
Content

• Challenges in compiling statecharts

• Short survey of approaches

• Lessons learnt from implementation of SCOPE

IT University of Copenhagen 2

Statechart Compilation Challanges

Is it at all that challenging? An idiosyncratic list of hard problems:

• Meeting constraints: binary size, runtime memory consumption,
time (often speed), power consumption

• Controlling trade offs = meeting constraints possibly cheaply (for
example: balance speed and size)

• Support automatic tools: model-checkers, schedulability analysis,
memory consumption analysis

• Separation of reaction speed from model size:

– Natural for Java programs!

• From explicit states to implicit states: Algorithm abstraction and
model minimization via transformations.

Not all are solvable, some not solved, some not yet solved satisfactorily.

IT University of Copenhagen 3

Crossing the Gap between Semantics and

Practice: Crafting a Compiler for Statecharts

Andrzej Wa,sowski

22th November 2002

IT University of Copenhagen

Cooking a Statechart System

Main

Idle

OFF

ON

H

ON Idle

H

Stop() / StopEmiter()

Start() : H or HG / StartEmiter()

Grill

Emiter

M
o

d
eP

re
ss

ed
()

 /

MicrowaveOven

Closed

Panel

entry: LightOn()

HG

G

H

Start() : G or HG / StopEmiter()

Open

Overheated

exit: StopGrill()
exit: StopEmiter()
exit: LightOff()

DoorClosed() /

DoorOpened() /

HeatAlarm() / Beep()

SafetyDelay() / Beep() [Closed.Emiter.Idle]

Stop() / StopGrill()

ModePressed() /

ModePressed() /

StandbyButton() /Standby() and Closed

IT University of Copenhagen 1

Language of Statecharts (II)

Abundance of additional constructs:

• initial, history and deep history states

• internal reactions

• join and fork transitions

• do reactions, final states and termination transitions

• event-less transitions

• special events, f.eg. en(s), ex(s), timer events

• special actions (timer actions)

• call events and signal events

IT University of Copenhagen 6

Dynamic Semantics

• Semantics of statecharts is usually defined in operational way

• Decomposed into several relations:

– macrostep

– microstep

– fire

– exit

– enter

– execute action/evaluate guard

– init

• Details differ among authors (no standard semantics)

IT University of Copenhagen 7

Methods Overview

Only methods compiling for execution (not for model-checking, etc)

• Simple interpretive

– Transformation based

– Flattening

– Object-oriented

• Reducing to SAT problem (BDD based)

• Synchronous

Disclaimer: tool and authors references are mostly examples of use,
not contributions.

More in upcoming survey report on compiling statecharts (time
analysis oriented, verification oriented, hardware oriented, other target
formalisms, etc).

IT University of Copenhagen 4

Language of Statecharts

• State hierarchy:

– parallel and sequential decompositions

– The root is an and-state

– Basic states (leaves) are and-states

– State type alternation

A

B C

GF

G’

H I

D E

• Entry/exit actions.

• Transitions:

– condition side: event + guard

– executable side: action + targets

B

E

D

C

I

H

G

F

A

ED

[e {} {}] / a : H

IT University of Copenhagen 5

Reductions in Execution Model

• Express some model elements in terms of simpler constructs

• Expand runtime representation (Code Generator)

• Simplify execution model (runtime interpreter)

• Example of reductions:

– Initial states elimination

– Entry/exit actions elimination

– Hierarchy elimination

– Message passing elimination

• Reduction calls for proof of correctness of respective transformation

IT University of Copenhagen 10

Initial States Elimination

• Trivial in absence of history and concurrency

F
[f {} {}] /

F
[f {} {}] /

• Explodes in presence of heavy concurrency

F A F A

• In presence of history explodes even more.

[iState, Sekerinski Zurob, McMaster University, Ontario, 2001]

IT University of Copenhagen 11

Simple Interpretive Method

• Remain close to semantics.

• Code Generator: runtime representations of

– hierarchy,

– transitions,

– queues,

– state vectors, etc.

• Runtime library: counterparts of behavioral relations:

macrostep : event * state -> state

microstep : event * state * queue -> state * queue

fire : tran * state * queue -> state * queue

exit : orstate * state * queue -> state * queue

enter : targets * orstate * state * queue

-> state * queue

IT University of Copenhagen 8

Simple Interpretive Method (II)

• Advantages:

– Easier to understand and communicate

– Raises confidence in correctness

• Disadvantage: complicated runtime logics

• In generic form does not addresses any of the challanges

[Behrmann/Kirstoffersen/Larsen NWPT’99]

[STARC, Erpenbach, PhD thesis, Paderborn, 2000]

[SCOPE, Wasowski, IT Copenhagen, 2002]

IT University of Copenhagen 9

Object-Oriented Approach: New?

[Rhapsody (I-Logix), Rose RT (Rational Rose), Fujaba (Zündorf)...]

• Mostly variations of simple interpretive method

– encode semantics using objects, methods and switch statements

• State pattern

B

C

D E

A

[e {} {}] / a : H

StateA
+processEvent(e:Event)
+entry()
+exit()

StateB
+processEvent(e:Event)
+entry()
+exit()

StateC
+processEvent(e:Event)
+entry()
+exit()

StateD
+processEvent(e:Event)
+entry()
+exit()

StateE
+processEvent(e:Event)
+entry()
+exit()

• Reflect complete metamodel to obtain all features

[Hugo (Knapp, Merz, Munich, 2002)]

IT University of Copenhagen 14

Reducing to SAT (BDD based)

• Encode state diagram semantics as SAT problem.

• Transition:
ti : [ei posi negi]/ai : si

1, ..., s
i
k]

a conjunction of boolean formulas representing elements.

• actions being an integer identifier (handle guards similarly)

• A separate set of variables for target states (in addition to one used
in guard)

• System encoded as disjunction of all transitions:

φ =
∨

ti∈Trans

(φei
∧ φposi

∧ φnegi
∧ φai ∧ φsi

1
... ∧ φsi

k
)

• Compile-time: build the BDD representing φ

• Runtime: traverse satisfying paths of BDD to find out the next state

BDD engine becomes an interpreter!

IT University of Copenhagen 15

Elimination of Entry/Exit Actions

• Add entry actions of all states on the way (not only the last one!)

• Expensive for dense models (many entry actions + many transitions
targetting the same state)

action0()

entry: action2()

action1()

action0(); action2()

action1(); action2()

• Much more expensive for exit actions.

exit: action2()

action1()
action2(); action1()

action2(); action1()

action2(); action1()

IT University of Copenhagen 12

Flattening = Hierarchy Elimination

B C

G HFE

A

I J

D

F

E

H

G
C

J

I
Dtop B

A

D

Refine guards conjuncting condition that A is active

Conjunct condition that D is active

[Patent by Leerberg, Hulgaard, Lind-Nielsen, Andersen, Larsen,
Kristoffersen, Behrmann, 1999]

[Björklund, Lilius, Porres, Turku, Finland, 2001]

IT University of Copenhagen 13

The Argos Way (II)

• i := equ(b, g, v) defines i to be

i0 =

{

b0 if g0

v otherwise
in =

{

bn if gn

in−1 otherwise

• i := mem(b, g, v) defines i to be

i0 = v in =

{

bn−1 if gn−1

in−1 otherwise

• A boolean flow for state s is s := mem(rp, true, initial), where

rp = (s ∧
∧

(s,g, ,)∈Trans

(¬g)) ∨ (
∨

(s′,g, ,s)∈Trans

(s′ ∧ g))

• A boolean flow for output s is o := equ(rp, true, v), where

rp =
∧

(s,g,o∈O,)∈Trans

(s ∧ g)

IT University of Copenhagen 18

The Argos Way (III)

• A bit more complicated for full-blown Argos

– Compositional (syntax directed)

– Disjunct output string from concurrent components

– Ensure exclusiveness of sequential components.

• Compiled to declarative format of flow equations (DC)

• The size of DC program is linear in size of Argos program (cool!)

• Original compiler had an option for controlling size-speed trade off.

IT University of Copenhagen 19

Reducing to SAT (BDD based) (II)

• Peter Jacobsen (masters thesis, Technical Univeristy of Denmark,
Lyngby 1999)

• Implemented for sublanguage

– no internal signals, no variables and no hierarchy

• Advantage: cute theoretical formulation

• Drawback: Rather mean results (hardly beats visualSTATE)

• Useless if heavy synchronization via message passing employed.

IT University of Copenhagen 16

The Argos Way

[Florence Maraninchi, VERIMAG, 1991]

• Argos: a variant of statecharts

• No queues, no level-crossing transitions, no fancy elements

• Fully synchronous semantics (after model of Esterel)

• Semantics by expansion to single Mealy machine (flat&sequential).

• Implicitly encoded in system of boolean flow equations

• Flows are sequences of boolean values

IT University of Copenhagen 17

SCOPE HOW-TO

model optimizer

CG address

CG front

CG compiler (back)

scope front-end

CG dump

textual
model

abstract
syntax

abstract
syntax

intermediate
representation

IR + addressing data
+ types.

C program
bits and pieces

Glue blocks in
complete files

[potential for model transformations
 and reductions]

Build runtime data relying on labels and
identifiers instead of indices and addresses.

Measure sizes of arrays
of elements to select minimal int
types for addresses and indices

Map labels and name
references to integers
and pointers

IT University of Copenhagen 22

Summary

• Method Survey

– Problems in domain of code synthesis from statecharts

– Several fundamental methods

∗ Still worse than hand-coding!
∗ Difficulties in evaluation

– Yet another semantics for statecharts?

• Experience with simple high level approach (SCOPE)

– Works quite well

– Platform for experimentation, optimization and comparison

IT University of Copenhagen 23

Equations for Statecharts

[Beauvais, Gautier, Le Geurnic, Houdebine, Rutten, IRISA, 1998]

• Statecharts semantics is not fully synchronous

• Each step consits of microstep

• Discrete sequences with one clock are not enough

• Need flows occuring with various frequencies wrt each other

– So you need Signal (rather DC+) with full clock-calculus

• Flows at macrostep level, microstep level, etc

• Easy to obtain synchronous semantics for statecharts!

• Translation from DC(+) to C

– Automaton generation explodes exponentially
Automaton → equations → automaton ?

– Equation preserving method: 10 × slower, hundreds × smaller
[Amagbegnon, Besnard, Le Guernic, IRISA-INRIA, 1995]:
canonicize equations and organize in hierarchy
hierarchy → clock equations → hierarchy ?

IT University of Copenhagen 20

StateChart cOmPilEr = SCOPE

• Extremely high-level code generator, very close to operational
semantics

• Compiles visualSTATE version of statecharts.

SCOPE compiler

runtime interpreterruntime representation runtime environment

statechart model
Compile-time

Run-time

http://www.mini.pw.edu.pl/˜wasowski/scope

• Code linear in size of the model.

• Hardly ever bigger than visualSTATE.

• For moderate and bigger models: 10%-50% smaller code.

• The speed is comparable with flattening (1-2 times slower)

• Open for further optimizations.

IT University of Copenhagen 21

