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• Discussion of generated code.

• Usage contexts (specialization, validation, monitored execution).
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Trivialized Air Conditioning System

• Components:

• heater

• cooler

• fan

• user interface

• goal temperature display

• current fan speed display

• User can set a goal temperature in the room.

• System uses the heater and cooler to achieve the temperature.

• Efficiency of conditioning is controlled by the speed of fan.

• manual mode: user controls the speed

• automatic: a fixed, factory predefined speed

• fast: fan at maximum speed.
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Heater

Entry / HeaterOn()
Exit / HeaterOff()

hon

hoff

[t>wantedT]
TEMP(t)TEMP(t)

[t<wantedT−delta]

• Heater is initially in hoff.

• A periodic process supplies TEMP(t) regularly.

• Value t is the current temperature returned by the sensor.

• Variable int wantedT stores current goal temperature.

• Constant int delta gives the acceptable error.

• Heater is activated (HeaterOn), whenever hon is entered.

• Heater is deactivated (HeaterOff ) on exit from hon.

IT University of Copenhagen Aalborg University 4



Heater & Cooler

Cooler and heater are analogous and independent.

hoff

hon

Entry / HeaterOn()
Exit / HeaterOff()

coff

Entry / CoolerOn()
Exit / CoolerOff()

con

heater cooler

TEMP(t)
[t<wantedT-delta] TEMP(t)

[t>wantedT]

[t>wantedT+delta]
TEMP(t)

[t<wantedT]
TEMP(t)

Compose them together.
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User Interface

H

auto

manual

fast

mode
AUTO() /

SetFS(autoFS)

TURBO() /
SetFS(maxFS)

Manual() /
SetFS(manFS)

• Buttons: AUTO, TURBO, TINC, TDEC, FSINC, FSDEC.

• Button group: Manual = { FSINC, FSDEC }.

• Variable manFS stores fan speed manually adjusted by user.

• Constant autoFS specifies factory-set automatic mode speed.

• Constant maxFS specifies maximum possible fan speed.

• History state – remember value across executions.
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User Interface (II)

H

Entry / DisplayFS(autoFS)

auto

Entry / DisplayFS(maxFS)

fast

Entry / DisplayFS(manFS)

manual

mode

TURBO() /
SetFS(maxFS)

SetFS(manFS)
Manual() /

SetFS(autoFS)
AUTO() /

Interface has got 2 displays: current fan speed and goal temperature.
DisplayFS updates the value shown for fan speed. Generally, state
actions help to guarantee state invariants.
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User Interface (III)

• Internal rules for adjusting the goal temperature and fan speed:

TINC [wantedT<maxT] / [wantedT=wantedT+1] DisplayT(wantedT)
TDEC [wantedT>minT] / [wantedT=wantedT-1] DisplayT(wantedT)
FSINC [manFS<maxFS] / [manFS=manFS+1]
FSDEC [manFS<minFS] / [manFS=manFS-1]

• These rules use variables instead of states.

• As with normal transitions they fire, whenver guards are satisfied.

• They should be active whenever the user interface is active.

• Variable wantedT stores the goal temperature set by user.

• Variable manFS stores the desired fan speed.

• Maximum&minimum goal temperature: constants maxT,minT.

• Maximum&minimum fan speed: constants maxFS,minFS.
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Top Level

START and STOP buttons turn the machinery on and off.

on

off

START() / STOP() /

Some entry and exit actions should be added.
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System Overview

off

mode

on

extra interface rules

coolerheaterinterface
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Complete Model of Air Conditioner

The complete visualSTATE model (tool printout):
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IAR visualSTATE Demo

• Designer

• Simulator

• Verifier

• Code Generator
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visualSTATE model checker

Model checker automatically verifies if following hold in the model:

• No unused components [states, variables]

• No unreachable guards. It must be possible to enable all of the
guards in the system. This means that there must exist a reachable
state for each guard g that enables this guard. Unreachable guards
mean dead code (dead transitions).

• No conflicting transitions.

• No deadlocks.

• No illegal operations. Arithmetic operations should be checked for
overflow and illegal operations such as division by zero.

• No divergent behavior. If the signal queue is used then the
macrostep should always be finite.

• No overflow of the signal queue.
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Application Components

SKELETON
CONTROL

Driver Loop

A
ct

u
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to

rs

S
en

so
rs

DRIVER

DRIVER

DRIVER

DRIVER

HANDLER

HANDLER

HANDLER

HANDLER

HANDLER DRIVER

DRIVER

DRIVER

DRIVER

DRIVERAnother RTOS process
HardwareHardware Software

on

off

• Generated control skeleton (green).

• Brown parts hand coded, but fortunately small and easier.

• Sometimes multiple processes are avoided in favour of the loop.

• In some cases it is even possible to give up the RTOS entirely.

• Discuss the cost of automatic generation of the skeleton.
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Executable Size [Control Algorithm]

The table presents executable sizes for the air conditioner model (only
control code, no RTOS, no action functions, interfaces to sensors, etc):

platform compiler optimizations cod. gen. size [b]

i386/Linux gcc 3.2 -Os + strip IAR VS 4.3 4 428

i386/Linux gcc 3.2 -Os + strip SCOPE 3 732

h8300 gcc 2.95 -O2 + strip IAR VS 4.3 8 528

h8300 gcc 2.95 -O2 + strip SCOPE 7 922

h8300 gcc 3.3 -O2 + strip IAR VS 4.3 2 388

h8300 gcc 3.3 -O2 + strip SCOPE 1 822

The gcc 3.3 reported is an experimental version and executables were
not tested. You know better if commercial compilers can be expected
to generate more efficiently.
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Memory Consumption ctd.

• Following executable sizes given for gcc 3.3 on H8/300:

• The visualSTATE kernel (compiled with dummy model) takes 1.5k

• Complex model of coffee machine (200 transitions) is below 7k

• RAM usage in SCOPE [quick generous estimate, assuming 8bit
word, 32bit addressing]

[bytes]

current event (global) 3
state representation (global) 8
stack 30
model variables (global) 4

TOTAL [bytes] 41+4

• More expensive if signal communication is used.

• VisualSTATE has similar performance.

• If this is not sufficient we can try targeting assembler directly.
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Code Excerpts [SCOPE]

Most of the code take up read-only tables:

/* and-state projection of hierarchy */

const anatomycell anatomy[10] = {
/* 0 */ STMRK, MCHN 3, MCHN 3, MCHN 0, MCHN 2,

/* 5 */ MCHN 2, MCHN 1, MCHN 1, MCHN 1, MCHN 0,

};

/* transitions array */

const transcell trans[TRANS_MAX] = {
/* 0 */ PCNC(2) 1, 0, STATE 3, ACGD(2) 4, 1,

/* 5 */ STATE 8, STMRK, PCNC(2) 1, 0, STATE 3,

/* 10 */ ACGD(2) 6, 1, STATE 7, STMRK, PCNC(2) 1,

/* 15 */ 0, STATE 3, ACGD(2) 6, 1, STATE 7,

/* 20 */ STMRK, PCNC(2) 1, 0, STATE 9, ACGD(2) 1,

/* 25 */ 1, STATE 3, STATE 2, STATE 5, STMRK,

/* 30 */ PCNC(2) 2, 0, STATE 3, STATE 1, ACGD(2) 3,

...
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Code Excerpts [SCOPE] (II)

/* guards dispatcher */

int eval ( const guardref g ) {
switch (g) {

case 1: return ((CurrEvent.fields._E_TEMP.f0)

<(wantedT));

case 2: return ((CurrEvent.fields._E_TEMP.f0)

>((wantedT)+(delta)));

case 3: return ((CurrEvent.fields._E_TEMP.f0)

>(wantedT));

case 4: return ((CurrEvent.fields._E_TEMP.f0)

<((wantedT)-(delta)));

case 5: return (1);

...

}
return 1;

}
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Code Excerpts [SCOPE] (III)

/* Main loop */

int main (void)

{
st_init(); // initialize the system

while (1) {

... // compute the next event in i

CurrEvent.tag = i;

macrostep(); // call the VS kernel

}
return 0;

}
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Usage Contexts [in progress]

Driver Loop
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DRIVER

DRIVER

DRIVER
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HANDLER

HANDLER

HANDLER

HANDLER DRIVER

DRIVER

DRIVER

DRIVER

DRIVERAnother RTOS process

HardwareHardware Software
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Execution Context (reality...)

• All systems are executed in contexts which are limited in some ways.

• Context limits possible interactions of the embedded systems.

• Modeling contexts adds another level of value to the development
process.
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Usage Contexts [in progress] (II)

• Test case generation is improved. Resources are not wasted on
executing completely unrealistic cases. Number of false negatives is
reduced.

• Number of false negatives is reduced for verification too.

• Monitored execution: alarms can be generated at runtime whenever
system (or environment) violates the assumed contract.

• Specialization: possibility of generating code specifically optimized
for given user context. Supports architecture of product line based
on single source code.

• Air conditioner can be specialized to a heater, a cooler, a device
with less than 3 modes, a device without display, etc.

• A single model for all those.

• A small context specification for each of those.

• Automatic instantiation of general model in specific context

• We need your input and examples on what contexts are.
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Fast Generation of User Variants

int main (void) { int main (void) { int main (void) { 

spec. spec.

programs

re
st

ric
tio

n

re
st

ric
tio

n

synthesis synthesis synthesis

restriction language

products hardware+software

the least product

modeling language

target language

models

the greatest product
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Fast Generation of User Variants (II)

restriction WithoutAlarm {
impossible SetAlarm();

impossible SwitchAlarm();

};
WithoutAlarm CDPLAYER;

restriction Least restricts WithoutAlarm {
impossible Loop();

impossible Shuffle();

};

Least CDPLAYER;

• Hierarchies of contexts can be build.

• More dynamic context properties can be expressed with automata.
Especially useful for test generation and automatic verification.

• Keen to see what kind of properties are needed.
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Thank you for
Your attention.
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