
Outline

• Introductory Remarks

• Statecharts Syntactic and Semantic Basics.

• Modeling the Wrist Watch

[short break anticipated]

• Statecharts Odds&Ends.

• Statecharts as Formal Development Method

• Concluding Remarks

[short break anticipated]

• Project possibilities.

• Exercise (the air conditioner example)

IT University of Copenhagen 2

Reactive Systems

• Transformational programs compute a result for the given input
parameters (eg. compilers)

• Reactive programs (Pnueli,Harel,1985): constantly listen to
incoming input and produce outputs in reaction to those (eg.
embedded systems, user interfaces)

• Reactive system receives external stimuli from sensors and affects
environment using actuators. Sensor may be a button, actuator
may be a display.

• Discrete Reactive Systems ignore the continuity of time and work in
lock steps.

• Synchrony Hypothesis is an assumption that reaction of a discrete
system takes no time (outputs are available immediately). In
practice it means that systems reaction is faster than frequency of
environment events.

IT University of Copenhagen 3

Modeling Reactive Systems

with IAR visualSTATE Statecharts

Andrzej Wa,sowski
(wasowski@itu.dk)

http://www.mini.pw.edu.pl/~wasowski/

27 November 2003

IT University of Copenhagen

Outline

• Introductory Remarks

• Statecharts Syntactic and Semantic Basics.

• Modeling the Wrist Watch

[short break anticipated]

• Statecharts Odds&Ends.

• Statecharts as Formal Development Method

• Concluding Remarks

[short break anticipated]

• Project possibilities.

• Exercise (the air conditioner example)

IT University of Copenhagen 1

wasowski@itu.dk
http://www.mini.pw.edu.pl/~wasowski/

Outline

• Introductory Remarks

• Statecharts: Syntactic and Semantic Basics

• Modeling the Wrist Watch

[short break anticipated]

• Statecharts Odds&Ends.

• Statecharts as Formal Development Method

• Concluding Remarks

[short break anticipated]

• Project possibilities.

• Exercise (the air conditioner example)

IT University of Copenhagen 6

Syntactic Trivia

B

A

C

D
α

β

δ

γ(P)

D superstate
A, B and C basic states
A,C: a xor-decomposition of D
β leaves all substates of D

Invariants:
1. active(B) xor active(D)
2. active(D) ≡ active(A) xor active(C)

• An extension of finite state machines and transition diagrams.

– FSM: a single state active and a single transition taken at a time.

– statecharts: multiple active states and concurrent transitions.

• Labels: Events and outputs possibly parameterized (value passing).

• Transition relation represented by arrows.

• Hierarchy relation represented by nesting of states.

Harel87:Fig.2/p.234

IT University of Copenhagen 7

Architecture of Reactive System

SKELETON
CONTROL

Driver Loop

A
ct

u
a
to

rs

S
en

so
rs

DRIVER

DRIVER

DRIVER

DRIVER

HANDLER

HANDLER

HANDLER

HANDLER

HANDLER DRIVER

DRIVER

DRIVER

DRIVER

DRIVERAnother RTOS process
HardwareHardware Software

on

off

• Control algorithm (skeleton).

• Brown parts are small and relatively easy.

• Sometimes multiple processes are avoided in favour of the loop.

• In some cases it is even possible to give up the RTOS entirely.

IT University of Copenhagen 4

An Abridged History of Statecharts

• Statecharts: a visual modeling language mostly focused on discrete
time systems.

• Proposed by David Harel in 1984 and implemented in
STATEMATE.

• Accepted as one of the notations in UML (1996).

• BeoLogic uses a variant of statecharts as a specification language in
their modeling tool visualSTATE.

• Presently visualSTATE is maintained by IAR Systems (Danish
division).

• A Multitude of tools supports statecharts: visualSTATE, Rhapsody,
ArgoUML, Rational Rose...

CREDITS: The vast part of this lecture is based on the example
taken from the classic paper on statecharts:

“Statecharts: A Visual Formalism For Complex Systems”
David Harel, 1987

IT University of Copenhagen 5

Orthogonality

B

C

E

G

F

A
Y

D

α

δ

µ

γα β G

• All transitions are fired by events.

• Note one transition guarded on active substate of concurrent state.

• States A and D are called regions (or or-states).

• State Y is called a concurrent state (or and-state).

• Note the significant gain in succinctness (wrt to product
automaton).

Harel87:Fig.19/p.242

IT University of Copenhagen 10

Outline

• Introductory Remarks

• Statecharts: Syntactic and Semantic Basics

• Modeling the Wrist Watch

[short break anticipated]

• Statecharts Odds&Ends.

• Statecharts as Formal Development Method

• Concluding Remarks

[short break anticipated]

• Project possibilities.

• Exercise (the air conditioner example)

IT University of Copenhagen 11

Initial States

A

D

D

A

E
δ1

δ0

• Initial states and initial markers

– D is the initial state of E

– A is the initial state of D

– is the initial marker or connector(in UML).

• δ0,δ1 enter initial configuration of D and E.

IT University of Copenhagen 8

Entry Actions

entry: dout(e1, . . . , en)
D

entry: aout()
A

δ1

E
entry: eout(e1, . . . , en)

Transition’s δ1 own actions are executed first, followed by a sequence

eout(); dout(...); aout();

Outputs are provided as C functions available in seperate file. Outputs
may be parameterized. See later on expressions.

IT University of Copenhagen 9

Alarm Activation

alarm1 beeps

alarm2 beeps

both beep

displays

alarms beep

T hits T1

[alarm1 enabled ∧ (alarm2 disabled ∨T1 6= T2)]

T hits T2

or 30s in alarms beep
any button pressed

T hits T1

[alarm1 enabled ∧ (alarm2 disabled ∨T1 6= T2)]

[alarm1 enabled ∧ (alarm2 enabled ∧T1 = T2)]

Unfortunately not formal enough for implementation and verification.

Harel87:Fig.8/p.237

IT University of Copenhagen 14

Alarm Activation (II)

What shall we refine to move towards a formal model in visualSTATE?

• Undefined clocks (variables)

– internal int T1; // second of the day to activate the alarm

• Imprecise events:

– button events: a() b() c() d()

– Any button pressed → AnyButton() = a ∨ b ∨ c ∨ d

– 30s in alarms-beep → BeepTimeout()

– T hits T1 → external event T hits T1()

• Actions to set up timers for time related events:

– T hits T1() is fired by an external RTOS process setup in
initialization and controlled whenever setting are changed.

– Set up BeepTimeout() timer whenever alarms beep is entered

• Missing states for enabledness of alarms (independent component)

• Eliminate disjunctions from guards (not allowed in visualSTATE)

IT University of Copenhagen 15

The Running Example

A model of a wrist watch.

Day of month
am/pm [12/24] mode

Timer running

Chime (beep on hour)

Alarm 1

Time display

Alarm 2

Display and beeper are the outputs of the watch device.

Harel87:Fig.7/p.236

IT University of Copenhagen 12

The Running Example (II)

Buttons, events and behaviours.

Display mode

Date

Set

Start/Stop

Our goal is to assign exact meaning to button (inputs).

Harel87:Fig.7/p.236

IT University of Copenhagen 13

Refining Displays (II)

Note the StartTimer(DateTimeout,120) action, generating
DateTimout after 120 units.

Harel87:Fig.9/p.237

IT University of Copenhagen 18

History States

H
on1

off1

d d

alarm1

State alarm1 will retain the information about its active substates
across activations.

States alarm2 and chime are analogous.
Harel87:Fig.10b/p.239

IT University of Copenhagen 19

Alarm Activation (III)

Main fragment of visualSTATE implementation (tool printout).
Harel87:Fig.8/p.237

IT University of Copenhagen 16

Refining Displays

stopwatch

time

date

chime

alarm2

alarm1

displays

a

a

2min in date
d

d

a

a

a

Again timer event needs to be expressed with entry action.
Harel87:Fig.9/p.237

IT University of Copenhagen 17

Update Modes for Time (II)

Note the transitions going out to and coming from upper level.
Harel87:Fig.15/p.241

IT University of Copenhagen 22

Update Modes for Time (III)

Harel87:Fig.14/p.240

IT University of Copenhagen 23

Alarms and Chime Setup

Alarms and chime can be activated and deactivated if display is in the
proper mode.

[Note a slight design change with respect to the original paper, to
avoid relying on semantic subtleties.]

IT University of Copenhagen 20

Update Modes for Time

Harel87:Fig.13/p.240

IT University of Copenhagen 21

Displays are Deep History

Whenever alarm starts to beep and is cancelled, control returns to the
previous configuration.

IT University of Copenhagen 26

Stopwatch

Stopwatch is runing (or not) independently of the operation of display
controls. It may only be started or stopped when in stopwatch state
(note the guard on transitions in stopwatch run).

Harel87:Fig.25/p.246

IT University of Copenhagen 27

Update Modes for Time (IV)

State update1 uses cross-level transitions, update2 does not.

IT University of Copenhagen 24

Deep History

History (H) affects only the level at which it is placed.

H

B

A C

E
D

G F

K

H*

A

B

C

E
D

G F

K

Deep history (H*) affects the state of entire subhierarchy.
Harel87:Fig.11/p.239

IT University of Copenhagen 25

Zooming into Alive

main chime

power

alive

• All we have done so far is in main.

• We have less regions than original paper due to some simplifications
in the model.

• Fortunately remaining parts are small and easy.

Harel87:Fig.27/p.247

IT University of Copenhagen 30

Zooming into Alive (II)

• Note that b always activates light (despite all its other features).

• Region power has a transition leaving the level

Harel87:Fig.28/p.248

IT University of Copenhagen 31

Stopwatch (II)

• Event b starts the stopwatch

• Event d toggles between the lap and regular mode.

• Lap mode only makes sense while the stopwatch is running.

• Resetting only works when stopwatch is off.

Harel87:Fig.25/p.246

IT University of Copenhagen 28

Top Level

Harel87:Fig.26/p.246

IT University of Copenhagen 29

Transitions Revisited

Let us summarize the syntax of transitions.

• Transitions are labeled with conditions and actions:

B

A

condition side: events and guards

action side: outputs and local signals

e() C F / f(x + 1) ˆs

• Condition part: event/signal/event-group, positive/negative
condition, guard (C expression)

• Action part: function calls, assignments to variables and triggering
signals

IT University of Copenhagen 34

Abstract vs Physical States

• Our model has been constructed in terms of states and transitions.

• These states were abstract. For instance we have not specified any
relation between the state alarm1.on1 and the fact that the alarm
indicator on display is visible.

H
on1

off1

d d

alarm1

?
• Such abstract models are useful for analysis of systems but not for

development of real programs!

IT University of Copenhagen 35

Outline

• Introductory Remarks

• Statecharts: Syntactic and Semantic Basics

• Modeling the Wrist Watch

[short break anticipated]

• Statecharts Odds&Ends

• Statecharts as Formal Development Method

• Concluding Remarks

[short break anticipated]

• Project possibilities.

• Exercise (the air conditioner example)

IT University of Copenhagen 32

Signal Communication

• Signals are means of asynchronous communication.

• Signals are similar to events but are not visible for environments.

• Signals may be triggered in any action (on transitons, on entry and
exit to states).

• Signals are placed in the condition of a transition in the same way
as events.

• In visualSTATE signals are global (i.e. directed to the entire
system).

• System with signals works in two stage steps:

– Microstep: apply one event or signal to the model put all signals
produced in a signal queue

– Macrostep pop a signal from a queue and run a microstep.
Iterate until the queue is empty.

• Only macrosteps are observable from external perspective.

IT University of Copenhagen 33

Outline

• Introductory Remarks

• Statecharts: Syntactic and Semantic Basics

• Modeling the Wrist Watch

[short break anticipated]

• Statecharts Odds&Ends

• Statecharts as Formal Development Method

• Concluding Remarks

[short break anticipated]

• Project possibilities.

• Exercise (the air conditioner example)

IT University of Copenhagen 38

Formal Development

• Abstract modeling.

• Automatic model verification.

• Tool-supported debugging (simulation and monitored execution).

• Tool-supported program synthesis (code generation).

• Systematic test of implementation [in progress].

IT University of Copenhagen 39

Abstract vs Physical States (II)

• Abstract state is the state in the model.

• Physical state is the state of the device or environment.

• In models used for synthesis of systems abstract states need to be
related to physical states.

• One typical way to achieve this is by use of entry and exit actions.

H

off1

Entry / ShowAlrm1(1)
Exit / ShowAlrm1(0)

on1

dd

alarm1

IT University of Copenhagen 36

visualSTATE Odds&Ends

• Model constants

• Model variables with restricted domains

• External vs Internal variables

• Internal rules

• Do reactions

• Parameterized events may pass the value of sensor readout.

• Entry/exit actions can be hidden (prevents cluttering of diagrams)

�
δ0

D

A �

IT University of Copenhagen 37

Outline

• Introductory Remarks

• Statecharts: Syntactic and Semantic Basics

• Modeling the Wrist Watch

[short break anticipated]

• Statecharts Odds&Ends

• Statecharts as Formal Development Method

• Concluding Remarks

[short break anticipated]

• Project possibilities.

• Exercise (the air conditioner example)

IT University of Copenhagen 42

Reactive Programming Agora

• Synchronous Languages — a family of languages based on the
strong synchrony hypothesis, namely that outputs are produced
instantenously with inputs. They present a somewhat unsual
programming style, but exhibit clean and compact mathematical
semantics and are easier to model check. Esterel is the main
imperative dialect. Lustre and Signal follow the functional
programming style, while Argos is the visual incarnation of the
semantics, rather similar to stateacharts.

• Timed Triggered Languages (eg. Giotto) — based on periodic tasks
and data-flow like networks.

• Timed Automata — specifications of systems with continuous time.

• Hybrid Automata — specifications of systems with continuous
control.

• So far it seems that statecharts are the only language becoming
popular in mainstream development tools.

IT University of Copenhagen 43

visualSTATE model checker

Model checker automatically verifies if following hold in the model:

• No unused components [states, variables]

• No unreachable guards. It must be possible to enable all of the
guards in the system. This means that there must exist a reachable
state for each guard g that enables this guard. Unreachable guards
mean dead code (dead transitions).

• No conflicting transitions.

• No deadlocks.

• No illegal operations. Arithmetic operations should be checked for
overflow and illegal operations such as division by zero.

• No divergent behavior. If the signal queue is used then the
macrostep should always be finite.

• No overflow of the signal queue.

IT University of Copenhagen 40

visualSTATE Code Generator

• visualSTATE contains a translator of models into C programs.

• Program implementing the control algorithm is generated
automatically.

• Programmer should provide

– Code for external C functions, drivers and handlers

– Main loop feeding external events to the system

– and a RTOS (if needed).

• The generated code has very modest memory requirements. An
order of 50 words of RAM is sufficient for execution. ROM usage
for a model of 200 transitions (rather complex) is in order of 10kb.

IT University of Copenhagen 41

Thank you for
Your attention.

IT University of Copenhagen 44

