specifies maximum possible fan speed.

• History state – remember value across executions.

IT University of Copenhagen Aalborg University 6

User Interface (II)

H

Entry / DisplayFS(autoFS)

auto

Entry / DisplayFS(maxFS)

fast

Entry / DisplayFS(manFS)

manual

mode

TURBO() /
SetFS(maxFS)

SetFS(manFS)
Manual() /

SetFS(autoFS)
AUTO() /

Interface has got 2 displays: current fan speed and goal temperature.
DisplayFS updates the value shown for fan speed. Generally, state
actions help to guarantee state invariants.

IT University of Copenhagen Aalborg University 7

User Interface (III)

• Internal rules for adjusting the goal temperature and fan speed:

TINC [wantedT<maxT] / [wantedT=wantedT+1] DisplayT(wantedT)
TDEC [wantedT>minT] / [wantedT=wantedT-1] DisplayT(wantedT)
FSINC [manFS<maxFS] / [manFS=manFS+1]
FSDEC [manFS<minFS] / [manFS=manFS-1]

• These rules use variables instead of states.

• As with normal transitions they fire, whenver guards are satisfied.

• They should be active whenever the user interface is active.

• Variable wantedT stores the goal temperature set by user.

• Variable manFS stores the desired fan speed.

• Maximum&minimum goal temperature: constants maxT,minT.

• Maximum&minimum fan speed: constants maxFS,minFS.

IT University of Copenhagen Aalborg University 8

Top Level

START and STOP buttons turn the machinery on and off.

on

off

START() / STOP() /

Some entry and exit actions should be added.

IT University of Copenhagen Aalborg University 9

System Overview

off

mode

on

extra interface rules

coolerheaterinterface

IT University of Copenhagen Aalborg University 10

Complete Model of Air Conditioner

The complete visualSTATE model (tool printout):

IT University of Copenhagen Aalborg University 11

Outline

• Introducing the modeling language (air conditioner example).

• Tool demo (modeling, simulation, verification, code generation).

• Discussion of generated code.

• Usage contexts (specialization, validation, monitored execution).

IT University of Copenhagen Aalborg University 12

IAR visualSTATE Demo

• Designer

• Simulator

• Verifier

• Code Generator

IT University of Copenhagen Aalborg University 13

visualSTATE model checker

Model checker automatically verifies if following hold in the model:

• No unused components [states, variables]

• No unreachable guards. It must be possible to enable all of the
guards in the system. This means that there must exist a reachable
state for each guard g that enables this guard. Unreachable guards
mean dead code (dead transitions).

• No conflicting transitions.

• No deadlocks.

• No illegal operations. Arithmetic operations should be checked for
overflow and illegal operations such as division by zero.

• No divergent behavior. If the signal queue is used then the
macrostep should always be finite.

• No overflow of the signal queue.

IT University of Copenhagen Aalborg University 14

Outline

• Introducing the modeling language (air conditioner example).

• Tool demo (modeling, simulation, verification, code generation).

• Discussion of generated code.

• Usage contexts (specialization, validation, monitored execution).

IT University of Copenhagen Aalborg University 15

Application Components

SKELETON
CONTROL

Driver Loop

A
ct

u
a
to

rs

S
en

so
rs

DRIVER

DRIVER

DRIVER

DRIVER

HANDLER

HANDLER

HANDLER

HANDLER

HANDLER DRIVER

DRIVER

DRIVER

DRIVER

DRIVERAnother RTOS process
HardwareHardware Software

on

off

• Generated control skeleton (green).

• Brown parts hand coded, but fortunately small and easier.

• Sometimes multiple processes are avoided in favour of the loop.

• In some cases it is even possible to give up the RTOS entirely.

• Discuss the cost of automatic generation of the skeleton.

IT University of Copenhagen Aalborg University 16

Executable Size [Control Algorithm]

The table presents executable sizes for the air conditioner model (only
control code, no RTOS, no action functions, interfaces to sensors, etc):

platform compiler optimizations cod. gen. size [b]

i386/Linux gcc 3.2 -Os + strip IAR VS 4.3 4 428

i386/Linux gcc 3.2 -Os + strip SCOPE 3 732

h8300 gcc 2.95 -O2 + strip IAR VS 4.3 8 528

h8300 gcc 2.95 -O2 + strip SCOPE 7 922

h8300 gcc 3.3 -O2 + strip IAR VS 4.3 2 388

h8300 gcc 3.3 -O2 + strip SCOPE 1 822

The gcc 3.3 reported is an experimental version and executables were
not tested. You know better if commercial compilers can be expected
to generate more efficiently.

IT University of Copenhagen Aalborg University 17

Memory Consumption ctd.

• Following executable sizes given for gcc 3.3 on H8/300:

• The visualSTATE kernel (compiled with dummy model) takes 1.5k

• Complex model of coffee machine (200 transitions) is below 7k

• RAM usage in SCOPE [quick generous estimate, assuming 8bit
word, 32bit addressing]

[bytes]

current event (global) 3
state representation (global) 8
stack 30
model variables (global) 4

TOTAL [bytes] 41+4

• More expensive if signal communication is used.

• VisualSTATE has similar performance.

• If this is not sufficient we can try targeting assembler directly.

IT University of Copenhagen Aalborg University 18

Code Excerpts [SCOPE]

Most of the code take up read-only tables:

/* and-state projection of hierarchy */

const anatomycell anatomy[10] = {
/* 0 */ STMRK, MCHN 3, MCHN 3, MCHN 0, MCHN 2,

/* 5 */ MCHN 2, MCHN 1, MCHN 1, MCHN 1, MCHN 0,

};

/* transitions array */

const transcell trans[TRANS_MAX] = {
/* 0 */ PCNC(2) 1, 0, STATE 3, ACGD(2) 4, 1,

/* 5 */ STATE 8, STMRK, PCNC(2) 1, 0, STATE 3,

/* 10 */ ACGD(2) 6, 1, STATE 7, STMRK, PCNC(2) 1,

/* 15 */ 0, STATE 3, ACGD(2) 6, 1, STATE 7,

/* 20 */ STMRK, PCNC(2) 1, 0, STATE 9, ACGD(2) 1,

/* 25 */ 1, STATE 3, STATE 2, STATE 5, STMRK,

/* 30 */ PCNC(2) 2, 0, STATE 3, STATE 1, ACGD(2) 3,

...

IT University of Copenhagen Aalborg University 19

Code Excerpts [SCOPE] (II)

/* guards dispatcher */

int eval (const guardref g) {
switch (g) {

case 1: return ((CurrEvent.fields._E_TEMP.f0)

<(wantedT));

case 2: return ((CurrEvent.fields._E_TEMP.f0)

>((wantedT)+(delta)));

case 3: return ((CurrEvent.fields._E_TEMP.f0)

>(wantedT));

case 4: return ((CurrEvent.fields._E_TEMP.f0)

<((wantedT)-(delta)));

case 5: return (1);

...

}
return 1;

}

IT University of Copenhagen Aalborg University 20

Code Excerpts [SCOPE] (III)

/* Main loop */

int main (void)

{
st_init(); // initialize the system

while (1) {

... // compute the next event in i

CurrEvent.tag = i;

macrostep(); // call the VS kernel

}
return 0;

}

IT University of Copenhagen Aalborg University 21

Outline

• Introducing the modeling language (air conditioner example).

• Tool demo (modeling, simulation, verification, code generation).

• Discussion of generated code.

• Usage contexts (specialization, validation, monitored execution).

IT University of Copenhagen Aalborg University 22

Usage Contexts [in progress]

Driver Loop

A
ct

u
a
to

rs

S
en

so
rs

DRIVER

DRIVER

DRIVER

DRIVER

HANDLER

HANDLER

HANDLER

HANDLER

HANDLER DRIVER

DRIVER

DRIVER

DRIVER

DRIVERAnother RTOS process

HardwareHardware Software

on

off

Execution Context (reality...)

• All systems are executed in contexts which are limited in some ways.

• Context limits possible interactions of the embedded systems.

• Modeling contexts adds another level of value to the development
process.

IT University of Copenhagen Aalborg University 23

Usage Contexts [in progress] (II)

• Test case generation is improved. Resources are not wasted on
executing completely unrealistic cases. Number of false negatives is
reduced.

• Number of false negatives is reduced for verification too.

• Monitored execution: alarms can be generated at runtime whenever
system (or environment) violates the assumed contract.

• Specialization: possibility of generating code specifically optimized
for given user context. Supports architecture of product line based
on single source code.

• Air conditioner can be specialized to a heater, a cooler, a device
with less than 3 modes, a device without display, etc.

• A single model for all those.

• A small context specification for each of those.

• Automatic instantiation of general model in specific context

• We need your input and examples on what contexts are.

IT University of Copenhagen Aalborg University 24

Fast Generation of User Variants

int main (void) { int main (void) { int main (void) {

spec. spec.

programs

re
st

ric
tio

n

re
st

ric
tio

n

synthesis synthesis synthesis

restriction language

products hardware+software

the least product

modeling language

target language

models

the greatest product

IT University of Copenhagen Aalborg University 25

Fast Generation of User Variants (II)

restriction WithoutAlarm {
impossible SetAlarm();

impossible SwitchAlarm();

};
WithoutAlarm CDPLAYER;

restriction Least restricts WithoutAlarm {
impossible Loop();

impossible Shuffle();

};

Least CDPLAYER;

• Hierarchies of contexts can be build.

• More dynamic context properties can be expressed with automata.
Especially useful for test generation and automatic verification.

• Keen to see what kind of properties are needed.

IT University of Copenhagen Aalborg University 26

Summary

• Introducing the modeling language (air conditioner example).

• Tool demo (modeling, simulation, verification, code generation).

• Discussion of generated code.

• Usage contexts (specialization, validation, monitored execution).

IT University of Copenhagen Aalborg University 27

Thank you for
Your attention.

IT University of Copenhagen Aalborg University 28

