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Abstract

NP-hard problems are deemed highly unlikely to be solvable in polynomial time. Still,
one can often find algorithms that are substantially faster than brute force solutions.
This thesis concerns such algorithms for problems from graph theory; techniques for
constructing and improving this type of algorithms, as well as investigations into how
far such improvements can get under reasonable assumptions.

The first part is concerned with detection of cycles in graphs, especially pa-
rameterized generalizations of Hamiltonian cycles. A remarkably simple Monte Carlo
algorithm is presented for the problem of finding a cycle through a specified subset of
vertices or edges. The running time is exponential only in the number k of specified
elements, with a dependence of 2k . Previously, the best upper bound for this problem
was doubly exponential in k10. The algorithm never reports a false positive, and with
high probability any found solution is shortest possible. Moreover, the algorithm can
be used to find a cycle of given parity through the specified elements.

The second part concerns the hardness of problems encoded as evaluations of
the Tutte polynomial at some fixed point in the rational plane, referred to as the
Tutte plane in this context. Under the Exponential Time Hypothesis, which claims a
certain exponential-time requirement for solving the problem 3-Sat, superpolynomial
lower bounds are given for problems restricted to simple or planar graphs. The
restriction to simple graphs has been studied previously and lower bounds exist
for most of the Tutte plane; the contribution here is a first result for points on
the line corresponding to computation of all-terminal network reliability. For these
points, a novel reduction provides a lower bound that is asymptotically tight up to a
polylogarithmic factor in the exponent. For planar graphs, lower bounds are found by
examining and combining existing reductions. An asymptotically tight bound is found
for points corresponding to evaluation of the 3-state Potts model partition function;
for remaining points the obtained lower bounds are significantly further from the
best known upper bound. These are the first results of this type for planar graphs, to
the best of the knowledge of the author. Along one particular line in the Tutte plane
this is also the first such result for general graphs.
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Chapter 1

Introduction

Some problems are harder than others, so it seems. In the field of computer science,
the most famous notion of a hard problem is that of an NP-complete problem, such
as the classical Hamiltonian Cycle problem, which asks for the existence of a closed
walk with no self-intersections that connects all vertices in a given input graph. NP-
complete problems are considered hard not because we do not know how to solve
them, but because no one has yet found a polynomial-time algorithm to solve any
such problem, i.e. an algorithm that solves the problem within a number of steps
that depends polynomially on the size of the input. It is a generally believed (but
famously unproved) hypothesis that there can be no polynomial-time algorithm for
any NP-complete problem. This hypothesis is also known as P 6= NP.

It is a common misconception that one cannot solve NP-complete problems sig-
nificantly faster than by exhaustive search, trying all valid possibilities for a solution.
That this is not true has been known since the very introduction of the concept of
NP-completeness in the 1970’s; for example, the running time of exhaustive search
for the Hamiltonian Cycle problem depends factorially on the number n of vertices,
but already in the 1960’s Bellman [5] discovered an algorithm which improved this
to single exponential in n—a significant improvement indeed. Some decades ago,
however, such improved exponential-time algorithms were often of little interest in
practice, as the limit of computational capacity still put up a barrier for relevant input
sizes. Clearly, the situation has changed since then, and during the last decade or
so a renewed interest in improved exponential-time algorithms for NP-hard problems
has arisen.

This thesis concerns possibilities and limits of improved algorithms for NP-
complete graph problems. In other words, we investigate the complexity of such
problems from an exponential-time perspective.

1.1 Basics

Our notation is standard, but for clarity and completeness this section gives a brief
review of elementary concepts and terminology used in the thesis. Readers familiar
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1.1. BASICS

with computational complexity and graph theory can skip directly to Section 1.2.

1.1.1 Problems, algorithms, and complexity

Consider the school-book exercise of finding an assignment to the boolean variables
{x1, x2, x3, x4} such that the 3-CNF formula1

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)

is satisfied. This exercise is an instance of the following computational problem:

Input: A 3-CNF formula ϕ.
Task: Find a satisfying assignment to the variables of ϕ.

A decision problem is a computational problem where the solution is a yes-
or-no answer to some question regarding the input. An example is the famous
3-Sat problem of determining whether an input 3-CNF formula has any satisfying
assignment. An instance of a decision problem for which the answer is ‘yes’ is a
yes-instance, and an instance that is not a yes-instance is a no-instance. A counting
problem is a computational problem where the solution gives the size of some set
related to the input. An example is the problem of counting the number of all
satisfying assignments of an input 3-CNF formula; this is called the #3-Sat problem,
as it is the ‘counting version’ of 3-Sat.

A list of computational problems can be found in Appendix A.

Algorithms. An algorithm for a computational problem is a method, given as a
finite set of instructions, for solving arbitrary instances of the problem. For example,
an algorithm for the 3-Sat problem takes as input a specific 3-CNF formula ϕ, and
within finite time outputs ‘yes’ or ‘no’ according to the satisfiability of ϕ.

The running time of an algorithm will in this thesis always refer to the worst case
running time, i.e. the maximum number T (n) of computational steps the algorithm
will perform for any input of size n. If T (n) is polynomially bounded, i.e. if
T (n) ∈ nO(1), the algorithm is referred to as a polynomial-time algorithm. Otherwise
the running time is superpolynomial, and the algorithm is either exponential-time
with T (n) ∈ exp(nO(1)), or subexponential-time with T (n) ∈ exp(o(n)).

A Monte Carlo algorithm uses a random choice at some step, and has a small
probability p < 1/2 of producing an incorrect solution. The running time of a Monte
Carlo algorithm is deterministic, i.e. independent of the random choice. We will only
consider Monte Carlo algorithms with one-sided error, usually in the sense that a
false positive is never reported. Algorithms that do not employ random choices are
deterministic.

1A 3-CNF formula is a boolean formula in conjunctive normal form, i.e. a conjunction of disjunction-
clauses, with 3 literals per clause.
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CHAPTER 1. INTRODUCTION

Complexity. The complexity of a computational problem is the minimum running
time achievable for any deterministic algorithm that solves the problem. The running
time of any particular algorithm provides an upper bound on the complexity. A prob-
lem is polynomial-time solvable if there is a deterministic polynomial-time algorithm
for it. The class of all such problems is called FP. The set of decision problems in
FP is called P. A decision problem is in RP if it can be solved by a polynomial-time
Monte Carlo algorithm of one-sided error.

NP and #P. The complexity class NP consists of all decision problems for which
every yes-instance has a witness that can be verified by a deterministic polynomial-
time algorithm. For example, the problem 3-Sat is in NP: any satisfying assignment
to the input 3-CNF formula would constitute such a witness, as it can be checked by
a routine polynomial-time calculation that it satisfies the input formula, and hence
that we are dealing with a yes-instance. The class of counting versions of problems
in NP, such as #3-Sat, is called #P.

Conjectures. While it is clear that P ⊆ NP, the question of the reverse inclusion is
still open and generally believed false. One reason for this is that despite extensive
efforts, no one has yet found a polynomial-time algorithm for 3-Sat. Note that
#P ⊆ FP would imply P = NP, so the conjecture that #P 6⊆ FP is at least as likely as
P 6= NP.

The polynomial hierarchy is an infinite hierarchy of complexity classes that gen-
eralizes the relationship between P and NP. The ith level of this hierarchy is denoted
Σp
i . We have Σp

0 = P and Σp
1 = NP, and Σp

i ⊆ Σp
i+1 for all i > 0. The hierarchy

is said to collapse to its ith level if Σp
i = Σp

i+1. It is conjectured that the polynomial
hierarchy does not collapse to any level.

Reductions. A polynomial-time reduction from a problem A to a problem B is
a construction through which A could be solved in polynomial time given any
polynomial-time algorithm for B. The problem A is said to be polynomial-time re-
ducible to B if there exists such a reduction. A common type of polynomial-time
reduction is that of a mapping reduction (a.k.a. many-one reduction), which defines
a mapping from A-instances, IA, to B-instances, IB , such that the size of IB is at
most polynomial in the size of IA, and such that the solution status for IA is directly
related to the solution status for IB—for example, in the case of decision problems,
such that IA is a yes-instance to A if, and only if, IB is a yes-instance to B.

Hardness and completeness. For a given complexity class C, a problem is said to
be C-hard if any problem in C is polynomial-time reducible to it. A C-hard member
of C is said to be C-complete. The problem 3-Sat is NP-complete, often taken as the
canonical NP-complete problem. The canonical #P-complete problem is #3-Sat. Thus
P = NP if, and only if, 3-Sat is polynomial-time solvable, and similarly #P ⊆ FP if,
and only if, #3-Sat is polynomial-time solvable.

3



1.1. BASICS

1.1.2 Graph theory

A graph is a tuple (V,E), where V is a set of elements referred to as vertices, and E
is a collection of pairs of vertices (u, v) = uv referred to as edges. We let n = |V |
be the number of vertices, and m = |E| the number of edges. One of these numbers
is usually taken as a measure of the size of the graph. The graph is directed if each
edge is considered as an ordered pair of vertices, so that uv 6= vu in general, and
undirected otherwise. An undirected graph can be made directed by supplying an
orientation to determine the direction of the edges. All graphs in this thesis are
assumed to be undirected, unless explicitly stated otherwise. A subgraph of a graph
G = (V,E) is a graph H = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. If V ′ = V
we say that H is a spanning. The complement of an undirected graph (V,E) is the
graph (V, V 2 \ E).

Planar graphs. A drawing of a graph G = (V,E) is a graphical representation
with one dot for every vertex v ∈ V , and one curve connecting vertices u and v
for every edge uv ∈ E. For directed graphs, an edge uv would be depicted as an
arrow from u to v. A graph is planar if it can be drawn in the plane so that no two
edges cross. Such a drawing is called a planar drawing. Given a planar drawing of

The nonplanar graph K5. a connected planar graph G, we can construct a dual G∗ of G by introducing one
node for each face of G in the drawing, including the unbounded outer face, and
one edge for each pair of bordering faces; for example, is a planar dual (the only
one) of .

Simple graphs. An edge of the type vv, i.e. between a vertex and itself, is called a
loop. A graph is simple if it contains no loops and has at most one edge between any
pair of vertices. The first part of this thesis concerns simple graphs only, but in the
second part we will also consider non-simple graphs. To emphasize that a general
graph is not necessarily simple we sometimes use the term multigraph.

Non-simple multigraphs.

Adjacency. Two vertices u, v in a graph G = (V,E) are said to be adjacent or
neighbors if uv ∈ E , and the edge uv is said to be incident to each of its end vertices
u and v. A simple graph whose every vertex is adjacent to every other is complete,
and a complete subgraph in G is a clique in G. The complement of a clique is an
independent set. The neighborhood of a vertex v ∈ V is the set of all neighbors of v,
denoted N(v), and the degree of v is the size of N(v). The maximum degree of G,N(v)

denoted ∆(G), is the maximum degree over all vertices in G. A graph is bipartite it∆(G)

its vertex set can be partitioned into two subsets X and Y such that vertices in X
only have neighbors in Y .

Walks. A walk of length l in a graph G = (V,E) is an alternating sequence
of vertices vi and edges ei of the type W = (v0, e1, v1, e2 . . . , el, vl), such that
ei = vi−1vi for 1 ≤ i ≤ l. If G is simple then the walk is uniquely defined by
its sequence of vertices, so we can write W = (v0, v1, . . . , vl). The walk’s internal

4



CHAPTER 1. INTRODUCTION

vertices are v1, . . . , vl−1. The walk is closed if v0 = vl, and simple if it has no
repeated internal vertex.

Paths and cycles. The vertices and edges of a given walk in a graph form a
subgraph that is called a cycle if the walk is closed, and a path otherwise. Note
that two simple, closed walks form the same cycle if one is a reversal, or a cyclic
permutation, of the other. An undirected graph containing no cycle is a forest. A
directed graph containing no cycle is said to be acyclic.

Connectedness. A graph is connected if any two vertices are connected by a path.
A tree is a connected forest. A maximal, connected subgraph of a graph is called a
component. The number of components of a graph (V,E) is denoted by κ(E); thus κ(E)

the graph is connected if, and only if, κ(E) = 1. A cut is a subset C ⊆ E whose
removal increases the number of components of the graph. A singleton cut is called
a cut-edge.

Other graph structures. A k-coloring of a graph G = (V,E) is a partitioning
of V into k classes (colors). A given k-coloring is said to be proper if no two
adjacent vertices are in the same color class. The chromatic number of a graph G is
the smallest number k such that G has a proper k-coloring. Proper 3-coloring.

A vertex cover of a graph G is a vertex subset such that every edge of G is
incident to at least one vertex in it. A matching of G is a subset of mutually
nonadjacent edges, and a matching is perfect if it covers every vertex of G.

A k-flow in a directed graph (V,E) is an assignment φ : E 7→ ±{1, . . . , k− 1}
to the edges, such that for any vertex v ∈ V the sum of the assigned values for
outgoing edges from v equals the sum over incoming edges to v. The number of
k-flows is independent of the edge orientation, and for an undirected graph k-flows
are considered with respect to an arbitrary fixed orientation.

1

1

2

2

−3

4-flow.

1.2 Exponential-Time Complexity

With successful advances in exponential-time algorithms, an interest in the notion of
exponential-time complexity followed naturally. For example, it would be interesting
to know whether a given NP-complete problem is likely to require time exponential
in the input size n, or whether there is hope for some algorithm with subexponential
running time such as 2O(

√
n). For such questions, the notion of NP-hardness is not

helpful, as it cannot distinguish between different superpolynomial time complexities.
Instead, Impagliazzo, Paturi and Zane [57] introduced the Exponential Time Hypothesis,
claiming a certain exponential-time lower bound for the problem 3-Sat,

3-Sat

Input: A 3-CNF formula ϕ with n variables and m clauses.
Task: Decide whether ϕ is satisfiable.

The complexity claim is as follows.

5



1.2. EXPONENTIAL-TIME COMPLEXITY

Exponential Time Hypothesis (ETH):

There is a real number c > 0 such that no deterministic algorithm
can decide 3-Sat in time 2cn.

Later, as a consequence of the so called Sparsification lemma, the same authors
showed that ETH would also rule out the existence of subexponential-time algorithms
for 3-Sat in terms of the number of clauses.

Theorem 1.1 (Impagliazzo et al. [57]). Assuming ETH, there is a real number c > 0
such that no deterministic algorithm can decide 3-Sat in time 2cm.

Under ETH we can get a more detailed picture of the complexity landscape within
the class of NP-hard problems. Compared to classical complexity theory, we must
here pay more attention to any blow-up of instance sizes in a reduction, so as to
preserve information about an exponential-time lower bound.

1.2.1 Parameterized complexity

Assuming ETH to be true, many NP-complete graph problems can be shown to require
time exponential in the size of the input graph, usually measured in the number of
vertices n or edges m. However, for some problems there are other aspects, except
the size of the graph, that affect the complexity. For example, finding a minimum
vertex cover in a general graph requires time exponential in n under ETH [57], but
if we fix a number k then deciding whether the graph has a vertex cover of size at
most k is polynomial-time solvable: for every subset of k vertices—and there are(
n
k

)
nO(1) ⊂ nO(k) such subsets—check if it forms a vertex cover.
Detecting a vertex cover of given size is an example of a parameterized problem,

where part of the input is a natural number k measuring some parameter of the
input whose effect on the complexity we wish to highlight. Downey and Fellows give
a systematic introduction to the theory of parameterized complexity in [32].

Fixed-parameter tractability. We can do better than the above suggested nO(k)-
solution to the parameterized vertex cover problem, by first performing a certain
polynomial-time preprocessing step (see e.g. [37]) which either decides directly whether
the input graph G has a vertex cover of size k, or returns a graph G′ of size at most
2k such that G has a vertex cover of size k if, and only if, G′ has one. Then the
above brute-force approach can be applied to G′. In total, this gives a running time
of
(
2k
k

)
nO(1) ⊂ 2O(k)nO(1). This is an example of fixed-parameter tractability.

Definition 1.1. A computational problem is fixed-parameter tractable (FPT) with respect
to parameter k if there is an algorithm for the problem with running time f(k)nO(1),
where f is a function depending only on k, and n is the input size.

This type of complexity may be acceptable for instances where k is small compared
to n, provided the function f(k) does not grow too rapidly.

6



CHAPTER 1. INTRODUCTION

There is an analogue concept of NP-hardness for parameterized problems called
W[1]-hardness. We will not need the formal definition of the class W[1], but we note
the following result.

Theorem 1.2 (Downey and Fellows [32]). Assuming ETH, a problem that is W[1]-hard
with respect to a parameter k cannot be fixed-parameter tractable with respect to k.

Kernels. The preprocessing step mentioned above for the vertex cover problem is
an example of a kernel: a mapping reduction from a parameterized problem to itself,
that transforms any given instance into an equivalent instance of size f(k), for some
function f depending only on the parameter k and referred to as the size of the
kernel. For example the above vertex cover problem, parameterized by solution size
k, admits a kernel of size 2k. Such polynomial kernels are especially sought after,
as they usually translate into FPT-algorithms with a decent dependency on k, such
as the 2O(k)nO(1)-time algorithm mentioned above. It can be shown (see e.g [11,
Theorem 1]) that a problem admits a kernel for a parameter k if, and only if, it is also
fixed-parameter tractable with respect to k.

1.3 Overview of this thesis

Chapter 2 contains a brief review of algorithmic techniques of relevance for detecting
long cycles in graphs: dynamic programming, inclusion-exclusion, color coding, and
in particular a monomial sieving technique due to Koutis and Williams [69]. As
a warm-up to Chapter 3, this monomial sieving technique is demonstrated on the
problem of detecting induced cycles in degree-bounded graphs, such that the solution
connects a small number of terminal vertices.

Chapter 3 concerns the problem of finding a cycle through a given set of specified
vertices and/or edges. A Monte Carlo algorithm is presented with a running time that
is exponential only in the number of specified elements. With high probability the
algorithm finds a shortest solution. It uses several techniques discussed in Chapter 2,
and the correctness follows from a subtle pairing argument. This is joint work
with Andreas Björklund and Thore Husfeldt, and was published in [9]. Due to an
observation by Magnus Wahlström, this algorithm could be adjusted to also give
control of the parity of the length of a solution cycle. A problem concerning the
parameterized complexity is discussed; this problem has now been solved by Magnus
Wahlström.

Chapter 4 gives an introduction to the Tutte polynomial, and to the #P-hard
problem of evaluating the Tutte polynomial of multigraphs at a given point in the
(x, y)-plane. A brief survey of previous complexity results is given, especially the
work by Dell et al. [30] on exponential-time complexity under #ETH, a counting
analogue of ETH.

Chapter 5 concerns the exponential-time complexity of evaluating the Tutte poly-
nomial of simple graphs, in particular for points on the line x = 1 corresponding to
the reliability polynomial. In the framework proposed by Dell et al. [30] it is shown

7



1.3. OVERVIEW OF THIS THESIS

that, assuming #ETH, evaluation of the Tutte polynomial at a point with x = 1
requires time exponential in Ω(m/log2m) for simple graphs of m edges, except
for the point (1, 1) which was already known to be polynomial-time solvable. As
the problem is known to be solvable in vertex-exponential time for any point, this
lower bound shows that the hardest instances are sparse graphs of roughly linear
density. For y > 1 this is joint work with Thore Husfeldt, and was published in [56].
Joining efforts with Holger Dell, the result was finally extended to the full line, and
incorporated into the journal paper [29] which now gives asymptotically tight (up to
a polylogarithmic factor in the exponent) lower bounds under #ETH for the whole
plane, except the line y = 1.

Chapter 6 concerns the exponential-time complexity of evaluating the Tutte poly-
nomial of planar graphs. As an algorithm is known for this problem with a running
time exponential only in O(

√
n), the question is whether this is asymptotically op-

timal under #ETH. By analysis of existing polynomial-time reductions, this is shown
to indeed be the case for general points, as a matching lower bound is found for
any point on the hyperbola (x − 1)(y − 1) = 3. For remaining nontrivial points
in the plane, lower bounds exponential in Ω(n1/k) are found for various k > 2. In
particular, a lower bound exponential in Ω(n1/8) is given for the line y = 1. To the
best of the knowledge of the author, this is the first concrete superpolynomial lower
bound on this line also for multigraphs in general.
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Part I

Algebraic Algorithms for Cycle
Detection
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Chapter 2

Finding Cycles in Graphs

In 1736, Leonhard Euler [34] settled a much-debated question among the inhabitants
of his hometown Königsberg: was it possible to walk through town, from some
starting point and back again, such that one passed each of Königsberg’s seven
bridges exactly once? Euler proved the impossibility of such a walk by abstracting
the problem, introducing mathematical objects we now know as vertices, edges, and

Königsberg graph.graphs—graph theory was born.

A seemingly similar puzzle is the icosian game, introduced by William Hamilton
in 1857. Here the task is to find a walk along the edges of a dodecahedron, from any
starting corner and back again, such that each of the 20 corners is passed exactly
once. The existence of such walks was clear from the start, but finding one, at least
the first time, still posed a pleasant leisure activity, and the game took form in a
popular toy. Icosian game.

Indeed, problems of finding various kinds of walks within some finite structure
seems to have intrigued people for a long time. Except as a source of recreational
games, problems of this type are often encountered in areas such as e.g. DNA-
sequencing, network routing and traffic planning. In modern-day terms, the Bridges-
of-Königsberg problem that Euler solved concerned the existence of an Eulerian
circuit, i.e. a closed walk passing every edge in a graph exactly once, and the icosian
game asks for a Hamiltonian cycle, i.e. a cycle through every vertex of a graph. From
an algorithmic perspective these problems are quite different; while an Eulerian circuit
can be found in polynomial time, deciding the existence of a Hamiltonian cycle is
the famously NP-complete Hamiltonian Cycle problem. This difference in complexity
is perhaps more easily grasped between the problem of finding a walk of length k
in a graph, which is trivial as we can simply walk back and fourth along any edge,
and the problem of finding a path of length k. The latter problem seems harder, and
indeed it is NP-hard if k is part of the input, since k = n gives the NP-complete
Hamiltonian Path problem. This so called k-Path problem, and the corresponding k-
Cycle problem, can thus be seen as parameterized generalizations of the Hamiltonian
Path and Hamiltonian Cycle problems, respectively.

11



2.1. ALGORITHMIC TECHNIQUES FOR CYCLE FINDING

2.1 Algorithmic techniques for cycle finding

Over the years, a number of interesting algorithmic techniques have evolved from, or
found nice application to, work on exact algorithms for the Hamiltonian Cycle/Path
problem, or the k-Path/Cycle problem. This section describes four of the most influ-
ential such techniques. Three of these techniques will be useful in Chapter 3, where
we study another generalization of the Hamiltonian Cycle problem.

We will only consider the cycle-version of these problems, but the same tech-
niques apply to the path-versions. Indeed, given an input graph G to the Hamiltonian
Path problem or the k-Path problem, we can construct a graph G′ by adding a new
vertex to G and making it connected to every other vertex. Then G′ has a Hamilto-
nian cycle if, and only if, G has a Hamiltonian path, and G′ has a cycle of length
k + 1 if, and only if, G has a path of length k.

2.1.1 Dynamic programming over subsets

A brute-force solution to the Hamiltonian Cycle problem enumerates all permutations
of the vertices, and checks for each permutation whether it defines a closed walk in
the graph. The resulting running time is thus n!nO(1). This upper bound was dra-
matically improved in 1962, when Bellman [5] and Held and Karp [53] independently
discovered the following algorithm based on dynamic programming:

Algorithm H (Compute the number of Hamiltonian cycles.)

The input is a simple graph G = (V,E), and an arbitrary starting vertex s ∈ V . For
every S ⊆ V and vertex u, let T (S, u) be the number of paths in G from s to u
using exactly the vertices in S.

H1. [Initialize table.] Set T ({s}, s) = 1, and all other entries to 0.

H2. [Dynamic programming.] Update the table as follows, for every subset S ⊆ V
containing s, and every vertex u ∈ S:

T (S, u) =
∑

w∈N(u)

T (S \ u,w) .

s w
u

s w
u

Demonstration of two walks
(red & blue) counted in some
nonzero term of the sum.

H3. [Add relevant contributions.] Compute σ =
∑

u∈N(s) T (V, u). This number
counts every Hamiltonian cycle twice, once in each direction, so we return
H = σ/2.

The running time is 2nnO(1) as we consider 2n subsets S ⊆ V .

This use of dynamic programming greatly influenced subsequent algorithms for
path- and cycle problems, and the 2nnO(1)-bound for the Hamiltonian Cycle problem
remained undisputed for almost 50 years.

12



CHAPTER 2. FINDING CYCLES IN GRAPHS

2.1.2 The principle of inclusion and exclusion

An issue with the above dynamic programming solution is that except for exponential
time, it also requires exponential space. A way around this is the following technique,
based on the principle of inclusion and exclusion.

For S ⊆ V , let AS be the set of closed walks of length n, starting and ending at
some given vertex s, that avoid all vertices in S. Then the number H of Hamiltonian
cycles satisfies

2H = |A∅| = |
⋃
u∈V

A{u}|

=
∑
S⊆V

(−1)|S||
⋂
u∈S

A{u}|

=
∑
S⊆V

(−1)|S||AS | , (2.1)

where the second equality follows from the principle of inclusion and exclusion; see
e.g. (9) in [55]. Again, every Hamiltonian cycle is counted twice in |A∅| (once in
each direction). We compute each value |AS | by dynamic programming similar to
Algorithm H: for every u ∈ V and k ≤ n − 1, compute the number TS(k, u) of
walks of length k from some starting vertex s to u that avoid the vertices in S , until
we can return |AS | =

∑
u∈N(s) TS(n − 1, u). Note that for each subset S ⊆ V ,

the table TS only requires quadratic space, and we only need to keep one such table
at a time in memory, while still obtaining the time bound 2nnO(1).

This idea has been reinvented many times (see e.g. [67, 61, 4]) until the general
technique gained popular attention in recent years; see [55] for an overview of appli-
cations. A variant of this technique is used in Björklund’s 1.657nnO(1)-time Monte
Carlo algorithm [6] for the Hamiltonian Cycle problem—the first algorithm to beat
the longstanding bound of 2nnO(1).

2.1.3 Color coding

For the k-Cycle problem, the brute-force solution has an upper bound of O(nk): for
each choice of k vertices, check whether they constitute a simple cycle in the graph.
Monien [80] gave an algorithm with running time k!nO(1), showing the problem to
be fixed-parameter tractable with respect to the parameter k. Considering the known
2nnO(1)-time algorithm for the Hamiltonian Cycle problem, a natural question was
whether the factorial dependency on k of Monien’s algorithm could be improved to
exponential. Alon, Yuster and Zwick [1] provided a positive answer to this question,
giving a 5.44knO(1)-time randomized algorithm for the problem, and a deterministic
version in time cknO(1) for some large constant c, by introducing the technique of
color coding.

The idea of color coding is to pick a random k-coloring of the vertices, c : V →
[k], and then to look for a colorful k-cycle, i.e. a cycle containing exactly one vertex
of each color. For any given such coloring c we can again use dynamic programming

13
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similar to Algorithm H to count the number of colorful k-cycles: for every subset
S ⊆ [k] and vertex pair u, v ∈ V , compute the number T (S, u, v) of colorful paths
from u to v that uses exactly the colors from S , each color exactly once. If the graph
contains a k-cycle, then it has probability k!/kk > 1/ek of becoming colorful by a
random k-coloring, so an expected number of O(ek) colorings are needed to detect
it. Hence the expected time to find an existing k-cycle is ek2knO(1) ∈ 5.44knO(1).

This technique proved successful for finding other types of subgraphs as well, and
moreover had the benefit of easily extending to weighted graphs. It was successfully
applied for identifying certain interaction chains in protein interaction networks [86,
88], which renewed the interest in efficient algorithms for the k-Cycle problem.

2.1.4 Monomial sieving

The next question was whether the base of the exponential term in the new upper
bound for the k-Cycle problem could be replaced by 2, as for the classical algorithm
for the Hamiltonian Cycle problem. A Monte Carlo algorithm satisfying this was even-
tually found by Williams [97], by refining an algebraic ‘sieving’ technique introduced
by Koutis [68]. The idea is to associate a certain polynomial with the graph, such that
every term corresponds to a walk of length k, and such that a term is multilinear, i.e.
contains no squared variable, if, and only if, the corresponding walk is simple.1 While
this polynomial is easily defined implicitly, for example as a recursion, it would not
be practical to compute the expanded form; indeed, there mere number of terms to
check would exceed the wanted time bound. Instead the following theorem is used to
probabilistically sieve the given polynomial for monomials corresponding to k-cycles.

Theorem 2.1 (Koutis, Williams [69]). Let p(x1, . . . , xt) be a polynomial of degree at
most k, and suppose p can be represented by an arithmetic circuit of size polynomial
in t, with no scalar multiplications. Then the existence of a multilinear term in p can
be decided by a Monte Carlo algorithm in time 2ktO(1), with small probability of a
false negative.

In short, the algorithm uses the arithmetic circuit, typically a dynamic program-
ming formulation, to evaluate the polynomial at a random point of coordinates from
a certain group algebra over a finite field Fq , such that any square evaluates to zero
in this algebra. The remaining sum, corresponding to multilinear terms, will then
evaluate to something nonzero with a probability given by the following lemma:

Lemma 2.1 (DeMillo-Lipton-Schwartz-Zippel). Let p ∈ Fq[x1, . . . , xt] be a nonzero
polynomial of total degree at most d. Then, for r1, r2, . . . , rt ∈ Fq selected indepen-
dently and uniformly at random,

Pr[ p(r1, r2, . . . , rt) 6= 0 ] ≥ 1− d

q
.

1The idea of associating a polynomial with a certain structure we want to find goes back to Tutte [91],
who noted that a graph has a perfect matching if, and only if, the determinant of a certain matrix with
variable entries is a nonzero polynomial. Lovász [79] was the first to realize the algorithmic potential of
this result, when coupled with the DeMillo-Lipton-Schwartz-Zippel lemma.

14



CHAPTER 2. FINDING CYCLES IN GRAPHS

The probability of a false negative in Theorem 2.1 decreases exponentially with
the number of such random evaluations of the given polynomial, with a rate that
depends on the size of the chosen field Fq but not on k. The exponential term of
the running time comes from the cost of arithmetic operations in the group algebra.

This approach to the k-Cycle problem inspired Björklund to the breakthrough
algorithm for the Hamiltonian Cycle problem [6], and by further development also led
to algorithms for a number of packing problems [8]. The result of Chapter 3 is also
inspired by this work.

2.2 Monomial sieving in action

As a warm-up to Chapter 3, this section demonstrates a somewhat elaborate applica-
tion of the above monomial sieving technique.

A subgraph of a given graph G is said to be induced if it can be obtained from
G by a sequence of vertex deletions. In particular, an induced cycle in a graph G is a
cycle C containing no chord in G, i.e. an edge connecting two nonadjacent vertices
on C . And induced cycle of length at least four is called a hole. A hole is odd or
even according to the parity of its length.

It is a curious fact that, whereas we know how to decide in polynomial time
whether a graph contains an even hole [24, 23, 21], it is still open whether odd
holes can be detected in polynomial time. This problem received much interest over
the years due to the Strong Perfect Graph Conjecture, which claimed that a graph is
perfect2 if, and only if, either itself or its complement contains an odd hole. This
was finally proved by Chudnovsky et al. [22], yielding a complete characterization of
perfect graphs, and also a polynomial-time algorithm for the problem, as it turned
out that the problem of detecting either an odd hole or the complement of an odd
hole is polynomial-time solvable [20]. This makes the unclear complexity of detecting
odd holes quite intriguing.

Now suppose we want to check for odd holes in a graph of bounded degree. We
will demonstrate how Theorem 2.1 can be used to do this, while also requiring the
hole to pass through a small set of specified vertices. Thus we define the following
problem.

∆d-l-K-Hole

Input: A simple graph G = (V,E) with n vertices, maximum degree d,
a specified subset K ⊂ V of size k = (log n)O(1),
and a number l ≥ 3.

Task: Decide whether G contains an induced cycle of length l,
containing all vertices in K .

2A graph G is said to be perfect if the chromatic number of each induced subgraph H in G is the
size of the biggest clique in H .
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The Monte Carlo algorithm resulting from Theorem 2.1 will have a running time of
2dlnO(1). This is not very interesting in itself, as the problem can be solved in
time 2l log dnO(1) by simple branching, but the construction here serves to introduce
several technical aspects we will encounter in Chapter 3.

2.2.1 Monomial sieving for induced cycle detection

To apply Theorem 2.1, we seek a polynomial p associated with any input graph
G, such that p has a multilinear term if, and only if, the graph G contains an
induced cycle of length l through the specified vertices in K , and such that p can
be represented by a commutative arithmetic circuit of size polynomial in the number
of variables. The running time of the algorithm will be exponential in the degree of
the polynomial p.

Defining the polynomial. For a given graph G = (V,E) of n vertices and m
edges, and a specified subset K ⊂ V of size at most (log n)O(1), we construct a
polynomial p as follows:

Introduce a variable xv for every vertex v ∈ V , and a variable ye for every
edge e ∈ E. For any v ∈ V , let I(v) denote the set of incident edges to v. To each
closed walk W = (v0, v1, . . . , vl−1, v0) in G, we associate the monomial m(W ) of
degree at most dl given by

m(W ) =

xv0 ∏
e∈I(v0)
e6=vl−1v0

ye

 ·
xv1 ∏

e∈I(v1)
e6=v0v1

ye

 . . .

xvl−1

∏
e∈I(vl−1)
e6=vl−2vl−1

ye

 . (2.2)

For example, consider the monomial for the following walk of length 4 in a graph of
maximum degree 3. (The walk is indicated by arrows in the graph.)

m

 1

2

3

4

5
 = (x1y12y13)(x2y23)(x3y13y34)(x4y45y41) .

This monomial has degree 11, which is less than 4 · 3. Note that the variable y13
appears twice in the monomial, and the walk is a cycle, but not an induced cycle.

Let WK
l be the set of all closed walks of length l in G that contain every vertex

in K . Set
p(WK

l ) =
∑

W∈WK
l

m(W ) .

Then p(WK
l ) is a polynomial of degree at most dl.3

3Note that for any l-cycle in G through the vertices in K , there are 2l corresponding walks inWK
l :

one for every choice of starting vertex and orientation. Thus each monomial in p(WK
l ) will have an

even coefficient of size at least 2l. This poses no problem for the current application, but in the next
chapter it will be necessary to avoid such a situation.
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Correctness. We now argue that it is sufficient to look for multilinear terms in the
polynomial p(WK

l ).

Lemma 2.2. The polynomial p(WK
l ) contains a multilinear term if, and only if, G

contains an l-hole containing every vertex in K .

Proof. Let W ∈ WK
l . If W is not a cycle, then it contains some repeated internal

vertex v, yielding a square variable x2v in m(W ). If W is a cycle, but not induced
(as in the above example), then there will be some chord of W , i.e. an edge e ∈ E
incident to two vertices vi and vj on W with |i−j| > 1 (indices considered modulo
l). The corresponding edge variable ye will be counted twice, in the ith and jth
factor of m(W ), yielding a square factor y2e . Thus, if W is not an induced cycle,
then m(W ) is not multilinear.

Now suppose W is an induced cycle in G. Being a cycle, W will pass no
vertex more than once, so m(W ) is linear in every node variable xv . Being induced,
there are only two ways in which an edge e ∈ E can have an endpoint on W :
either e is incident to only one vertex vi of W , or e = vivi+1 for two consecutive
vertices vi, vi+1 of W (indices considered modulo l). In either case the variable ye
appears only once in m(w), in the ith factor. Thus m(W ) is linear also in every
edge variable ye—it is a multilinear term in p(WK

l ).

Arithmetic circuit. Then we show how to evaluate the polynomial efficiently.

Lemma 2.3. The polynomial p(WK
l ) can be represented by an arithmetic circuit of

size polynomial in the number of variables.

Proof. We give a dynamic programming formulation of the polynomial p(WK
l ).

For every closed walk W ∈ WK
l , we would like to build the monomial m(W )

from smaller monomials corresponding to subwalks of W . To this end we define, for
any walk W = (v0, v1, . . . , vr−1, vr), the monomial

m̂(W ) =

xv0 ∏
e∈I(v0)

ye

 ·
xv1 ∏

e∈I(v1)
e6=v0v1

ye

 . . .

xvr ∏
e∈I(vr)
e6=vr−1vr

ye

 . (2.3)

Note that if vr ∈ N(v0), so that we can append the edge e = vrv0 to the end of W
to form a closed walk W ′, then m̂(W ) = yvr−1v0 ·m(W ′).

For all lengths r ≤ l, vertices u, v ∈ V , and subsets S ⊆ K , let WS
r [u, v] be

the set of walks of length r from u to v passing every vertex of S , and set

T (r, u, v, S) =
∑

W∈WS
r [u,v]

m̂(W ) .
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We have

p(WK
l ) =

∑
W∈WK

l

m(W )

=
∑
v∈V

∑
u∈N(v)

∑
W∈WK

l−1[u,v]

m̂(W )

yuv

=
∑
v∈V

∑
u∈N(v)

T (l − 1, v, u,K)/yuv . (2.4)

This can be computed by dynamic programming as follows:

Algorithm C (Circuit for p(WK
l )).

The input is a simple graph G = (V,E), an integer l (0 ≤ l ≤ n− 1) and a vertex
subset K ⊂ V of size k = (log n)O(1).

C1. [Initialize table.] Set all table entries to 0. For all u ∈ V , set

T (0, u, u, S) =

{
xu
∏
e∈I(u) ye if u ∈ K and S = {u} ,

xu
∏
e∈I(u) ye if u /∈ K and S = ∅ .

C2. [Dynamic programming.] Update the table as follows, for every u, v ∈ V and
every S ⊆ K :

If v ∈ K , then for each S 3 v set

T (r+ 1, u, v, S) = xv
∑

w∈N(v)

(
T (r, u, w, S) + T (r, u, w, S \ v)

) ∏
e∈I(v)
e6=vw

ye .

(Here the value of T (r, u, w, S) covers those u,w-walks that already visited v,
and T (r, u, w, S \ v) those that did not.)

If v /∈ K , set

T (r + 1, u, v, S) = xv
∑

w∈N(v)

T (r, u, w, S)
∏
e∈I(v)
e6=vw

ye .

All other T (S, r, b, y, z) remain at 0. Increment r and repeat C2 until r = l.

C3. [Add relevant contributions.] According to (2.4), return

p(WK
l ) =

∑
v∈V

∑
u∈N(v)

T (l − 1, v, u,K)/yuv .
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This gives an arithmetic circuit for p(WK
l ) of size O(2kn2d2), which is polyno-

mial in n + m since k = (log n)O(1) by assumption. The number of variables of
p(WK

l ) is n+m.

Thus Lemma 2.2 and Lemma 2.3 shows that the polynomial p(WK
l ) satisfies the

assumptions in Theorem 2.1. As the degree of the polynomial is dl, this yields a
2dlnO(1)-time Monte Carlo algorithm for the problem ∆d-l-K-Hole.
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Chapter 3

Finding Cycles Through Specified
Elements

smile smite spite suite quite quire

shamesharescarescarssearstears

quirt

quilt

guilt

guile

guide

glide

slide

slime

clime

crime

prime

pride

price

prick

crick

crock

crookgrookgroomgloombloombloodbrood

broad bread dread tread treed trees

trews

trows

trots

toots

torts

worts

words

wordy

worry

wormy

worms

forms

foams

flams

slams

shamsshame

spite

guilt

pride

gloom

dread

worry

tears

smile

In 1879 Lewis Carroll challenged the puzzle-minded readers of Vanity Fair to find
a ‘word chain’ turning tears into smile by changing a single letter at a time,

tears− sears− stars− stare− stale− stile− smile .

In the following weeks the readers were asked to change black into white, grass into
green, furies into barrel, etc.—according to Gardner, the competition was a parlor
craze in London. Today, arbitrary instances of Carroll’s game of Doublets are trivially
solved by anyone endowed with a digital word list, a computer, and basic knowledge
of graph algorithms, “no more than a step above dynamiting a trout stream.”1

A meatier problem is solved in the margins of this page: turning tears into smile,
but also passing through the intervening emotions of dread, gloom, guilt, pride,
shame, spite, and worry, without reusing any word. The underlying graph is the
Stanford Graph Base list of 5757 words of 5 letters described in [66]. To the best of
the knowledge of the author, no efficient algorithm for this problem was previously
known, so the computer has had no qualitative advantage over the readership of
Vanity Fair.

Behind the whimsical brain teaser lies of course a clean combinatorial problem.
Considering the list of words as a graph, with edges corresponding to pairs of words
that differ in one single letter, we seek a simple path between two given vertices s
and t, passing a set of other other specified vertices in the graph. By adding the
edge e = st to the graph, we can view this as the problem of finding a simple cycle
containing all of the given specified vertices and the edge e. The existence of such
cycles through specified elements has been a central topic of graph theory since the
1960s (see [62] for some references). We will refer to them as K-cycles.

1References for this quote by Brewster, Carroll’s book about Doublets, and Gardner’s article in
Scientific American can by found in [66].
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3.1 The K-Cycle problem

For a graph G = (V,E) and a set K ⊆ V ∪ E of specified vertices or edges, a
K-cycle in G is a simple cycle that includes all elements of K . By the parity of a
K-cycle we refer to the parity of its length. We define the K-Cycle problem as follows,

K-Cycle

Input: A simple graph G = (V,E) with n vertices,
and a subset K ⊆ V ∪ E of size k.

Task: Decide whether G contains a K-cycle.

We can restrict our attention to the case where K contains only vertices; indeed,
any specified edge uv can be replaced by adding a fresh vertex w to K and V and
adding the edges uw and wv to E. This increases n by at most k.

The K-Cycle problem can be seen as a generalization of the Hamiltonian Cycle
problem, corresponding to the case K = V . Consequently, the problem is NP-hard
in general, and assuming ETH it cannot be solved in time 2o(k)nO(1) [57].

3.1.1 Relation to the Disjoint Paths problem

The K-Cycle problem has an interesting relation to the following well-known problem.

Disjoint Paths

Input: A simple graph G = (V,E) with n vertices,
and a set of k vertex pairs (s1, t1), . . . , (sk, tk).

Task: Decide whether G contains k paths P1, . . . , Pk , pairwise disjoint
except possible overlapping endpoints, such that Pi connects si to ti.

This problem is central in areas such as high-speed network routing and trans-
portation networks; see [42] for a survey of applications. It was a seminal result
of Robertson and Seymour’s Graph Minors Project that the Disjoint Paths problem is
fixed-parameter tractable with respect to the number k of terminal pairs [85]. We
have the following connection to the K-Cycle problem:

Proposition 3.1. The Disjoint Paths problem is computationally equivalent to a K-
oriented version of the K-Cycle problem, in which the specified elements are required
to be visited in a given order.

Proof. Given a K-oriented K-Cycle instance with k specified vertices xi to be visited
in the order x0, x1 . . . , xk−1, x0, we get an equivalent instance of Disjoint Paths
by defining the ith pair of terminals as (si, ti) = (xi, xi+1), with indices taken
modulo k. Conversely, a given Disjoint Paths instance with terminal pairs (si, ti)

t0 t1 t2

s0 s1 s2

Figure 3.1: Disjoint Paths
to K-oriented K-Cycle.

can be made into an equivalent K-oriented K-Cycle instance by adding specified
edges ei = tisi+1, requiring these to be visited in the order e0, e1 . . . , ek−1, e0, as
illustrated in Figure 3.1.
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From this connection it is immediate from Robertson and Seymour’s result that
the K-Cycle problem is fixed-parameter tractable with respect to the number of spec-
ified elements: simply consider each possible order to visit the k specified elements.
Thus we know that the problem can be solved in time f(k)nO(1) for some function
f(k). This should, however, be considered a theoretical result, as the time depen-
dency on k that follows implicitly from Robertson and Seymour’s constructions is
quite extreme, involving repeated exponentiation and tower functions, which makes it
completely impractical for any value of k. The first improvement over this was given
recently by Kawarabayashi [62], with an algorithm whose dependency on k is doubly
exponential in k10.

3.1.2 Main theorem

Section 3.2 presents a Monte Carlo algorithm for an optimization version of the K-
Cycle problem, with a running time that matches the exponential-time lower bound
under ETH. The author is obliged to Magnus Wahlström for observing that the algo-
rithm also solves a parity version of the problem.

Theorem 3.1. Let G be an n-vertex graph, and K a set of k specified vertices of edges
in G. A K-cycle of given parity in G can be found by a Monte Carlo algorithm in
time 2knO(1), with a small probability of a false negative, or of a solution that is not
shortest possible.

The problem of determining the length of a shortest K-cycle was not known to
be fixed-parameter tractable, to the best of the knowledge of the author.

Note that this result is an improvement not only in the theoretical sense. Whereas
previous algorithms would outperform the brute force solution only for inputs of
galactic size, a straightforward implementation of the algorithm in Section 3.2 is
able to find cycles through several specified elements in a graph with thousands of
vertices. Also, the algorithm is short and conceptually simple, using nothing more
complicated than dynamic programming. The correctness argument is a bit more
subtle, but except for the DeMillo-Lipton-Schwartz-Zippel lemma, the presentation is
self-contained.

If the graph has no K-cycle of the given parity, the algorithm will never report a
false positive. If the graph has a K-cycle of the given parity, then such a cycle will
be found with high probability, and it will be shortest possible with high probability.

3.1.3 Related work

The K-Cycle problem. For k = 1, the problem can be solved by breadth first
search, and for k = 2 it corresponds to detecting two vertex-disjoint paths between
the specified vertices, which is solvable by an adaption of the Ford-Fulkerson method;
see e.g. [16, Chapter 9.1]. For k = 3, it can be solved in linear time by a dedicated
algorithm [36, 73]. The mentioned algorithm by Kawarabayashi [62], involving some
of the ideas of Robertson and Seymour [85], finds a cycle through k specified edges
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in polynomial time provided k ∈ O((log logn)1/10). This remains the best known
deterministic algorithm for general k.

The arguments needed to establish the correctness of previous algorithms for k ≥
3 are complicated. The k = 3 algorithm by [73] requires extensive case analysis
partially omitted from the journal version and appearing only in [72]. The other algo-
rithms rely on combinatorial results, in the extreme case of Robertson and Seymour’s
algorithm [85] the correctness proof requires hundreds of pages.

For directed graphs, the case k = 1 is solved as for undirected graphs, but already
the detection problem for k = 2 is NP-hard [41].

Shortest K-cycle. For the optimization problem of finding a shortest K-cycle, little
was known. Dean’s list of open questions from a 1991 conference on graph minors
[27] asks if the problem can be solved in polynomial time for fixed k; i.e. if the
problem is fixed-parameter tractable with respect to k. For k = 2, the problem is a
special case of minimum-cost network flow and solvable by textbook algorithms; see
[90] for some early results. According to [27], the case k = 3 is solved by Fleischner
and Woeginger in [36], though this is not made explicit. An algorithm for fixed k > 3
does not follow from Robertson-Seymour techniques, and the question seems to have
remained open.

K-cycle of given parity. Kawarabayashi, Li, and Reed [64] give an algorithm for
detecting a K-cycle of given parity. For fixed k the running time is polynomial in n,
so the problem was known to be fixed-parameter tractable with respect to k, but the
dependency on k is not given.

K-cycle of given length. The brute-force way to find a K-cycle of length l is of
course to consider all

(
n
l

)
candidate vertex subsets in G and see if they describe a

K-cycle. Algorithms for long paths whose running time is exponential in the path
length are known, and it is easy to change these algorithm to consider only such
paths that visit K , as for the algorithm described in Section 2.2. For example, the
algorithm in [8] can be modified to detect a K-cycle of length l in time 1.66lnO(1).
While this may be competitive with previous algorithms for the he K-Cycle problem
for k > 3, it would for example be time-consuming to find the solution on the title
page, which has l = 58. Moreover, it seems difficult to modify these algorithms to
be able to detect the absence of a K-cycle in time subexponential in n.

Induced K-cycle. Kobayashi and Kawarabayashi [63] give an algorithm for detect-
ing an induced K-cycle in a planar graph in time wO(w)n2, where w = k2/3. In
particular, their algorithm runs in polynomial time for k = o((log n/ log log n)2/3).
For general graphs, this problem is NP-complete even for k = 2, and the ideas of this
chapter do not seem to easily lend themselves to this induced version of the problem.
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3.1.4 Technique

The algorithm presented in this chapter uses the monomial sieving idea discussed in
the previous chapter. Compared to other recent papers using this technique, such as
[6, 8, 69, 97], the construction here is quite simple, but the analysis is more delicate.

One could view the determinant summation technique of [6], for the Hamiltonian
Cycle problem, as detecting a cycle of length n through n/2 specified elements. The
running time there is exponential in the number of vertices between the specified
ones. For the algorithm below the situation is reversed: the specified vertices are
exponentially expensive, and the vertices in-between are cheap.

3.2 Algorithm

We first introduce some relevant concepts.

3.2.1 Terminology and definitions

Given a walk W = (v0, v1, . . . , vl), we let V (W ) and E(W ) denote the set of
vertices and edges of W , respectively. A subwalk of a walk W is a walk of the
form (vi, vi+1, . . . , vj) for some i, j with 0 ≤ i ≤ j ≤ l. A subwalk is a prefix
of W if i = 0, and a suffix of W if j = l. Given a vertex subset S , an S-walk
is a walk that includes every vertex from S exactly once. A digon is a walk of the
form u, v, u. An S-digon is a digon u, v, u where v ∈ S.

A set of closed walks. We define a certain set of closed walks, constituting candi-
date K-cycles. Fix an arbitrary starting vertex a ∈ K and an arbitrary total order ≺
of the vertices in the neighborhood N(a).

Definition 3.1. For given length l (2 ≤ l ≤ n), define the set Cl of closed walks W =
(v0, v1, . . . , vl−1, v0) with the following properties:

P1 (start) v0 = a,

P2 (K-walk) every vertex in K appears exactly once on W ,

P3 (oriented) v1 ≺ vl−1
P4 (no K-digons) every internal vertex on W that belongs to K has

different predecessors and successors on W ; i.e. if vi ∈ K with 1 ≤
i < l then vi−1 6= vi+1; see Figure 3.2 (iii).

The set Cl includes the K-cycles of length l, but can contain other, self-intersecting
closed walks as well. Property P3 is used to ensure that a cycle and its reversal are
considered only once; we arbitrarily decide to consider the cycle’s direction that goes
from a to the lower-ordered neighbour. Property P4 is more technical.
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a

b y z

x

(i)

N(a)

a

v1

vl−1

(ii)

vi−1 vi+1

vi
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Figure 3.2: Walks in a graph with K-vertices in red. (i) A K-walk. (ii) A closed
walk v0, v1, ..., vl with v0 = vl = a. (iii) A K-digon. All K-digons are forbidden in
Cl, while the digon y, x, y in (i) is allowed.

A function on sets of walks. With foresight, we will work in Fq with q =
21+dlogne, a finite field of characteristic 2 and size q ≥ 2n ≥ 2l .

Definition 3.2. For every edge e ∈ E in a graph G = (V,E), associate a value
f(e) ∈ Fq . Extend the definition of f to walks W = v0, v1, . . . , vl in G by

f(W ) = f(v0v1)f(v1v2) · · · f(vl−1vl) ,

and to setsW of walks by

f(W) =
∑
W∈W

f(W ) .

3.2.2 Algorithm

We are ready to present the main algorithm. Essentially, we define f by choos-
ing f(e1), . . . , f(em) at random from Fq and then check whether f(Cl) is nonzero
for increasing lengths l.

Algorithm M (Find the length of a shortest K-cycle of given parity).

The input is a simple graph G = (V,E), a specified vertex subset K ⊆ V .

M1. [Initialize.] Choose f(e) ∈ Fq for each e ∈ E uniformly at random. Choose a
starting vertex a ∈ K and an ordering of N(a) arbitrarily. Set l = |K| or
l = |K|+ 1, according to the given parity.

M2. [Iterate over all lengths.] Compute f(Cl) using dynamic programming (Algo-
rithm F below). If f(Cl) 6= 0, answer that G contains a K-cycle of the given
parity of length at most l, and that, with high probability, l is the shortest
length of such a cycle. Otherwise increase l by 2 and repeat step M2 until
l ≥ |V |.

M3. [Admit defeat.] Answer that no K-cycle of the given parity was found.
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This algorithm establishes Theorem 3.1. The proof of correctness is in Section 3.3.
Note that if the algorithm reports a K-cycle at length l, then this is probably the

length of a shortest K-cycle, but as we will see there is a possibility that a shorter
K-cycle was missed on a previous iteration, i.e., that we got a false negative at that
iteration. The probability of this situation is bounded by a fixed number p < 1/2,
just as the probability of a false negative in general, and we can simply repeat the
algorithm until we are sufficiently confident of the answer.

Dynamic programming. The values f(Cl) in step M2 can be computed using
dynamic programming over the subsets of K and the length of the walk’s prefix, in a
similar vein as Algorithm H in the previous chapter. We only need to maintain some
extra information about the last two vertices on a walk’s prefix (in order to avoid
building an K-digon) and the second vertex (in order to determine the orientation of
the final closed walk), as follows.

For every vertex subset S ⊆ K , vertices b, y, z ∈ V , and length r ≤ n − 1,
define the values

T (S, r, b, y, z) =
∑

W∈Wr

f(W ) ,

where the sum is taken over the set Wr of all walks W = v0, . . . , vr with the
properties

S1 (start and end) v0 = a, v1 = b, vr−1 = y, and vr = z,

S2 (S-walk) every vertex in S appears exactly once on W , and no
other vertex from K appears on W ,

S3 (no S-digons) if vi ∈ S with 1 ≤ i < r then vi−1 6= vi+1.

The values T (S, r, b, y, z) can be computed for all arguments by dynamic pro-
gramming in time O(2kn5); the details are given below.

Algorithm F (Compute f(Cl)).

The input is a simple graph G = (V,E), a vertex subset K ⊆ V with a ∈ K a
fixed starting vertex, an integer l (0 ≤ l ≤ n− 1), and values f(e) for each e ∈ E.

F1. [Initialize table.] Set all table entries to 0. Set T ({a}, 0, b, a, b) = f(ab) for
each b ∈ N(a)\K , and T ({a, b}, 0, b, a, b) = f(ab) for each b ∈ N(a)∩K .
Set r = 2.

This covers all walks of length
zero that satisfy properties S1,
S2, and S3.

F2. [Dynamic programming.] Update the table as follows, for every b, y, z ∈ V
with ab ∈ E and yz ∈ E and every S ⊆ K . (These are the S-walks of
length r of the form a, b, . . . , y, z.)

If z ∈ K then for each S 3 z set

T (S, r + 1, b, y, z) = f(yz)
∑
x∈V

T (S \ z, r, b, x, y) .

The situation for a nonzero
term of the sum looks like this:

a b x y z

By induction, the prefix
(a, b, . . . , x, y) is an (S \ z)-
walk, so S2 remains satisfied.
In particular, z 6= x, so S3 is
satisfied even if y ∈ S.
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If z /∈ K then set

T (S, r + 1, b, y, z) =

f(yz)
∑

x∈V T (S, r, b, x, y) if y /∈ K ,

f(yz)
∑

x∈V
x 6=z

T (S, r, b, x, y) if y ∈ S .

The condition x 6= z for the
case y ∈ S ensures that S3 is
satisfied in a situation like this:

a b x y z .

All other T (S, r, b, y, z) remain at 0. Increment r and repeat F2 until r = l.

F3. [Add relevant contributions.] Return

f(Cl) =
∑

b∈N(a)

∑
y∈N(a)
b≺y

f(ya)
∑
x∈V

T (K, l − 1, b, x, y) . (3.1)

(Here the innermost sum gives the contribution of all walks only missing the
edge e = ya to be in Cl.)

3.2.3 Implementation details

For finding a cycle, rather than merely reporting its existence, we search through
all v ∈ N(a) with binary search to detect a K-path from v to a of length l; then,
for each successful v, through v′ ∈ N(v) for a K-path from v′ to a of length l− 1,
and so on. Note that a K-path between vertices a and v can be detected by the
algorithm by temporarily adding the edge e = va to K , and asking for a K-cycle.
This increases the running time by a factor l log n.

Time improvements. The dynamic programming solution above is presented with-
out attention to efficiency, and the polynomial factor is thus unnecessarily large. The
program can be sped up considerably, for example by iterating over x ∈ N(y) instead
of x ∈ V , and by treating outgoing and incoming edges around N(a) differently
to break symmetry instead of considering orientations. The implementation used to
find the word-chain in the introduction runs in time O(2kn2l).

Space improvements. The space requirement of Algorithm F is exponential in k.
We can get this down to polynomial in n and k by using the principle of inclusion
and exclusion as mentioned in the previous chapter:

For a subset S ⊆ K of specified vertices, let Cl[S] be the set of closed walks
of length l containing all of S , none of K \ S , and satisfying properties P1, P3 and
P4. Then Cl = Cl[K]. Let Cl[i, S] be the set of closed walks of length l containing
exactly i vertices from S , none of K \S , and satisfying properties P1, P3 and P4. We
have ∑

S⊆K
f(Cl[S]) =

k∑
i=0

f(Cl[i,K]) .
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By the principle of inclusion and exclusion—we here use a different formulation than
that used for (2.1)—we get

f(Cl[K]) =
∑
S⊆K

(−1)|K|−|S|
k∑
i=0

f(Cl[i, S]) .

Thus

f(Cl) =
∑
S⊆K

k∑
i=0

f(Cl[i, S]) mod 2 , (3.2)

and for all S ⊆ K the inner sum in (3.2) can be computed by dynamic programming
in Fq in a similar fashion as Algorithm F above, over the walk’s prefix/suffix, length
and number of visited K-vertices, rather than over the subsets themselves.

3.3 Correctness

To see that Algorithm M is correct, we use a polynomial-sieving formulation akin to
the one in Section 2.2. We consider the polynomial pl ∈ Fq[x1, . . . , xm] defined for
a given graph G = (V,E) and specified subset K ⊆ V by

pl(x1, . . . , xm) =
∑
W∈Cl

∏
ei∈E(W )

xi . (3.3)

Then f(Cl) = pl(f(e1), . . . , f(em)). From the definition, it is clear that pl is a
polynomial in m variables of total degree l.

The following result implies correctness of Algorithm M. We let π(l) denote the
parity of l.

Lemma 3.1. Let G = (V,E) be a simple graph with K ⊆ V , and let pl ∈
Fq[x1, . . . , xm] be defined as in (3.3). If G has no K-cycle of parity π(l) and length
at most l − 2, then it has a K-cycle of length l if and only if pl is nonzero.

We break this lemma into Lemma 3.2 and Lemma 3.3 below.

Since Algorithm M chooses the values f(e1), . . . , f(em) at random, we can
view its behaviour as evaluating pl(x1, . . . , xm) at a random point in Fmq . If pl is
identically zero, then Algorithm M never reports a nonzero value. Conversely, the
probability of a false negative, that is, reporting 0 when pl is not identically zero, is
bounded by l/q by the DeMillo-Lipton-Schwartz-Zippel lemma (Lemma 2.1).

We note that if a false negative has been reported at length l, Algorithm M will
continue to search for longer K-cycles. Then Lemma 3.1 no longer applies for these
subsequent iterations, and the algorithm may report something nonzero at a higher
iteration, regardless of whether there are longer K-cycles or not in the graph. Thus,
if the algorithm terminates with pl 6= 0 for some l, we can be completely certain that
there is a shortest K-cycle of length at most l, but with a probability less than l/q
the shortest K-cycle is actually shorter than l. If there is no K-cycle of the reported
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length l in the graph, then this is necessarily discovered during the search step, and
we simply repeat the algorithm until we find a shorter length. Otherwise we find a
K-cycle of length l that has a small probability of not being a shortest one of the
given parity.

It remains to establish Lemma 3.1.

Lemma 3.2. If G has a K-cycle of length l, then pl is nonzero in Fq[x1, . . . , xm].

Proof. A K-cycle C ∈ Cl contributes the monomial

mC =
∏

ei∈E(C)

xi

to pl. This monomial depends only on the set of edges on C . With properties P3
and P1, the simple cycle C can be recovered from E(C), so mC will be a unique
contribution to pl and thus constitutes a nonzero term over Fq .

We now argue that all walks in Cl must pair up and cancel whenever G has
no K-cycle of length at most l and of the same parity as l. To show this, we
define a fixed-point-free involution on Cl, that is, a mapping φ : Cl → Cl such
that φ(φ(W )) = W and φ(W ) 6= W for all W ∈ Cl. Such a mapping partitions Cl
into pairs of walks {W,φ(W )}.

Lemma 3.3. If G has no K-cycle of parity π(l) and length at most l, then there is a
fixed-point-free involution φ : Cl → Cl such that f(W ) = f(φ(W )) for each W ∈
Cl.

The basic idea of the proof is to define φ like so: Every walk in Cl that is
not a K-cycle must contain a repeated internal vertex. For example, in a graph of
nine vertices labeled 1–9, the closed walk 123567541 contains the repeated internal
vertex 5. We want to map this walk to the walk 123

←−−
567541 = 123576541 obtained

from reversing the cycle between the first and last occurrence of 5, like this:

1 5
7→

1 5
.

The resulting closed walk is different, yet corresponds to the same monomial since it
contains the same edges. For this idea to work for general closed walks, we need to
be careful about internal palindromes (123

←−−−
5676541) and how to choose the repeated

internal vertex.

Proof of Lemma 3.3. We first need some extra terminology. If the end vertex of a
walk W and the starting vertex of another walk W ′ are neighbors, we write WW ′

for the concatenated walk. We let
←−
W denote the reversal of the walk W , and say

that W is a palindrome if W =
←−
W . A palindrome is nontrivial if it contains more

than one vertex. A repeated internal vertex on a walk is critical. If u is a critical
vertex in W , define
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[uWu] : The subwalk in W of maximum length
starting and ending at u.

Given a critical vertex u of W , we can decompose W as

W = X[uWu]Z , (3.4)

for some prefix X and suffix Z of W , such that neither X nor Z contains u. By
contraction of [uWu] in W we refer to the operation X[uWu]Z 7→ XuZ .

Let G be a graph without K-cycles of parity π(l) and length at most l. We
define the mapping φ : Cl → Cl as follows. Given a walk W ∈ Cl, let v be the
output from the following procedure:

Algorithm R (Find v).

The input is W ∈ Cl.

R1. Let i = 0 and W0 = W .

R2. Let v be the first critical vertex in Wi.

R3. Decompose Wi as X[vWiv]Z . If [vWiv] is a palindrome, set Wi+1 = XvZ ,
increment i, and go to R2.

R4. Return v. ([vWiv] is not a palindrome.)

Decompose W as X[vWv]Z for the vertex v returned by Algorithm R, and let

φ : X[vWv]Z 7→ X
←−−−−
[vWv]Z .

(For example, on input 12345432345467861, Algorithm R returns v = 6:

W0 = 1[2345432]345467861 ,
W1 = 123[454]67861 ,
W2 = 1234[6786]1 ,

(3.5)

so
φ(12345432345467861) = 123454323454

←−−
67861

= 12345432345468761 .)

To see that φ is well-defined, we need to show that Algorithm R does output
a critical vertex v on input W ∈ Cl. We first show that Algorithm R satisfies the
following invariant:

I1. Wi ∈ Cl−2m for some m ≥ 0 .
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The proof is by induction on i, with the case i = 0 established by the input
requirement. Suppose that Wi−1 ∈ Cl−2m′ for some m′ ≥ 0. Note that Wi is
obtained from Wi−1 by contracting some nontrivial palindromic subwalk. Since
any palindromic walk has even length, the length of Wi must be l − 2m for some
m > m′. It remains to check that Wi satisfies properties P1–P4.

Firstly, no nontrivial palindrome [uWi−1u] can contain any specified verticex x ∈
K , for as Wi−1 satisfies property P4, x cannot be the middle vertex in [uWi−1u],
and as Wi−1 satisfies property P2, x cannot be any of the other vertices of [uWi−1u],
because these are necessarily critical. Thus, Wi must contain every vertex in K that
is present in Wi−1, so properties P1 (since a ∈ K ) and P2 will remain satisfied
in Wi. Also P3 remains satisfied, since the given total order of vertices in N(a) is
unaffected by contractions. As for property P4, note that if the jth node vj on Wi−1
is removed in Wi, then its neighbors vj−1 and vj+1 on Wi−1 must both appear
in the palindrome [uWi−1u] that is contracted in Wi, so by the above argument
vj−1, vj+1 /∈ K . This means that neighbors on Wi−1 of any vertex in K must be
preserved in Wi, so no K-digon can appear in Wi as a result of the contraction, and
property P4 remains satisfied. We conclude that Wi ∈ Cl−2m for some m > m′ ≥ 0.

It follows that Algorithm R must terminate; otherwise, Wi would eventually have
no critical vertex, and by invariant I1 be a K-cycle in G of length l−2m, contrary to
assumption. Also, the output vertex v must be critical in the input walk W , because
V (Wi) ⊆ V (W ).

To see that φ is an involution on Cl, write

W = X[vWv]Z and φ(W ) = X
←−−−−
[vWv]Z .

We first note that Algorithm R outputs the same vertex v also on input φ(W ). This
follows as W and φ(W ) share the same prefix X , so Algorithm R will perform the

same contractions until it reaches v. It then terminates, returning v, since
←−−−−
[vWv] is

not a palindrome if [vWv] is not a palindrome. Thus

φ(φ(W )) = X
←−−−−←−−−−
[vWv]Z = W .

To see that φ is fixed-point-free, it suffices to show that [vWv] is not a palin-
drome for the output vertex v. It is clear that at some step of Algorithm R, the
subwalk [vWiv] is not a palindrome. The following invariant then provides proof by
contrapositive.

I2. If u is a critical vertex in Wi such that [uWiu] is a palindrome,
then [uWi+1u] will also be a palindrome.

We verify I2 by considering cases. Let v be the first critical vertex in Wi. If v = u,
then [uWi+1u] = u, a palindrome. If [vWiv] contains no copy of u, or is not a
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palindrome, then step R3 of the algorithm leaves [uWiu] unaffected, so [uWi+1u] =
[uWiu], a palindrome. Otherwise we can write Wi in two ways using (3.4),

Wi = X[vWiv]Z = X ′[uWiu]Z ′ , (u 6= v) ,

where [vWiv] is a palindrome containing u. Thus, for some (possibly empty) sub-
walk Y not containing u, and some palindrome P , we have

[vWiv] =

{
vY u
←−
Y v if u appears only once on [vWiv] ;

vY uPu
←−
Y v otherwise .

We can handle both cases at once with the notational convention that u = uPu
when P is the empty palindrome. As v is the first critical vertex in Wi, the critical
vertex u does not appear in the prefix X . If u does not appear in the suffix Z
either, then Wi+1 = XvZ contains no copy of u, so [uWi+1u] is the empty walk,
pathologically a palindrome. The final, and interesting, case is when u appears on
the suffix Z . (An example is u = 4 in W0 of equation (3.5).) Pictorially,

X v Y u P u
←−
Y v u Z ′

Z[vWiv]

[uWiu]

Since uWiu is a palindrome by assumption, and the suffix Z does not contain v, it
must be that Z = Y uPuZ ′. Thus, after the contraction in step R3, we have

Wi+1 = XvZ = XvY uPuZ ′ .

As neither X,Y nor Z ′ contain u, this gives [uWi+1u] = uPu, a palindrome.

We have established that φ is a fixed-point-free involution on Cl. Finally, we have
f(W ) = f(φ(W )), since E(W ) = E(φ(W )).

3.4 Kernelization issues

As the K-Cycle problem is fixed-parameter tractable with respect to k = |K|, we know
that it must admit a kernel for k as well. This leads us to the following question:

Does the K-Cycle problem, parameterized by the number k of the specified
elements, admit a polynomial kernel?

The related Disjoint Paths problem, parameterized by the number of specified terminal
pairs, was recently shown not to admit a polynomial kernel, unless the polynomial
hierarchy collapses to its third level. Thus, under this same assumption, we know
that the ‘K-oriented’ version of K-Cycle, described in Proposition 3.1, admits no
polynomial kernel in k. A number of attempts were made to prove a similar result
for the standard K-Cycle problem, but all were inconclusive. This section gives a brief
report of approaches that were considered.
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Latest developments. We now have an explanation to the failure of the below
described attempts; it has, quite recently, come to the attention of the author that
Magnus Wahlström has found a polynomial kernel for the K-Cycle problem. This
marks a fundamental difference to the Disjoint Paths problem. The exponential-time
upper bound for the K-Cycle problem remains unchanged, however, as the newly found
kernel does not provide a better exponential dependency on k than the algorithm
presented in this chapter.

3.4.1 Kernelization lower bounds via composition

In [12], Bodlaender et al. initiated the study of superpolynomial lower bounds of
kernel sizes for fixed-parameter tractable problems. To this end they introduced the
concepts of or-composition and and-composition for a parameterized problem.

Definition 3.3. An or-composition for a parameterized problem P is a polynomial-
time algorithm with the following behavior:

Input: A number of P-instances (P1, k), . . . , (Pr, k).
Task: Find a P-instance (P ′, k′) such that

1. k′ is polynomial in k, and
2. (P ′, k′) has a solution⇔ (Pi, ki) has a solution for some i.

An and-composition is defined analogously, with requirement 2. sharpened to
require that (Pi, ki) has a solution for all i ∈ {1, . . . r}.

Together with the following theorem, these types of compositionality can be used
to rule out polynomial kernels. The result for or-composition is due to Bodlaender
et al. [12] and Fortnow and Santhanam [38]; the result for and-composition is due to
Bodlaender et al. [12] and Drucker [33].

Theorem 3.2 (Bodlaender et al. [12], Fortnow and Santhanam [38], Drucker [33]). Let P
be an NP-complete problem that is fixed-parameter tractable with respect to parameter
k, and suppose P is or-compositional, or and-compositional, with respect to k. Then
P admits no polynomial kernel in k, unless the polynomial hierarchy collapses to its
third level.

Several NP-complete, fixed-parameter tractable problems are known to be or-
compositional. This is easily seen for problems such as k-Cycle or k-Path parameter-
ized by k, where we can simply consider the disjoint union of the input instances.
No such obvious or-composition presents itself for the K-Cycle problem, as e.g. the
total set of specified elements will be spread out over the input instances.

For other problems the notion of and-composition is more natural. For example,
the NP-complete problem of finding a Hamiltonian path with given start and end,
parameterized by the width of a given tree-decomposition, is easily seen to be and-
compositional by forming a chain of the input graphs, connecting them by their
specified end nodes [14]. Again, the situation is not immediate for the K-Cycle problem.
For example, using some chain-construction in the style of the mentioned example
would multiply our parameter k = |K| by the number of input graphs.
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Cross-composition. Recently, Bodlaender et al. [13] generalized the concept of or-
composition to allow for a broader range of input instances, instances that are not
parameterized and not necessarily of the same problem.

Definition 3.4. A parameterized problem P is cross-composed by a non-parameterized
problem Q if there is a polynomial-time algorithm with the following behavior:

Input: A number of Q-instances Q1, . . . , Qr , each of size m.
Task: Find a P-instance (P, k) such that

1. k is polynomial in m+ log(r), and
2. (P, k) has a solution⇔ Qi has a solution for some i.

With the following theorem, this gives a powerful tool for kernel lower bounds.

Theorem 3.3 (Bodlaender et al. [13]). Let Q be a parameterized problem with param-
eter k. If Q is cross-composed by an NP-hard problem P , then Q has no polynomial
kernel with respect to k, unless the polynomial hierarchy collapses to its third level.

This opens up for many possibilities, but for the K-Cycle problem no natural
candidate problem Q to cross-compose could be identified.

3.4.2 An or-compositional generalization

While the K-Cycle problem seems to have no immediate or-composition for the pa-
rameter k, the situation is different for a slight generalization of the problem, which
we can solve within a similar time bound.

Monochrome K-Cycle

Input: An simple, edge-colored graph G = (V,E), with n vertices
and m edges, and K ⊆ V .

Task: Decide whether G contains a monochrome K-cycle,
i.e. a K-cycle of edges from a single color class.

Note that K-Cycle is just the restriction to edge-monochrome graphs, and that we
can solve Monochrome K-Cycle by applying the described K-Cycle-algorithm to each
subgraph induced by K and the edges of a single color class. As the number of color
classes is bounded by m ∈ O(n2), as is the size of each class, we are still within
the time bound 2knO(1). As a consequence, we have:

Proposition 3.2. The problem Monochrome K-Cycle, parameterized by the number of
specified vertices k, has no polynomial kernel unless the polynomial hierarchy collapses
to its third level.

Proof. As a generalization of the Hamiltonian Cycle problem, the problem is NP-
hard, and thus NP-complete as solutions can be checked in polynomial time. The
above time bound 2knO(1) shows that it is fixed-parameter tractable with respect
to k. To see that it is also or-compositional, consider r given instances (G1,K1),
. . . , (Gr,Kr) with |Ki| = k for all i. Let Ci be the set of colors used by the
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edges in Gi. We can assume w.l.o.g. that Ci ∩ Cj = ∅ for all i 6= j. Now
form a superinstance (G′,K ′) using colors C1 ∪ C2 ∪ · · · ∪ Cr by simply setting
K ′ = K1 = K2 = · · · = Kr , i.e. taking the disjoint union of all input graphs and
making them connected by arbitrarily identifying the set of specified vertices; see
Figure 3.3. Then (G′,K ′) has a monochrome K ′-cycle if, and only if, any instance

G1 G2 G3

G′

Figure 3.3: Composition
for Monochrome K-Cycle.

(Gi,Ki) has a monochrome Ki-cycle.

Note, however, that this result has no bearing on the situation for the K-Cycle
problem; given a polynomial kernel for K-Cycle, the best way to use this for an instance
(G,K) of Monochrome K-Cycle would be to apply the kernel to each subgraph
induced by K and a single color class. This would yield a ‘polynomial kernel’ for
Monochrome K-Cycle consisting of O(m) instances, each of size polynomial in k, that
could be considered separately—but the above result does not exclude the possibility
of such a so-called Turing kernel. For example, the problem Clique parameterized by
maximum degree ∆ admits no polynomial kernel unless the polynomial hierarchy
collapses to its third level, but by requiring any single vertex to be in the clique, the
problem has a trivial kernel of size at most ∆, so Clique parameterized by ∆ has a
Turing kernel of size n∆. There is, as of yet, no known method for excluding Turing
kernels.

3.4.3 Kernelization lower bounds via reduction

When no direct composition can be found for a problem, an option is to look for
a polynomial parameter transformation (PPT) from some other problem for which
a polynomial kernel has been excluded. This type of reduction was introduced by
Bodlaender et al. in [15]; it is a polynomial-time mapping reduction from one param-
eterized problem to another, such that the parameter increases at most polynomially.

From Disjoint Factors. In [15], a polynomial kernel for the Disjoint Paths prob-
lem, parameterized by number of terminals, is excluded by PPT-reduction from the
following problem,

Disjoint Factors

Input: A finite string s of digits from {1, 2, . . . , k}.
Task: Decide whether there are k disjoint substrings s1, . . . , sk of s

such that si starts and ends with the digit i.

A polynomial kernel in terms of k for Disjoint Factors was excluded via direct or-
composition in [15], under the assumption that the polynomial hierarchy does no
collapse to its third level. Given the connection in Proposition 3.1 between the
Disjoint Paths problem and the K-Cycle problem, and the fact that both problems are
fixed-parameter tractable with respect to the size of a set of specified elements, it
seemed a reasonable idea to try to modify the given PPT-reduction from the Disjoint
Factors problem. Again, these attempts were not successful. It seems the constraint
that some vertices are visited in a certain order, as required for a Disjoint Paths
solution, would be necessary for a reduction from Disjoint Factors.
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From Hitting Set. The next idea for a starting point was some version of the
following problem, parameterized by m,

(Exact) Hitting Set

Input: A hypergraph H of m subsets of a finite set V .
Task: Decide whether there is a subset S ⊂ V such that,

for all E ∈ H, |S ∩ E| 6= 0. (|S ∩ E| = 1 for exact version.)

A polynomial kernel for m was excluded in [31] (general version), [70] (exact version),
under assumption that the polynomial hierarchy collapses to its third level. This
problem seemed like an interesting candidate, as for example it provided a successful
starting point for the Steiner Tree problem with the number of terminals as part of
the parameter [31]. Although this problem is quite different from the K-Cycle problem,
it shares this type of ‘specified subset’-parameter.

A connection to the K-Cycle problem is provided by the standard mapping reduc-
tion from Vertex Cover to Hamiltonian Cycle in [44, Section 3.1.4]. As a vertex cover is
just hitting set for a graph, and the Hamiltonian Cycle problem is a special case of
K-Cycle, one idea was to find a PPT-reduction from (Exact) Hitting Set parameterized
by m, to K-Cycle parameterized by k, inspired by this classical reduction, so that each
set E ∈ H would correspond to some subset SE ⊂ K of constant size. However,
any natural such attempt seemed to call for gadgets of the following type, for r ≤ n,

SE

s1 s2 s3 sr. . .

t1 t2 t3 tr
. . .

If a K-cycle enters at the vertex si,
it must pass through some/all of SE ,
and then leave at the vertex ti.

Given this type of gadget, for general r, one could easily construct an or-composition
for K-Cycle. Thus this approach proved no easier than looking for an or-composition
directly.

3.4.4 A reduction idea

The only idea the author encountered in the direction of a polynomial kernel, is
the following reduction rule due to Daniel Lokshtanov [78]. It applies to ‘very K-
disconnected’ instances, in the sense that the input graph G has a vertex subset K ′ ⊇
K whose removal splits G into r > |K ′|2 connected components Ci, demonstrated
in Figure 3.4. We can then construct a bipartite graph H = (A ∪B,E) as follows:

1. A has one vertex auv for every ordered pair (u, v) of (not necessarily distinct)
vertices in K ′,

2. B has one vertex bi for every connected component Ci of G \K ′, and

3. auvbi ∈ E if, and only if, G has a path from u to v with all interior vertices
in Ci.

37



3.4. KERNELIZATION ISSUES

K′

C1
C2

Cr

u

v

. . .

auvbr ∈ E

Figure 3.4: Reduction idea.

As |B| > |A| by assumption, the graph H must contain a so called crown, consisting
of subsets B′ ⊆ B and A′ ⊆ A with |A′| < |B′|, such that A′ is the combined
neighborhood of every vertex in B′, and such that there is a matching M ⊂ E from
A′ into B′. If bi ∈ B′ is not matched by M , it can be shown that G \ Ci has a
K-cycle if, and only if, G has a K-cycle. Thus any such unmatched component can
be removed in G.

There is no guarantee here that the remaining graph will be of size polynomial in
k in general, but the observation is still interesting. In view of recent developments,
it might be of use for improving the newly found polynomial kernel.
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Exponential-Time Complexity in
the Tutte Plane
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Chapter 4

The Tutte Polynomial

As a young student at Cambridge, William T. Tutte was fascinated by a certain recur-
sion formula that many graph-related counting problems seemed to satisfy. If f(G)
is the solution to some counting problem regarding a multigraph G = (V,E), the
recursion is

f(G) = f(G \ e) + f(G/e) , (4.1)

for any edge e ∈ E that is not a loop or a cut-edge, where G \ e arises from G by
deleting the edge e, for example like 7→ , and G/e arises from G by contracting
the edge e, for example like 7→ , that is, deleting the edge e and identifying its
endpoints (so any remaining edges between these two endpoints become loops). For
this reason such a recursion is called a deletion-contraction identity. For example,
the number C(G) of spanning trees of G satisfies (4.1), and if we multiply the
number χ(G; k) of proper k-colorings of G by (−1)|V |, and the number φ(G; k)
of k-flows in G by (−1)|V |+|E|, then both of the quantities obtained also satisfy
(4.1). Tutte used the term ‘W-function’ to describe any such graph quantity satisfying
a deletion-contraction identity.

The number χ(G; k) of k-colorings of G can be seen as the evaluation at k
of the chromatic polynomial, x 7→ χ(G;x), and similarly the number φ(G; k) of
k-flows in G is the evaluation at k of the flow polynomial, y 7→ φ(G; y). These two
famous graph polynomials had already been studied for some time, when in 1953
Tutte made a discovery [92]. In [93] he recalls:

“Playing with my W-functions I obtained a two-variable polynomial from
which either the chromatic polynomial or the flow-polynomial could be
obtained by setting one of the variables equal to zero, and adjusting
signs.”

This two-variable polynomial he so playfully arrived at today goes under the name
of the Tutte polynomial and is the subject of quite serious discussions. For a multi-
graph G = (V,E) it looks like this:

T (G;x, y) =
∑
A⊆E

(x− 1)κ(A)−κ(E)(y − 1)κ(A)+|A|−|V | , (4.2)
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where κ(A) denotes the number of connected components of the subgraph (V,A).
It is easily checked that the exponents of the sum must all be nonnegative,1 so that
this is indeed a well-defined polynomial.

As Tutte wrote, we get the chromatic polynomial from the restriction y = 0, as

χ(G;x) = (−1)|V |−κ(E)xκ(E)T (G; 1− x, 0) , (4.3)

and the flow polynomial is given by φ(G, y) = (−1)|E|−|V |+1 T (G, 0, 1 − y). It
turns out that the value of T (G;x, y) gives interesting combinatorial interpretations
for several other points (x, y) in the so called Tutte plane as well. For example, the
number of spanning trees in G is given by T (G; 1, 1), and the number of forests
is given by T (G; 2, 1). Also, except the lines y = 0 and x = 0 already mentioned,
there are other lines and curves where the Tutte polynomial specializes to well-known
graph polynomials. We will have a closer look at several examples.

All of the above mentioned graph invariants satisfy (4.1) with proper adjustment
of signs, just as for χ(G; k) and φ(G; k). In fact, the Tutte polynomial encodes
any graph invariant that is multiplicative over components and satisfies (4.1) up to
signs [82]. As many intensively studied graph parameters are of this kind, that explains
the interest and importance of any result concerning this monster of a polynomial.

4.1 The Potts model and the multivariate Tutte polynomial

While Tutte was playing with his graph polynomials, Renfrey Potts studied models
in statistical mechanics. In 1952 he introduced what is now known as the partition
function of the q-state Potts model, which was to become one of the most well-
studied concepts of the field. This is a model for systems of interacting particles,
each of which can exist in one of q possible states. We can view such a system as
a graph G = (V,E), where V is the set of particles and E is the set of interacting
particle pairs. Typically, G has the form of some lattice. A certain interaction-
energy J is associated with any two interacting particles in the same state, and for
a given configuration σ : V → [q] of states over G the corresponding interaction
Hamiltonian is

Hσ = J
∑
uv∈E

δσ(u),σ(v) , (4.4)

where δi,j is the Kronecker delta. The partition function Zq(G) of the q-state Potts
model is defined as

Zq(G) =
∑

σ:V→[q]

e−Hσ/(kT ) (4.5)

where k is Boltzmann’s constant and T is the temperature. This quantity is interesting
because it allows us to compute the probability of finding the system in a certain
configuration of states σ, for given temperature and interaction-energy, like so:

Pr(σ) = e−Hσ/(kT )/Zq(G) .

1The number κ(A) + |A| − |V | is the nullity of the graph (V,A).
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We can view the partition function as the evaluation at w = e−J/(kT ) of the q-state
Potts polynomial

Zq(G;w) =
∑

σ:V→[q]

(1 + w)mono(σ,G) , (4.6)

where mono(σ,G) is defined as the number of edges e = uv of G that are
‘monochromatic’ under σ, i.e. whose corresponding two interacting particles u and v
both receive the same state σu = σv .

4.1.1 Relation to the Tutte polynomial

Consider (4.6), and let Aσ be the set of all monochromatic edges under σ. Note
that for a given edge set A, the number of assignments σ such that A ⊆ Aσ is
determined by the number κ(A) of connected components in the graph (V,A), as
all vertices of such a component should obtain the same state by σ. Using this fact,
and some standard manipulations, we can rewrite (4.6) as

Zq(G;w) =
∑

σ:V→[q]

(1 + w)|Aσ |

=
∑

σ:V→[q]

∑
A⊆Aσ

w|A| =
∑
A⊆E

∑
σ:V→[q]
A⊆Aσ

w|A|

=
∑
A⊆E

qκ(A)w|A| . (4.7)

The subgraph expansion we arrive at is the Fortuin-Kasteleyn representation of the
Potts polynomial. The nice thing about this formulation is that it allows a natural
continuation of the parameter q beyond natural numbers, which is not possible for
the standard representation of (4.6). This continuation gives a bivariate polynomial

Z(G; q, w) =
∑
A⊆E

qκ(A)w|A| , (4.8)

such that Z(G; q, w) = Zq(G;w) for q ∈ N+. This is none other than the Tutte
polynomial in disguise; with w = y − 1 and q = (x− 1)(y − 1) we have

Z(G; q, w) = (x− 1)k(E)(y − 1)|V |T (G;x, y) . (4.9)

This important link between the Potts model and the Tutte polynomial was discovered
by Fortuin and Kasteleyn in the late 1960’s [39, 40].

4.1.2 The multivariate Tutte polynomial

The above relation to the Potts model provides an interpretation of the Tutte polyno-
mial’s second variable y as an edge weight carried by all edges of the graph G. We
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can extend this to the case of general edge weights, given by a function w : E → Q,
as

Z(G; q,w) =
∑
A⊆E

qk(A)
∏
e∈A

w(e) . (4.10)

This is what Sokal [89] calls the multivariate Tutte polynomial, and it often provides
great technical simplification for analysis of the Tutte polynomial, even though we
are ultimately interested in the single-valued case. If w(e) = w for all e ∈ E , we
recover Z(G; q, w).

4.2 Algorithms

Suppose we are given a connected2 graph G with n vertices and m edges, and that
we want to compute T (G;x, y) for some given point (x, y). Direct evaluation of
the polynomial as given in (4.2) takes 2mmO(1) arithmetic operations. The standard
approach usually does better, making use of the fact that the Tutte polynomial satisfies
the following deletion-contraction identity,

T (G;x, y) =


1 if G has no edges;

yT (G \ e;x, y) if e is a loop;

xT (G/e;x, y) if e is a cut-edge;

T (G \ e;x, y) + T (G/e;x, y) if e is ordinary.

where an ordinary edge is an edge that is neither a loop nor a cut-edge. The recursive
algorithm based on this formula has a running time of 1.6180n+mmO(1) [96], which
beats direct evaluation for any nonsparse graph. Until recently, this was the best
known upper bound for computing the Tutte polynomial.

In practice it is often possible to speed up this algorithm, by coupling it with some
isomorphism-test of the intermediate graphs at each level in the recursion tree. As
the Tutte polynomials of isomorphic graphs are identical, detecting such isomorphic
graphs—the earlier the better—may avoid much redundant computation [52].

4.2.1 A vertex-exponential algorithm

It was a breakthrough when Björklund et al. [7] showed how T (G;x, y) could be
computed in time 2nmO(1), i.e. no longer exponential in the number of edges. This
algorithm employs the multivariate formulation of the Tutte polynomial defined in
(4.10). In essence, it evaluates, for q = 1, 2, . . . n + 1, the q-state Potts polynomial
Zq(G;w) at the fixed value w = y − 1 in time 2nmO(1) using the principle of
inclusion and exclusion. By (4.7) this provides n + 1 distinct evaluations of the nth
degree polynomial q 7→ Z(G; q, y − 1), whose coefficients can then be found in
polynomial time by Lagrange interpolation. By (4.9), an evaluation of this polynomial
at q = (x− 1)(y − 1) reveals the value of T (G;x, y).

2Unconnected graphs are handled by Theorem 4.1 in Section 4.4.1.
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We especially observe two techniques used in this algorithm that are also of great
for establishing lower bounds for the complexity of evaluating the Tutte polynomial.

• The formulation in terms of the multivariate Tutte polynomial Z(G; q, w).

• Lagrange interpolation.

We will make extensive use of both in the following chapters.

4.2.2 Obtaining coefficients

We have discussed exponential-time algorithms for evaluating the Tutte polynomial
at a fixed point (x, y). In fact, any such algorithm can be used to compute the full
polynomial, i.e. the coefficients ti,j such that

T (G;x, y) =
n∑
i=0

m∑
j=0

ti,jx
iyj , (4.11)

in time that is a polynomial factor of a single evaluation, as follows:
For a fixed number x, use the given algorithm to compute T (G;x, y) for m+ 1

distinct values of y. This gives m + 1 distinct evaluations of the mth degree poly-
nomial y 7→ T (G;x, y), and we get the coefficients of this polynomial by Lagrange
interpolation. The jth such coefficient can be written as cj(x) =

∑m
i=0 ti,jx

i. Re-
peat the procedure for n+1 distinct values of x. This gives n+1 distinct evaluations
of the nth degree polynomial x 7→ cj(x), for every j, and a second round of La-
grange interpolation gives the coefficients ti,j—all within the exponential-time bound
of a single evaluation.

4.3 Complexity

Despite their unified definition (4.2), the problems encoded as evaluations of the Tutte
polynomial seem to differ widely in computational complexity across the so called
Tutte plane. For example, T (G; 1, 1) gives the number of spanning trees in G, which
can be computed in polynomial time using Kirchhoff’s matrix-tree theorem [65], while
the best known algorithm for computing T (G; 2, 1), the number of spanning forests,
runs in vertex-exponential time [7]. Thus the following (x, y)-parameterized problem
has received considerable interest over the years.

Tutte(x, y)

Input: A multigraph G with n vertices and m edges.
Task: Compute T (G;x, y).

For complexity analysis of this problem we need to specify a domain for the pa-
rameters x and y, such that standard polynomial-time reductions are not destroyed
by heavy algebraic manipulations in the computation of T (G;x, y). For ease of pre-
sentation we will usually assume that (x, y) is a point with rational coordinates, and
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these are also the points of interest for most classical combinatorial interpretations.
In fact, any algebraic point would do, as for any fixed such point we can compute
symbolically in a finite degree extension of Q.3 This is sometimes useful even if we
are ultimately interested in a rational point. Thus we define the Tutte plane as the
set of all algebraic points (x, y) ∈ R2.

4.3.1 Polynomial-time complexity

In 1990, Jaeger et al. [59] presented a complete map of the complexity across the
Tutte plane. It was already known that Tutte(x, y) is polynomial-time solvable at
any point on the hyperbola (x − 1)(y − 1) = 1 and the four points (−1,−1),
(0,−1), (−1, 0), and (1, 1). Jaeger et al. showed that except for these trivial points,
the problem Tutte(x, y) is #P-hard everywhere. Thus, except for trivial points (x, y),
there can be no polynomial-time algorithm for Tutte(x, y) unless #P ⊆ FP. Until
recently, this was the only notion of hardness in the Tutte plane.

4.3.2 Exponential-time complexity

Given the vertex-exponential upper bound by Björklund et al. [7], one may ask whether
this exponential factor could be further improved to something subexponential, such
as exp(O(

√
n)), which, as we will see in Chapter 6, is actually the case for the planar

restriction. This question was investigated by Dell et al. [30] under the following
counting analogue of the Exponential Time Hypothesis:

Counting Exponential Time Hypothesis (#ETH)

There is a real number c > 0 such that no deterministic algorithm
can solve #3-Sat in time 2cn.

The currently best bound for #3-Sat is O(1.6423n) [71].
Under #ETH, it was shown in [30] that for most of the #P-hard points (x, y) in

the Tutte plane, there is a lower bound of exp(Ω(n)) for the problem Tutte(x, y) to
match the upper bound of Björklund et al.; see Figure 4.1 for an overview. Thus there
is little hope for a subexponential algorithm for general points of the Tutte plane.
For the line y = −1, the lower bound from [30] follows from the analysis of the
restriction to simple graphs, a problem we will discuss further in Chapter 5, and as
a consequence the bound is slightly subexponential, falling a polylogarithmic factor
short of n in the exponent.

The line y = 1 and the points (1, 0) and (1,−1) were left open in [30]. Subex-
ponential (but superpolynomial) lower bounds for these points will follow as conse-
quences of results in the following two chapters, where we analyze the restriction to
simple- and planar graphs, respectively. Hence, we now have concrete superpolyno-
mial lower bounds for every point of the Tutte plane.

3See discussions in [59, p.41] and [95, p.693] for treatment of individual irrationals. A more general
approach is presented in [10].
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x−1 0 1

y

−1

0

1

exp(Ω(n)) [30], [29]

exp(Ω(n/ log2 n)) [29] (simple graphs, Chapter 5)

exp(Ω(n/ log3 n)) [30, 29] (simple graphs)
exp(Ω( 8

√
n) (planar graphs, Chapter 6)

nO(1) [59]

Figure 4.1: Exponential time complexity under #ETH of the Tutte plane for multigraphs in
terms of n, the number of vertices. All bounds hold in particular for graphs with m ∈ nO(1)

edges. The black hyperbola (x − 1)(y − 1) = 1 and the four points close to the origin are
in P.

Remark 1. The number m of edges in a multigraph may be exponential in the
number n of vertices, which means that the lower bound of exp(Ω(n)) as it is
stated in [30, 29] does not immediately rule out even an edge-polynomial algorithm.
However, it is easily checked from the proof of this result that the hardest instances
have m ∈ O(n4) edges.

Remark 2. As a curiosity, we note that whenever a superpolynomial lower bound
is given for some point (x0, y0) in the Tutte plane, then there can only be a finite
number of ‘exponentially easier’ points on any curve through (x0, y0) with a poly-
nomial parameterization. More precisely, if a lower bound exponential in Ω(f(n)) is
given for (x0, y0), for some f(n) ≤ n, then on each polynomial-parameterized curve
that contains (x0, y0) there can only be a finite number of points solvable in time ex-
ponential in o(f(n)). To see this, consider a given such curve C : s 7→ (x(s), y(s))
where x(s) and y(s) are polynomials of degree d. Then, for graphs G of n vertices
and m edges, the function s 7→ T (G;x(s), y(s)) would be a polynomial of degree
d2nm. Now suppose there were an infinite number of exponentially easier points on
C. Then we could pick d2nm+ 1 such points (x(si), y(si)), for each of them com-
pute T (G;x(si), y(si)), and then obtain the coefficients of s 7→ T (G;x(s), y(s))
by interpolation. This, in turn, would give us the value of T (G;x0, y0) faster than
the given lower bound—a contradiction.

4.3.3 Complexity of approximation and sign

Goldberg and Jerrum [48] studied the problem of computing an approximate value of
T (G;x, y). The notion of approximation algorithm they consider is that of a fully
polynomial randomized approximation scheme (FPRAS): a polynomial-time algorithm
that with probability at least 3/4 outputs an approximation arbitrarily close to the
true value. They show that there can be no FPRAS for the problem Tutte(x, y) a.e.
on the half-planes x < −1 and y < −1, unless RP = NP. The status for remaining
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points with x, y > −1 remains open, except at the known trivial points and the
upper branch of the hyperbola (x − 1)(x − 2) = 2, for which a FPRAS follows
from [60].

Very recently, these results were sharpened as a result of Goldberg and Jerrum’s
work on the complexity of computing the sign of T (G;x, y). This seems ‘almost like
a decision problem’, as there are only three possible outcomes: positive, negative, or
zero, but in [50] they show that, for large regions of the plane, this problem is in fact
#P-hard. As a consequence, approximation at these points is also #P-hard. Thus, in
terms of polynomial-time complexity, approximation is as hard as exact computation
for large parts of the Tutte plane. For most remaining points, including all those with
x, y > −1 and x+ y > 0, it is shown that the sign can be computed in polynomial
time, and that an approximation can be computed in polynomial time using an NP
oracle. This marks a clear distinction between these problems and exact computation
of Tutte(x, y), where we have #P-hardness a.e.

4.3.4 The line y = 1

The line y = 1 in the Tutte plane deserves some attention, because, as Figure 4.1
shows, the current lower bound under #ETH for these points is ‘very sub-exponential’.
Here the Tutte polynomial specializes to the generating function of forests in G,
weighted by the number of edges it contains,

F (G;w) =
∑
F⊆E

(V,F ) forest

w|F | . (4.12)

The relation to the Tutte polynomial is F (G;w) = w|V |−κ(E)T (G; 1 + 1/w, 1).
This line resist the analysis of [48, 50, 30, 29], and, unlike all other nontrivial

points of the Tutte plane, the only proof of #P-hardness at these points relies on the
#P-hardness for the restricted class of planar graphs, for which there is a direct proof
by Vertigan [95]. As the problem Tutte(x, y) restricted to planar graphs has a known
upper bound exponential in O(

√
n) [87], this approach could at best give a lower

bound exponential in Ω(
√
n) under #ETH. However, not even such a result has been

found for this line.
In Chapter 6 we note that the planar reduction of [95] yields a lower bound

exponential in Ω( 8
√
n) under #ETH for planar multigraphs. This is by reduction

from the problem of computing the coefficients of w 7→ F (G;w), which has the
same lower bound under #ETH. The same reduction can be used directly for general
multigraphs, but there is no immediate gain in this approach, as no better bound for
finding coefficients of w 7→ F (G;w) for general multigraphs has yet been found.

4.4 Some useful properties

We here list some elementary properties of the Tutte polynomial that will be useful
in the following chapters.
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CHAPTER 4. THE TUTTE POLYNOMIAL

4.4.1 Deletion-contraction and connectedness

The deletion-contraction identity in (4.13) is sometimes taken as the definition of the
Tutte polynomial. We restate it here for easy reference.

T (G;x, y) =


1 if G has no edges;

yT (G \ e;x, y) if e is a loop;

xT (G/e;x, y) if e is a cut-edge;

T (G \ e;x, y) + T (G/e;x, y) if e is ordinary.

(4.13)

This formula can be obtained by routine calculations from the subgraph expansion
(4.2), considering the effects of a deletion or contraction on the number of compo-
nents, vertices, and edges, depending on the type of edge that is manipulated.

The subgraph expansion for the multivariate Tutte polynomial in (4.10) has a less
complicated dependency on the number of components than that of the standard
Tutte polynomial, and the resulting deletion-contraction identity takes the same form
regardless of the type of edge under consideration. It follows easily from (4.10) that

Z(G; q,w) = Z(G \ e; q,w) + w(e)Z(G/e; q,w) . (4.14)

Using (4.13), it follows by induction on the number of ordinary edges that the
Tutte polynomial is multiplicative over 2-connected components:

Theorem 4.1. Let G be the union of two graphs G1 and G2 with at most one vertex
in common. Then

T (G;x, y) = T (G1;x, y) · T (G2;x, y) . (4.15)

This means that for exponential-time analysis of Tutte(x, y), we can always assume
that the input graph is 2-connected without loops.

4.4.2 Point shifts, thickenings and stretches

Given two points (x, y) and (x′, y′) in the Tutte plane, there are always some graphs
G′ and G such that T (G′;x, y) = T (G;x′, y′). For example,

T ( ;x, y) = T ( ; 0, x3) = x3 .

Sometimes it is possible to define a mapping ϕ, such that for any graph G

T (ϕ(G);x, y) ∼ T (G;x′, y′) ,

where ∼ denotes equality up to some simple closed-form expression. We then say
that the point (x, y) is shifted to the point (x′, y′) via the transformation ϕ. Such a
shift provides a reduction from Tutte(x′, y′) to Tutte(x, y). This was one of the main
techniques used by Jaeger et al. in [59] for studying #P-hardness across the Tutte plane,
and it is also a crucial tool in the analysis of exponential-time complexity. Note that
the strength of such a reduction depends on the size of ϕ(G). If, for example,
the number of nodes increases quadratically, then a lower bound of exp(Ω(n)) for
Tutte(x, y) only implies a lower bound of exp(Ω(

√
n)) for Tutte(x′, y′).
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Thickenings and stretches. The most fundamental point-shift transformations are
so called thickenings and stretches.

Definition 4.1. The k-stretch of a graph G, denoted Gk , is the graph obtained by
subdividing every edge of G into a k-path, and the k-thickening of a graph G, de-
noted Gk , is the graph obtained by replacing every edge in G by a bundle of k edges.

2-stretch 2-thickening

Figure 4.2: Definition of thickenings and stretches.

Note that already a 2-stretch of a graph with n2 edges increases the number of
vertices quadratically, so we must use such transformations with care in our analysis.
We have the following point shift identities (see e.g. [48, Section 3]).

Theorem 4.2. Let G = (V,E) be a graph, and let q = (x− 1)(y − 1). Then

T (Gk;x, y) =
(
xk−1
x−1

)η(G)
T (G;xk, q

xk−1 + 1) (4.16)

where η(G) = |E|+ κ(E)− |V |, and

T (Gk;x, y) =
(
yk−1
y−1

)r(G)
T (G; q

yk−1 + 1, yk) (4.17)

where r(G) = |V | − κ(E).

We will also need corresponding identities in the formulation of the multivariate
Tutte polynomial. These can be derived from the identities in Theorem 4.2, using the
relationship (4.9) with w = y − 1.

Theorem 4.3. Let G = (V,E) be a graph. Then

Z(Gk; q, w) = (q/w)k−1
q/w−1 · Z(G; q, w′) , (4.18)

where w′ satisfies (1 + q/w′) = (1 + q/w)k , and

Z(Gk; q, w) = Z(G; q, (1 + w)k − 1) . (4.19)

Hyperbolas. Note that, for both stretches and thickenings, the value of q =
(x − 1)(y − 1) is preserved, so these transformations give point shifts along fixed
hyperbolas in the Tutte plane. This gives such hyperbolas a special status, as we will
see in the following two chapters. We let Hq denote the hyperbola (x−1)(y−1) = q
in the Tutte plane.
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Chapter 5

Lower Bounds for Simple Graphs

In this chapter we consider the restriction of Tutte(x, y) to simple input graphs.

Simple Tutte(x, y)

Input: A simple graph G with n vertices and m edges.
Task: Compute T (G;x, y).

This restriction is of particular interest because most of the graphs studied in sta-
tistical mechanics arise from bond structures that are simple. From the perspective
of polynomial-time complexity, the picture of the Tutte plane for simple graphs co-
incides with the general case, i.e. Simple Tutte(x, y) is #P-hard for all points (x, y)
except for the hyperbola H1 and the points (−1,−1), (0,−1), (−1, 0), and (1, 1),
where it is polynomial-time solvable. The study of exponential-time complexity under
#ETH was initiated by Dell et al. in [30], where lower bounds exponential in n were
given for the line y = 0, and exponential in m/ log3(m) for most other points of
the Tutte plane. These exponential bounds in terms of edge size, together with the
known 2nmO(1)-time upper bound, show that the hardest instances for such points
are sparse graphs.

A few lines were left open in [30], in particular the line x = 1 which requires
a somewhat different treatment and will be the focus of this chapter. This so called
reliability line was the subject of [56], which is joint work with Thore Husfeldt and
contains a lower bound exponential in m/ log2(m) for all points of the line with
y > 1. Together with Holger Dell, the result was extended to the full line x = 1.
This work is incorporated into the journal paper [29], which now gives exponential (at
least within a polylogarithmic factor) lower bounds under #ETH for the whole Tutte
plane, except the line y = 1; see Figure 5.1 for an overview.

5.1 The reliability polynomial

On the line x = 1, the Tutte polynomial specializes to the reliability polynomial,
an object studied in algebraic graph theory [47, Section 15.8]. For a connected
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x−1 0 1

y

−1

0

1

no exp(o(n)) [30], [29]

no exp(o(n/ log2 n)) [56], [29] (this chapter)

no exp(o(n/ log3 n)) [30], [29]

no nO(1) unless FP = #P [59]

nO(1) [59]

Figure 5.1: Exponential time complexity under #ETH of the Tutte plane for simple graphs in
terms of n, the number of vertices. For white points we only have the #P-hardness of [59].

graph G = (V,E), the reliability polynomial is given by

R(G; p) =
∑
A⊆E
κ(A)=1

p|E\A|(1− p)|A| , (5.1)

where κ(A) denotes the number of connected components in the subgraph (V,A).
We have the following connection to the Tutte polynomial, provided p 6= 0,

R(G; p) = p|E|−|V |+1(1− p)|V |−1T (G; 1, 1/p) . (5.2)

For rational p ∈ [0, 1], the value of R(G; p) gives the probability that G stays
connected if every edge is independently removed with probability p. For example
R( ; 1

3) = Pr( )+5Pr( ) = (23)5+5· 13 ·(
2
3)4 = 112

243 . This gives a simple model
of connectedness in networks that are subject to random failure of communication
channels, a situation naturally occurring in many areas; see [2] for an extensive survey
of applications.

Upper bounds. Just as for general evaluation of the Tutte polynomial, computing
graph reliability directly from its definition (5.1) takes 2mmO(1) operations, where m
is the number of edges in G. A vertex-exponential upper bound for the problem
was found already in 1980, when Buzacott [18] gave an algorithm with a running
time of 3nmO(1). The current best upper bound is the 2nmO(1)-time algorithm of
Björklund et al. [7], which computes T (G;x, y) for any rational (x, y).

Lower bounds. For the general case of multigraphs, a lower bound exponential
in Ω(n) under #ETH follows from [30]. It would be even more interesting to know
how hard the problem is for the classical restriction to simple graphs. To investigate
this, we study the exponential-time complexity of Simple Tutte(1, y). It would not be
unreasonable to hope for a subexponential algorithm for this problem, as for example
the corresponding restriction to planar graph allows an algorithm that is exponential
only in O(

√
n) for any rational point (x, y) [87].
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We have R(G; 0) = 1 and R(G; 1) = 0 for all connected graphs, so for p = 0
and p = 1 the reliability polynomial is always easy to evaluate. One may ask
what the situation is for values close to these two extremes. Note that p = 1
corresponds to the limit point (1, 1) in the Tutte plane, which we know is also
a polynomial-time point for the problem Tutte(x, y), though for less trivial reasons
(Kirchhoff’s matrix-tree theorem). Moreover, for p = 1

2 it is easily seen that (5.1)
equals the number of connected, spanning subgraphs of G, divided by 2m. This is
an interesting enumeration problem in itself, and one could be tempted to hope for
an algorithm faster than vertex-exponential, considering that the related problem of
finding the number of spanning trees of G can be solved in polynomial time (again,
the point (1, 1) in the Tutte plane).

5.1.1 Main theorem

We give a lower bound of the problem of computing all-terminal graph reliability for
the class of simple graphs for all nontrivial probabilities p. Beyond this interpretation,
the lower bound extends to all nontrivial points on the full line x = 1 in the
Tutte plane. We use the framework introduced by Dell et al. in [30] for studying
exponential-time complexity in the Tutte plane under the hypothesis #ETH.

Theorem 5.1. Let y 6= 1 be a rational number. Then, under #ETH, there is no
exp(o(m/ log2m))-time algorithm for Simple Tutte(1, y).

In particular, the bound holds for y = 2, i.e. counting the number of connected
spanning subgraphs of a given graph.

We have expressed the lower bound in terms of the parameter m, the number
of edges of the input graph. Since n ≤ m + 1 for connected graphs, the result
implies a lower bound of exp(Ω(n/ log2 n)) also in terms of the parameter n,
the number of vertices of the input graph. The formulation in terms of m is in-
teresting, because together with the vertex-exponential algorithm from [7] it shows
that the hardest instances have roughly linear density, ruling out a better algorithm
than exp(O(n/ log2 n)) even for the restricted case of sparse graphs.

Our bound does not quite match the upper bounds of [18, 7]. This situation is
similar to the bounds reported in [30] for other regions of the Tutte plane, which also
fall a few logarithmic factors (in the exponent) short of the best known algorithms.
The bound does, however, suffice to separate the complexity of reliability computation
for simple graphs from the subexponential-time bound for the planar case.

5.1.2 Related work

The structural complexity (in terms of #P-hardness) of Simple Tutte(1, y) follows from
the mentioned result of Jaeger et al. [59], which covered every point in the Tutte
plane, but in fact the case of all-terminal graph reliability was settled by Provan
and Ball already in the 1980’s [84]. The reductions in these papers do not preserve
the parameters n and m, so that the running time bounds under #ETH implicitly
provided by their techniques are typically exponential in Ω(n1/k) for some k.
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The problem Simple Tutte(1, y) has a number of natural extensions.

1. We can consider the computational problem of finding the reliability polyno-
mial itself, instead of its value at a fixed point p = 1/y. The input to this
problem is a graph, and the output is a list of coefficients. For example, on
input , the output should be R( ; p) = 4p5 − 15p4 + 20p3 − 10p2 + 1.

2. We can associate individual probabilities to every edge. For example, the graph
1
2

1
4 becomes disconnected with probability 5

8 .

3. We can consider multigraphs like , but with the same edge-failure prob-
ability p. As indicated by the example (set p = 1

2 and compare to the above),
the multigraph case is a special case of the individually edge-weighted case, a
fact that we will use later.

All of these problems are at least as hard as the problem under consideration in this
chapter. Lower bounds of size exp(Ω(m)) are given in [30] or follow relatively easily;
see Section 5.3.

A recent paper of Hoffman [54] studies the complexity of another graph polyno-
mial, the independent set polynomial, in the same framework.

5.2 Tools adjusted for the reliability line

The line x = 1 in the Tutte plane is the vertical component of the hyperbola

H0 = {(x, y) : (x− 1)(y − 1) = 0} .

This hyperbola resists the analysis of e.g. [30], because the the multivariate formulation
typically assumes that q = (x − 1)(y − 1) 6= 0. Thus we will need some modified
versions of the tools described in Chapter 4.

By the multiplicative property (4.15), we can restrict our attention to connected
graphs G = (V,E), i.e. we may assume that κ(E) = 1 as in the definition of the
reliability polynomial.

5.2.1 Multivariate formulation

The multivariate Tutte polynomial Z(G; q,w) defined in (4.10) evaluates to zero
whenever q = 0, which is not very helpful. Instead we consider the following slightly
modified polynomial introduced in Sokal [89, Section 2.3],

Z0(G; q,w) = q−κ(E)Z(G; q,w)

=
∑
A⊆E

∏
e∈A

w(e)qκ(A)−κ(E) . (5.3)

For κ(E) = 1 and q = 0 this gives a weighted version of the reliability polynomial,

R̂(G;w) =
∑
A⊆E
κ(A)=1

∏
e∈A

w(e) . (5.4)
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We get the following connection to the reliability polynomial, for p 6= 0,

R(G; p) = p|E|R̂(G; 1
p − 1) . (5.5)

5.2.2 Deletion-contraction identity

A deletion-contraction identity for Z0 follows implicitly from (4.14). Since Z0 =
q−k(E)Z , equation (4.14) gives

Z0(G; q,w) =

{
qZ0(G− e; q,w) + w(e)Z0(G/e; q,w) if e is a cut-edge,

Z0(G− e; q,w) + w(e)Z0(G/e; q,w) otherwise.
(5.6)

5.2.3 Stretches and thickenings

Along the reliability line, the weight shift identities of Theorem 4.2 for stretches and
thickenings are not valid. Goldberg and Jerrum derived corresponding versions for the
polynomial R̂(G;w) in [48] for the special case when every edge of the inserted k-
path or k-bundle has the same weight. We need multiweighted versions of these.
By w[e 7→ w′] we denote the function w′ : E(G)→ Q that is identical to w except
at the edge e where w′(e) = w′.

Lemma 5.1. Let G be a connected graph with edge weights given by w : E(G)→ Q.

(i) If ϕ(G) is obtained from G by replacing a single edge e ∈ E with a simple path
of k edges P = {e1, ..., ek} with w(ei) = wi, then

R̂(ϕ(G);w) = CP · R̂(G;w[e 7→ w′]) ,

where
1

w′
=

1

w1
+ · · ·+ 1

wk
and CP =

1

w′

k∏
i=1

wi . (5.7)

(ii) If ϕ(G) is obtained from G by replacing a single edge e ∈ E with a bundle of k
parallel edges B = {e1, . . . , ek} with w(ei) = wi, then

R̂(ϕ(G);w) = R̂(G;w[e 7→ w′]) ,

where

w′ = −1 +

k∏
i=1

(1 + wi) . (5.8)

Proof. We repeat the arguments from the proof in [48, Section 4.3]. For a given set
A ⊂ E of edges we let w(P ) =

∏
e∈Aw(e).

Let S be the set of subsets A ⊆ E \{e} that already span the whole graph G =
(V,E), i.e.

S = {A ⊆ E \ {e} : κ(A) = 1} ,
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and let T be the set of subsets that need the edge e to span the graph, i.e.

T = {A ⊆ E \ {e} : κ(A) = 2 and κ(A ∪ {e}) = 1} .

With w′ denoting the weight of the edge e in the graph G, (5.3) gives

R̂(G;w[e 7→ w′]) =
∑
A∈S

w(A)(1 + w′) +
∑
A∈T

w(A)w′ . (5.9)

We will compare the S-sum and the T -sum here to the corresponding sums obtained
when we replace the edge e by a path or a bundle.

(i) When ϕ is the operation described in (ii), we get

R̂(ϕ(G);w) =
∑
A∈S

w(A)

(
w(P ) +

k∑
i=1

w(P \ ei)

)
+
∑
A∈T

w(A)w(P )

=
∑
A∈S

w(A)

 k∏
i=1

wi +

k∑
j=1

∏
i 6=j

wi

+
∑
A∈T

w(A)

k∏
i=1

wi .

Comparing the S-sum and T -sum here to those in (5.9), it is easy to check that w′

and Cp as defined in (5.7) indeed satisfy R̂(ϕ(G);w) = CP · R̂(G;w[e 7→ w′]).
(ii) When ϕ is the operation described in (ii), we have

R̂(ϕ(G);w) =
∑
A∈S

w(A)

1 +
∑

∅⊂A′⊆B

w(A′)

+
∑
A∈T

w(A)

 ∑
∅⊂A′⊆B

w(A′)

 ,

and (5.8) follows since

∑
∅⊂A′⊆B

w(A′) =
k∏
i=1

(wi + 1)− 1 .

The case of uniform edge weights will still be useful to us, so we state it here for
easy reference.

Corollary 5.1. If ϕ(G) is obtained from G by replacing a single edge e ∈ E with a
simple path of k edges of weight w, then

R̂(ϕ(G);w) = kwk−1 · R̂(G;w[e 7→ w/k]) , (5.10)

and if it is obtained from G by replacing e ∈ E with a bundle of k parallel edges of
weight w, then

R̂(ϕ(G);w) = R̂(G;w[e 7→ (1 + w)k − 1]) . (5.11)

56



CHAPTER 5. LOWER BOUNDS FOR SIMPLE GRAPHS

These rules are transitive [48, Lemma 1], and so can be freely combined for
more intricate weight shifts. As the problem Simple Tutte(x, y) that we are ultimately
analyzing concerns unweighted (or rather ‘constantly weighted’) graphs G, the weight
shifts we use on these graphs must be the same for all edges. This calls for the
graph theoretic version of Brylawski’s tensor product for matroids [17]. We will use
the following terminology.

Definition 5.1 (Graph inflation). Let H be a graph with two distinguished ‘terminal’
vertices. For any graph G = (V,E), an H-inflation of G, denoted G⊗H , is obtained
by replacing every edge xy ∈ E by (a fresh copy of) H , identifying x with one of the
terminals of H and y with the other.

Stretches and thickenings are special cases of graph inflations. For example, G2 =
G⊗ ( ) and G2 = G⊗ ( ).

Note that if H is not symmetric with respect to its two terminals, then a given
graph G may have several non-isomorphic inflations G⊗H , since there are in gen-
eral two non-isomorphic ways two replace an edge by H . For us this difference does
not matter, as the resulting Tutte polynomials turn out to be the same; this follows
from the fact that any graph so obtained defines the same cycle matroid, which
uniquely determines the Tutte polynomial [25]. Thus we choose G⊗H arbitrarily
among the graphs that satisfy the condition in the definition above. Graph inflation
is not commutative and Sokal [89] uses the notation ~GH .

5.3 Hardness of computing coefficients

As a first step towards Theorem 5.1 we consider the problem of computing the
coefficients of the Tutte polynomial along fixed hyperbolas Hq . Our starting point is
the following hardness result, related to the problem of counting 3-terminal minimum
cuts—an approach first considered by Goldberg and Jerrum [48] in the context of
approximation complexity.

Lemma 5.2 (Lemma 1 in [30]). Let q be a rational number with q /∈ {1, 2}, and
consider a simple graph G = (V,E), with a subset T ⊆ E of three specified edges,
and edge weights given by

w(e) =

{
−1, if e ∈ T ,
w, if e ∈ E \ T .

(5.12)

Assuming #ETH, there is no exp(o(m))-time algorithm computing the coefficients of
the polynomial w 7→ Z0(G; q,w) for such weighted graphs G of m edges.

The following lemma gives an extension to the case q = 0 of [30, Lemma 2].

Lemma 5.3. Assuming #ETH, there is no exp(o(m))-time algorithm computing the
coefficients of the polynomial v 7→ R̂(G; v) for simple graphs G of m edges.
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Proof. Let G be a simple graph of m edges, weighted as in (5.12) for three specified
edges T = {e1, e2, e3}. From Lemma 5.2, with q = 0, it only remains to get rid
of the negative weights and reduce to a single-valued weight function. As only the
three edges in T have negative weights, we can use deletion-contraction for this. The
proof of Lemma 5.2 given in [30] uses the restriction that the subgraph (V,E \ T ) is
connected, so we can assume that no edge in T is a cut-edge. Three applications of
(5.6) with q = 0, to delete and contract these T -edges, gives

R̂(G;w) =
∑

C⊆{1,2,3}

(−1)|C|R̂(GC ;w), (5.13)

where for each C ⊆ {1, 2, 3}, the graph GC is constructed from G according to the
rule: if i ∈ C then contract ei, otherwise delete ei. The remaining edges in each
graph GC are in one-to-one correspondence with the edges in E \T ; especially, they
all have the same weight w, so R̂(GC ;w) = R̂(GC ;w).

The graphs GC are not necessarily simple, as the contractions may produce
multiple edges and loops. To address this we consider the 3-stretch G3

C . From m
applications of the weight-shift identity (5.10), one for every edge of GC , we get

R̂(G3
C ;w) = (3w2)m · R̂(GC ;w/3) . (5.14)

In summary, an algorithm to find the coefficients of v 7→ R̂(G; v) for simple
graphs G could be used to compute the coefficients of v 7→ R̂(G3

C ; v), and thus via
(5.14) the coefficients of v 7→ R̂(GC ; v) for each subset C ⊆ {1, 2, 3}. By (5.13) this
would give the coefficients of w 7→ R̂(G;w), which by Lemma 5.2 cannot be done
in time exp(Ω(m)) under #ETH. We note that each 3-stretch G3

C has O(m) vertices
and edges, so the lower bound is preserved.

5.4 Hardness of point evaluations

In this section we address the hardness of Simple Tutte(1, y) for fixed rational y 6= 1,
formulated as the problem of computing R̂(G;w) for a given simple graph G and
nonzero rational number w. We use a technique based on interpolation. In broad
strokes, we seek a suitable class of graphs {Hi} such that we can compute the
coefficients of the univariate polynomial v 7→ R̂(G; v) for given G by interpolation
from sufficiently many evaluations R̂(G;wi) ∼ R̂(G⊗Hi;w). For this to work,
we need that the number of distinct weight shifts {w 7→ wi} provided by the graph
inflations is at least m+ 1, one more than the degree of the polynomial.

5.4.1 Wump graphs

Bump! Bump! Bump! Did you ever ride a Wump? We have a Wump,
with just one hump. But we know a man called Mr. Gump. Mr. Gump
has a seven hump Wump. So... if you like to go Bump! Bump! just jump
on the hump of the Wump of Mr. Gump. – Dr. Seuss
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We here define a class of Wump graphs1, and show that inflation by such graphs,
Wump inflations, give rise to distinct weight shifts along the reliability line of the
Tutte polynomial. Wump graphs are mildly inspired by l-byte numbers, in the sense
that each has associated to it a sequence of length l, such that the lexicographic
order of these sequences determines the size of the corresponding shifted weights.

Definition 5.2. For positive integers i and s, an (i, s)-hump is the graph obtained
by identifying all the left and all the right endpoints of i simple paths of length s.
Given a sequence S = 〈s1, s2, . . . , sl〉 of positive integers, the Wump graph WS is
the graph obtained by concatenating l humps by their endpoints, where the i-th hump
is an (i, si)-hump. The number l is the length of the Wump graph WS .

(4, 2)-hump S = 〈3, 2, 3, 2〉

Figure 5.2: Construction of a Wump graph.

Note that for sequences S = 〈s1, s2, . . . , sl〉 with bounded elements si the size
of WS is O(l2), and that WS is simple whenever all elements si ≥ 2.

A Wump-inflation corresponds to a weight-shift for the weighted reliability poly-
nomial as follows.

Lemma 5.4. For any graph G with m edges, sequence S = 〈s1, s2, . . . , sl〉 of positive
integers, and non-zero rational number w, we have

R̂(G⊗WS ;w) = CmS · R̂(G;wS) ,

where
1

wS
=

l∑
i=1

1

(1 + w/si)i − 1
(5.15)

and

CS =
1

wS
·

l∏
i=1

w(si−1)i
(
(w + si)

i − sii
)
.

Proof. Starting out with the graph G⊗WS , we will look at the effect of replacing
one of the m canonical copies of WS with a single edge e. We show that, with ϕ
denoting this operation,

R̂(G⊗WS ;w) = CS · R̂(ϕ(G⊗WS);w[e 7→ wS ]) , (5.16)

1Originally, such as in [56], Wump graphs were called Bounce graphs for obvious reasons (see
Figure 5.2), but then the quoted passage from Dr. Seuss’s book One fish two fish red fish blue fish was
brought to attention.
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where wS satisfies (5.15), and w takes the old value w on all unaffected edges. The
lemma then follows by successively applying ϕ to each canonical copy of WS in
G⊗WS .

The first step towards transforming a Wump graph (say, ) into a single
edge, is to contract each si-path of the i-th hump into a single edge, for i = 1, . . . , l.
In other words, we perform the inverse of an si-stretch to the i-th hump. By (5.10)
of Corollary 5.1, this ‘unstretching’ of the i-th hump contributes a factor (siw

si−1)i

to the polynomial, and each edge in the resulting (i, 1)-hump receives a weight
of w/si. Repeating this process for each of the l humps in WS gives a simplified
Wump graph W 1

S generated by a sequence of 1s ( ). We let φ(G⊗WS)
denote the graph obtained from G⊗WS by simplifying one canonical copy of WS

like this. By transitivity, we get the weight shift

R̂(G⊗WS ;w) =
( l∏
i=1

(siw
si−1)i

)
· R̂(φ(G⊗WS);w′) ,

where w′ takes the value w/si on every edge of the ith hump of the simplified
subgraph W 1

S , and the old value w outside W 1
S . Next, we replace each hump of W 1

S

by a single edge, to get a simple path ( ) of length l. This corresponds to
the inverse of an i-thickening for ith hump, for i = 1, . . . , l. By (5.11) of Corollary 5.1,
this ‘unthickening’ does not produce any new factors for the polynomial, but the
weight of the ith edge in the resulting path becomes

wi = (1 + w/si)
i − 1 .

Finally, we compress the l-path into a single edge e, and the claim in (5.16) follows
from Lemma 5.1 (i).

We now show that Wump inflations provide a rich enough class of weight shifts
{w 7→ wS} to provide points enough for interpolation. The ranges of w for which
we prove this are general enough to allow for interpolation on the whole reliability
line, and we make no attempt at extending the ranges.

Lemma 5.5. Let w be a rational number with w ∈ (−1, 0) or w ∈ (9,∞). For all
integers m ≥ 1, there exist integer sequences S0, . . . , Sm such that

(i) WSi is simple with O(log2m) edges for all i, and

(ii) wSi 6= wSj for all i 6= j, with wS as defined in (5.15).

Furthermore, such sequences Si can be computed in time polynomial in m.

Proof. Let r be a positive integer to be chosen later, only depending on w. We
consider the set of sequences S = 〈s1, . . . , sl〉 of length l = r log(m + 1), such
that si ∈ {2, 3} whenever i is a multiple of r, and si = 2 otherwise. Since r is a
constant and all si ≥ 2, this construction satisfies (i).
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Now consider any two distinct such sequences S = 〈si〉 and T = 〈ti〉. To
address (ii), we consider the difference

∆ =
1

wS
− 1

wT
,

and show that ∆ 6= 0.
Using Lemma 5.4 we get a sum expression for ∆,

∆ =
l∑

i=1

1

(1 + w/si)i − 1
−

l∑
i=1

1

(1 + w/ti)i − 1

=
l∑

i=1

g
(
(1 + w/si)

i
)
−

l∑
i=1

g
(
(1 + w/ti)

i
)
,

(5.17)

where g(x) = 1
x−1 . This function is negative and strictly decreasing on (0, 1), and

positive and strictly decreasing on (1,∞). For convenience we let

a = min
{

(1 + w
3

)
, (1 + w

2 )
}

and b = max
{

(1 + w
3 ), (1 + w

2 )
}
.

By the monotonicity of g we have g(ai) > g(bi) for all positive numbers i.
Case 1: w > 9. Here we have a = (1 +w/3) and b = (1 +w/2). We set r = 1

and let k be the smallest index for which sk 6= tk . We can safely assume that sk = 3
and tk = 2, otherwise just exchange the roles of S and T . Thus, in (5.17), terms of the
sums for i < k cancel. The terms corresponding to i = k give g(ak) − g(bk) > 0.
We apply the monotonicty of g to the terms for i > k, which allows us to lower
bound ∆ as follows,

∆ ≥

(
g(ak) +

l∑
i=k+1

g(bi)

)
−

(
g(bk) +

l∑
i=k+1

g(ai)

)
= f(a)− f(b) ,

where

f(x) = g(xk)−
l∑

i=k+1

g(xi) =
1

xk − 1
−

l∑
i=k+1

1

xi − 1
. (5.18)

We now claim that f is strictly decreasing on (4,∞). This implies ∆ > 0, because
for w > 9 we have 4 < a < b, and then ∆ ≥ f(a)− f(b) > 0. To prove this claim,
consider

f ′(x) = − kxk−1

(xk − 1)2
+

l∑
i=k+1

ixi−1

(xi − 1)2
. (5.19)

Let Ti(x) denote the ith term in this sum. For x > 4 we have

2Ti+1(x) < Ti(x) ,
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because this inequality is equivalent to

2

(
1 +

1

i

)
x <

(
x+

x− 1

xi − 1

)2

,

and in this expression we have LHS ≤ 4x < x2 ≤ RHS for all x > 4 and positive
integers i. Thus, for x > 4 we can upper bounds the derivative in (5.19) as

f ′(x) <
kxk−1

(xk − 1)2

(
−1 +

l∑
i=k+1

1

2i−k

)
< 0 ,

which proves the claim.
Case 2: w ∈ (−1, 0). Here we have a = (1 + w/2) and b = (1 + w/3).

We choose r to be a positive integer that satisfies br < 1
4 . Let rk be the smallest

index for which srk 6= trk . We assume w.l.o.g. that srk = 3 and trk = 2, otherwise
exchange the roles of S and T . In (5.17), terms of the sum for i < rk cancel, and so
do terms for those i’s that are not multiples of r. The terms corresponding to i = rk
contribute g(brk) − g(ark) < 0. We apply the monotonicty of g to the remaining
terms for i > rk, which allows us to upper bound ∆ as follows,

∆ ≤

g(brk) +

l/r∑
i=k+1

g(ari)

−
g(ark) +

l/r∑
i=k+1

g(bri)

 ,

where g(x) = 1
x−1 . For x ∈ (0, 1), we can expand g(x) into the geometric series

g(x) = −
∞∑
j=0

xj .

Applying this representation to our estimate for ∆ and rearranging terms, we arrive
at

∆ ≤
∞∑
j=0

(arj)k − (brj)k +

l/r∑
i=k+1

(
(brj)i − (arj)i

)
=

∞∑
j=0

(
F (arj)− F (brj)

)
,

where F is the function

F (y) = yk −
l/r∑

i=k+1

yi .

We claim that F is strictly increasing on (0, 14). This implies ∆ < 0, because with
the given choice of r we have 0 < arj < brj < 1

4 for all positive integers j, and
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then F (arj) − F (brj) < 0 for j ≥ 1, and for j = 0 the term is 0. To prove this
claim, consider

F ′(y) = kyk−1 −
l/r∑

i=k+1

iyi−1 .

We obtain F ′(y) > 0 for y ∈ (0, 14) from the following calculation.

1

kyk−1
·

l/r∑
i=k+1

iyi−1 =

l/r∑
i=k+1

i

k
yi−k =

l/r−k∑
i=1

(
1 +

i

k

)
yi

≤
l/r−k∑
i=1

(1 + i) yi ≤
∞∑
i=1

yi +
∞∑
i=1

iyi

=
1

1− y
− 1 +

y

(1− y)2
≤ 4

3
− 1 +

4

9
< 1 .

5.4.2 Hardness of points on the reliability line

We are ready to prove Theorem 5.1. We consider the following equivalent claim.

Proposition 5.1. Let w 6= 0 be a rational number. Then, assuming #ETH, there is no
exp(o(m/ log2m))-time algorithm computing the value of R̂(G;w) for simple input
graphs G of m edges.

Proof. If w < −1, we can pick a positive integer k big enough such that

w′ := w/k > −1 .

This weight shift corresponds to the k-stretch of G by (5.10) of Corollary 5.1. On the
other hand, if 0 < w < 9, we can pick a positive integer k such that

w′ := (w/2 + 1)k − 1 > 9 .

This weight shift corresponds to the 2-stretch of the k-thickening of G, by combining
the weight shift identities of Corollary 5.1. In any case, the transformed graph
G′ remains simple, the number of edges is increased by a constant factor of at
most 2k, and the value of R̂(G;w′) can be obtained in constant time from the value
of R̂(G′;w). Thus we can safely assume that w ∈ (−1, 0) or w > 9.

Now, by contradiction, suppose there was an exp(o(m/ log2m))-time algorithm
for evaluating R̂(G;w) for simple graphs G of m edges. Given such a graph G, we
can, according to Lemma 5.5, construct m+1 Wump graphs WS in polynomial time,
such that each Wump inflation G⊗WS is simple with O(m log2m) edges, and such
that the corresponding weight shifts w 7→ wS are all distinct. By Lemma 5.4, we could
then use the assumed algorithm to compute R̂(G⊗WS ;w) ∼ R̂(G;wS) for each
WS , giving m+ 1 distinct evaluations of the mth-degree polynomial v 7→ R̂(G; v),
and thus its coefficients by interpolation—all in time exp(o(m)). By Lemma 5.3
there can be no such algorithm, unless #ETH fails.

63



5.4. HARDNESS OF POINT EVALUATIONS

64



Chapter 6

Lower Bounds for Planar Graphs

In this chapter we consider the restriction of Tutte(x, y) to planar input graphs.

Planar Tutte(x, y)

Input: A planar multigraph G with n vertices and m edges.
Task: Compute T (G;x, y).

For this problem the complexity picture of the Tutte plane is slightly different. One
of the most important differences is the hyperbola H2, i.e. the set of points (x, y)
satisfying (x − 1)(y − 1) = 2, along which Planar Tutte(x, y) is polynomial-time
solvable, in addition to the trivial points for Tutte(x, y). This is a big thing in
theoretical physics, because on this hyperbola the Tutte polynomial specializes to
the partition function of the so called Ising model (a.k.a. the 2-state Potts model).
Vertigan [95] showed that that except for the hyperbolas H2, H1 and the points
(−1,−1), (0,−1), (−1, 0), and (1, 1), every other point of the Tutte plane is
#P-hard for Planar Tutte(x, y).

From the perspective of exponential-time complexity, the planar restriction gives
an even more striking difference, because even at the #P-hard points, the problem
Planar Tutte(x, y) has an upper bound that is exponential only in O(

√
n), due to an

algorithm by Sekine et al. [87]. A natural question is then whether this is optimal
under #ETH. To investigate this we will dig into the literature and look at existing
standard reductions with exponential-time glasses. We will see that the algorithm by
Sekine et al. is indeed optimal for the general problem, as a matching lower bound
under #ETH is found for points on the hyperbola H3. For remaining regions of
the plane, lower bounds exponential in Ω(n1/k) are found under #ETH for various
k > 2. In particular, for points on the line y = 1 we get a lower bound exponential
in Ω(n1/8), which seems to be the first explicit superpolynomial lower bound also for
the general problem Tutte(x, 1). All bounds are shown to hold for graphs of O(n2)
edges; see Figure 6.1 for an overview.
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x−1 0 1

y

−1

0

1

no exp(o(
√
n)) , (§ 6.3.2)

no exp(o( 8
√
n)) , (§ 6.4.3)

no exp(o( 16
√
n)) , (§ 6.4.3)

no exp(o( 24
√
n)) , (§ 6.4.4)

no exp(o( 48
√
n)) , (§ 6.4.4)

nO(1) [59]

Figure 6.1: Exponential time complexity under #ETH of the Tutte plane for planar graphs in
terms of n, the number of vertices. All bounds hold in particular for graphs with m ∈ O(n2)
edges.

6.1 Planar Tutte computations

It is generally considered one of the landmarks of statistical physics when Onsager [81]
could give a closed form expression of the partition function of the Ising model (or
2-state Potts model) for planar lattice graphs in 1944. A number of serious attempts
were made over the years to extend his result to other nontrivial graph classes, and to
q-state Potts models for q > 2, but no progress was made. A vivid description of the
frustrations of these years can be found in the introduction of [58]. With our current
knowledge of computational tractability over the Tutte plane, and the relation (4.7)
between the q-state Potts model and the Tutte polynomial along Hq , we now have an
explanation to the failure of these attempts. The #P-hardness map of the Tutte plane
by Jaeger et al. [59] implies that Onsager’s result is unlikely to be extended to general
graphs, and the corresponding #P-hardness map for planar graphs by Vertigan [95]
implies that Onsager’s result is unlikely to be extended to q > 2 for planar graphs.

A subexponential upper bound From the previous chapters we know that, assum-
ing #ETH, computation of T (G;x, y) for general fixed (x, y) requires time exponen-
tial in the number of vertices or edges for multigraphs, and that for simple graphs
we are within a polylogarithmic factor, in the exponent, of this bound. The situation
for the planar case is quite different, as there is a 2O(

√
n)mO(1)-time algorithm by

Sekine et al. [87] from 1995. This situation is common to many other NP-hard prob-
lems, such as Independent Set [77] and Hamiltonian Cycle [28] for which algorithms
exponential in O(

√
n) are also known for planar graphs. These algorithms all use an

approach introduced by Lipton and Tarjan [76, 77], namely, a combination of dynamic
programming and the planar separator theorem. This theorem states that in a pla-
nar graph one can efficiently find a subset of O(

√
n) vertices whose removal splits

the graph into components of size at most 2n/3. Without going into details, the
algorithm of Sekine et al. computes T (G;x, y) for planar G recursively, using the
deletion-contraction expansion of (4.13), and the planar separator theorem is involved
in finding a beneficial ordering of edges to be deleted-and-contracted, such that the
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number of redundant computations can be more effectively reduced compared to the
case of a general recursion tree.

6.1.1 Main theorems

The question under consideration here is whether the 2O(
√
n)mO(1)-time algorithm

for Planar Tutte(x, y) by Sekine et al. has an asymptotically optimal dependency on
the number n of vertices, assuming #ETH. As remarked in Section 4.3.2, the number
m of edges for a general input graph could in fact be exponential in n, so we need
to make sure that any lower bound in terms of n holds for graphs that are not too
dense.

In [29], an almost complete map of the exponential-time complexity across the
Tutte plane for both multigraphs and simple graphs was presented. This was achieved
by finding exact, exponential-time-preserving, versions of reductions in Goldberg and
Jerrum’s paper [48], concerning NP-hardness of approximation. Motivated by this
success, a similar translation of the same authors’ reductions for the planar case in
[49] was sought. This worked out only for points on the hyperbola H3, which is
somewhat surprising as the upper branch of this hyperbola was not covered by the
inapproximability result of [49].

Theorem 6.1. Let (x, y) ∈ Q2 with (x−1)(y−1) = 3 and y 6= −1. Then, assuming
#ETH, there is no exp(o(

√
n))-time algorithm for Planar Tutte(x, y). The bound holds

especially for input graphs of O(n2) edges.

Consequently, the algorithm by Sekine et al. is indeed optimal for the general
problem Planar Tutte(x, y), assuming #ETH. Proofs are given in Section 6.3.

Unfortunately, the idea of the reduction in [49] that covers the main regions
of the plane seems to not lend itself easily to our purpose; see discussion in sec-
tion 6.5.2. Instead, the #P-hardness reductions of Vertigan [95] were studied, which
led to conditional lower bounds of the type exp(Ω(n1/k)) for various k > 2. The
conclusions are contained in the following theorem. These bounds leave the question
of exponential-time complexity of Planar Tutte(x, y) very much open for most of the
Tutte plane, but are included here for a complete picture of the current situation.

Theorem 6.2. Let (x, y) ∈ Q2 with (x − 1)(y − 1) /∈ {1, 2, 3}. Then, assuming
#ETH, there is no algorithm for Planar Tutte(x, y) with running time

(i) exp(o( 8
√
n)) if y = 1 and x 6= 1,

(ii) exp(o( 16
√
n)) if x = 1 and y 6= 1,

(iii) exp(o( 24
√
n)) for any remaining point with x 6= 1 and y /∈ {0,−1},

(iv) exp(o( 48
√
n)) for any remaining point with x 6= 1 and y ∈ {0,−1}, even for

simple planar graphs.

The bounds hold especially for input graphs of O(n2) edges.
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Proofs are in Section 6.4. The result for the line y = 1 is of particular interest,
as this seems to be the first concrete superpolynomial lower bound also for the more
general problem Tutte(x, 1). In fact, the only proof of #P-hardness of Tutte(x, 1) seems
to rely on the hardness proof for the planar case.

6.1.2 Related work

The stuff of this chapter builds heavily on two papers.
The first, by Goldberg and Jerrum [49], shows hardness of approximation of

Planar Tutte(x, y) for large regions of the Tutte plane, in the sense of excluding a
fully polynomial randomized approximation scheme (FPRAS) under the assumption
that RP 6=NP. This was a follow-up on their previous work [48] on general graphs.

The second paper, by Vertigan [95]1, contains the mentioned result of #P-hardness
for every point of the Tutte plane except those on H1, H2 and the points (−1,−1),
(0,−1), (−1, 0), and (1, 1). In fact, Vertigan’s results are explicitly stated for any
algebraic point (x, y), an extension that we will also use at one point.

6.2 Preliminaries

Reductions in this chapter will repeatedly involve the problem of finding coefficients
of various graph polynomial s 7→ p(G; s) for planar graphs G. We let [sd]p(G; s)
denote the coefficient of sd in p(G; s). Below we give some basic properties of
planar graphs that we will use.

Euler’s equation. Euler’s equation says that if n,m, f denote the number of ver-
tices, edges and faces, respectively, of a planar graph G, then

n−m+ f = 2 . (6.1)

In the case that the planar graph G is also simple, then each face is bounded by at
least three edges, and we get

m ≤ 3n+ 6 . (6.2)

The Tutte polynomial for dual graphs. A given planar graph G may have different
non-isomorphic duals G∗, resulting from different planar drawings of G, but the Tutte
polynomial is blind to this difference due to the following pleasant property,

T (G;x, y) = T (G∗; y, x) . (6.3)

This identity is classically used for mirroring hardness results over the line y = x
in the Tutte plane. However, for exponential-time complexity we must use this with
caution, because, unless G is of bounded degree, the number of faces f in G, and
thus the number n∗ = f of vertices in G∗, may be much larger than n.

1This work appeared already in Vertigan’s PhD thesis from 1991 [94].
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6.3 The 3-state Potts hyperbola

To prove Theorem 6.1 we start out from a coloring problem. The same approach is
used in [49, Section 4].

6.3.1 Planar 3-coloring

We give a lower bound for the planar version of the following classical problem.

3-Coloring

Input: A simple graph G with n vertices and m edges.
Task: Decide whether there is a proper 3-coloring of G.

For general simple graphs, an edge-exponential lower bound under ETH was given
already in [57]. In [30], this result was extended to the counting version #3-Coloring
under #ETH.

Theorem 6.3 (Dell et al. [30]). Assuming #ETH, there is no exp(o(m))-time algorithm
for #3-Coloring.

We consider the restriction of this problem to planar graphs, #Planar 3-Coloring,
and show the following corresponding lower bound.

Theorem 6.4. Assuming #ETH, there is no exp(o(
√
n))-time algorithm for #Planar

3-Coloring.

Note that for connected, simple, planar graphs we have n ≤ m ≤ 3n − 6 by
Euler’s equation, so this bound is equivalent to the same bounds in terms of m.
Thus, given Theorem 6.3, it is enough to find a reduction from #Planar 3-Coloring to
its planar counterpart, such that the number of edges does not increase too much.
This is provided by the following lemma.

Lemma 6.1. There is a mapping reduction from #3-Coloring to #Planar 3-Coloring,
mapping graphs of m edges to graphs of O(m2) edges.

Proof. We show that the claim is satisfied by a standard reduction from 3-Coloring to
Planar 3-Coloring in [44], if we replace the crossover gadget used in [44] by the graph
W shown in Figure 6.2, which was introduced in [3] to preserve information about
the number of colorings.

Figure 6.2: W , with con-
nection vertices in black.

Given a simple input graph G to #3-Coloring, consider a drawing of G in the
plane such that at most two edges cross at any given point. A simple planar graph
G′ is constructed from this drawing by successively picking an edge that is crossed
by other edges, along this edge replacing each crossing by a copy of the gadget W ,
without introducing new edge intersections; see Figure 6.3. It is shown in [3] that G
has k proper 3-colorings if, and only if, G′ has k · 2c(G) proper 3-colorings, where
c(G) is the number of edge-intersections in the drawing of G. We note that the
number of edges of G′ satisfies m′ ≤ m + 31c(G). Since c(G) < m2 for simple
graphs G, this means m′ ∈ O(m2). The claim follows.
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W W W

Figure 6.3: Example demonstrating the proper insertion of the crossover gadget W .

6.3.2 Hardness of points on the 3-state Potts hyperbola

We are ready to prove Theorem 6.1, concerning points on the hyperbola H3. For such
points (x, y) ∈ H3, Fortuin and Kasteleyn’s identity (4.9) gives

(y − 1)n(x− 1)κ(E)T (G;x, y) = Z3(G;w) , (6.4)

where w = y − 1. Thus we can use the formulation of the 3-state Potts polynomial
Z3(G;w). We first collect some useful properties of this polynomial.

By (4.6), we can express Z3(G;w) in terms of the variable y = w + 1 as

Z3(G; y − 1) =
∑

σ:V→{1,2,3}

ymono(σ,G) , (6.5)

where mono(σ,G) is the number of monochromatic edges of G under σ, i.e. the
number of edges whose end vertices are both assigned the same value by σ. This
representation easily gives us a weight-shift identity for thickenings: a k-thickening
Gk satisfies mono(σ,Gk) = k ·mono(σ,G), and thus

Z3(Gk; y − 1) =
∑

σ:V→{1,2,3}

yk·mono(σ,G) = Z3(G; yk − 1) . (6.6)

Proof of Theorem 6.1. The following proposition proves Theorem 6.1. We state a
slightly stronger claim, as we will later need this result for a certain irrational point.
As remarked in Section 4.3 this is not an issue; see e.g. [59, p.41].

Proposition 6.1. Let (x, y) ∈ R2 be an algebraic point on the hyperbola H3 with
y 6= −1. Then, assuming #ETH, there is no exp(o(

√
n))-time algorithm for the

problem Planar Tutte(x, y) for input graphs of O(n2) edges.

Proof. We first note that the problem Planar Tutte(−2, 0) corresponds precisely to the
problem #Planar 3-Coloring. To see this, consider (6.5) and note that we may interpret
each state configuration σ : V → {1, 2, 3} as a 3-coloring of the input graph, so
that mono(σ,G) = 0 if, and only if, σ is a proper 3-coloring. Thus the value
Z3(G;−1), corresponding to T (G;−2, 0), gives the number of proper 3-colorings
of G. It follows from Theorem 6.4 that there is no exp(o(

√
n))-time algorithm for

Planar Tutte(−2, 0) under #ETH for simple input graphs.
Let (x, y) ∈ H3 with y /∈ {−1, 0}, and let G be a simple, planar graph of n

vertices and m edges. As x, y 6= 1 on the hyperbola H3, an algorithm for Planar
Tutte(x, y) would by (6.4) and (6.6) let us compute

T (Gk;x, y) ∼ Z3(Gk; y − 1) = Z3(G; yk − 1)
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for k = 1, . . . ,m+ 1. Since y /∈ {0, 1,−1} this gives m+ 1 distinct evaluations of
the mth degree polynomial w 7→ Z3(G;w), and thus we could get the coefficients
by interpolation. This in turn would let us evaluate Z3(G; 0), which by the above
discussion cannot be done in time exp(o(

√
n)) under #ETH. As G is simple and

planar, Euler’s equation gives m ∈ O(n), so the thickened graph Gk will have n
vertices and km ∈ O(n2) edges for any k ≤ m+ 1, and the claim follows.

6.4 The rest of the plane

For the remaining points of the plane we turn to the work done by Vertigan [95]
concerning #P-hardness for Planar Tutte(x, y). These results rely on a hardness result
by Provan [83] of computing two-terminal network reliability—a concept related to
the all-terminal reliability studied in Chapter 5—which in turn relies on the hardness
of counting Hamiltonian cycles in cubic graphs.

6.4.1 Hardness of Hamiltonian cycles in cubic planar graphs

We consider the following problem.

#Planar Cubic Hamiltonian Cycle

Input: A cubic, planar graph G with n vertices and m edges.
Task: Find the number of Hamiltonian cycles in G.

The decision version of this problem was shown NP-hard in [46] by reduction from
3-Sat. Provan [83] noted that the same reduction shows #P-hardness of #Planar Cubic
Hamiltonian Cycle by reduction from #3-Sat. In fact, it is made explicit in [46, p.711]
that the construction maps a 3-CNF formula ϕ of n variables to a cubic planar graph
G of O(n2) vertices. Thus we have the following conditional lower bound.

Theorem 6.5. Assuming #ETH, there is no exp(o(
√
n))-time algorithm for the prob-

lem #Planar Cubic Hamiltonian Cycle.

6.4.2 Hardness of two-terminal reliability

Like the concept of all-terminal network reliability defined in the previous chapter,
the two-terminal version also considers a connected graph G = (V,E) with edge
failure probability p, but instead of the probability R(G; p) that the full graph G
stays connected, we are given two vertices s, t ∈ V and consider the probability
Rs,t(G; p) that s and t remain connected by a path. We can express this probability
as

Rs,t(G; p) =
∑
A⊆E

s,t connected

p|A|(1− p)|E|−|A| . (6.7)

Note that the sum in (6.7) is taken over all edge subsets containing an (s, t)-path; we
let Es,t(G) denote the collection of all such subsets. We will ultimately be interested
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in the problem of computing the size of this set. From (6.7) we see that

|Es,t(G)| = 2|E|Rs,t(G; 1/2) . (6.8)

For a given probability p, define the problem

∆3-Planar Path Reliability(p)

Input: A planar graph G = (V,E) of maximum degree three
with n vertices and m edges and s, t ∈ V .

Task: Compute Rs,t(G; p).

In [83], #P-hardness of this problem is shown by reduction from #Planar Cubic
Hamiltonian Cycle. We obtain the following lower bound.

Proposition 6.2. Let p ∈ (0, 1) be a fixed rational number. Assuming #ETH, there
is no exp(o( 4

√
n))-time algorithm for the problem ∆3-Planar Path Reliability(p). In

particular, the bound applies to computation of |Es,t(G)|.

To prove this, we study the vertex expansion of the reduction in [83].

Provan’s reductions. There are two steps to the reduction in [83]. The first step
concerns a certain intermediate quantity called Rs,t(G,S, l, k), defined for a graph
G = (V,E) with terminals s, t ∈ V , an edge subset S ⊆ E, and numbers l, k ∈ N.
In [83, p.697], this quantity is related to Rs,t(G; p) by the equation

Rs,t(G
q,r; p) =

∑
i,j

(−pq+1)i(−pr+1)jRs,t(G,S, i, j) , (6.9)

where Gq,r is the graph obtained from G by (q+ 1)-stretching every edge in S and
(r + 1)-stretching every edge in E \ S.

Define the problem

∆3-Planar Provan
Input: A planar graph G = (V,E) of maximum degree three, with

n vertices, s, t ∈ V , a subset S ⊆ E , and numbers l, k ∈ N.
Task: Compute Rs,t(G,S, l, k).

The first step of the reduction is the following result.

Lemma 6.2 (Theorem 1 in [83]). There is a mapping reduction from #Planar Cubic
Hamiltonian Cycle to the problem ∆3-Planar Provan that maps graphs of n vertices to
graphs of 3n+ 2 vertices.

This fact, together with the following lemma and the exp(Ω(
√
n))-time lower

bound for #Planar Cubic Hamiltonian Cycle of Theorem 6.5, proves Proposition 6.2.

Lemma 6.3. For any probability p ∈ (0, 1) there is a polynomial-time reduction from
the problem ∆3-Planar Provan to ∆3-Planar Path Reliability(p) that maps graphs of n
vertices to sets of graphs of O(n2) vertices each.
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Proof. We spell out some details omitted in [83], and study the vertex expansion of
the reduction suggested in [83, Corollary 2].

Suppose we want to compute Rs,t(G,S, l, k) for some planar graph G of max-
imum degree three with s, t ∈ V and S ⊆ E. To this end we can use (6.9) and
an assumed algorithm for ∆3-Planar Path Reliability(p), as follows. For fixed r, the
sum in (6.9) can be written as πr(−pq+1) for a polynomial πr(x) of degree |S|. By
evaluating Rs,t(Gq,r; p) for q = 0, . . . , |S|, we get |S| + 1 distinct evaluations of
the polynomial x 7→ πr(x), and thus the coefficients by interpolation. Especially we
get the lth coefficient, cl(r) = [xl]πr(x), which can also be written as

cl(r) = [(−pq+1)l]Rs,t(G
q,r; p) =

∑
j

(−pr+1)jRs,t(G,S, l, j) .

Thus cl(r) can be seen a polynomial in (−pr+1), and we can get the coefficients of
this polynomial by interpolation from the values of cl(r) for r = 0, . . . , |E \ S|. In
particular, we get the kth coefficient [(−pr+1)k]cl(r) = Rs,t(G,S, l, k).

We note that each stretched graph Gq,r used in the reduction has O(n2) vertices.

6.4.3 Hardness on y = 1 and x = 1

We are ready to prove Theorem 6.2, and start by considering the line y = 1 in the
Tutte plane, the line that is left open in [29] for both multigraphs and simple graphs.
On this line the Tutte polynomial specializes to the generating function of forests in
the graph, weighted by the number of edges,

F (G;w) =
∑
F⊆E

(V,F ) forest

w|F | . (6.10)

Since |F | = |V | − κ(F ) whenever (V, F ) is a forest, we get the following relation
to the Tutte polynomial,

F (G;w) = w|V |−κ(E)T (G; 1 + 1/w, 1) . (6.11)

Note that for every forest (F, V ) in a graph G, there are k|F | corresponding forest of
the same size in the k-thickening Gk , since for every edge in F there are k choices
for a corresponding edge in Gk . Thus we get the following weight-shift identity for
thickenings,

F (Gk;w) = F (G; kw) . (6.12)

F

Two forests in G2 correspond-
ing to the same forest F in G.

Hardness of coefficients. We first consider the problem of finding coefficients of
the polynomial w 7→ F (G;w). Vertigan [95] shows #P-hardness of this problem by
reduction from ∆3-Planar Path Reliability(p); more precisely, from the problem of
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computing the quantity |Es,t(G)| defined in (6.8).2 We study the vertex expansion of
this reduction. For convenience, let

F̂ (G; v) = (1− v)mF
(
G;

v

1− v
)
, (6.13)

and note that this is a polynomial in v.

Lemma 6.4. Given a 2-connected, planar graph G with no self-loops and m edges,
there is a simple, connected, planar graph Gs,t with m′ ∈ O(m2) edges, such that
with d = m′ − 8(m− 1),

[vd]F̂ (Gs,t; v) = 4|Es,t(G)| .

Proof. In [95], Vertigan constructs a connected, planar graph G2gm
∗# = (V ′, E′) from

G, such that with d = |E′| − 8(m− 1),

4|Es,t(G)| = [vd]
(
v|V

′|−κ(E′)(1− v)|E
′|−|V ′|+κ(E′)T (G2gm

∗# ; 1/v, 1)
)
.

This is shown in [95, Lemma 12.6]. Using (6.11) and (6.13), we can write the right hand
side here as [vd]F̂ (G2gm

∗# ; v), which shows the last part of the claim. The number of

edges of G2gm
∗# is given explicitly in [95, (11.11)]3; in terms of our notation it is

|E′| = 32(m− 1)(6m− 1) ∈ O(m2) .

Thus it only remains to check that the graph G2gm
∗# is simple, which is not explicitly

stated in [95].
To build G2gm

∗# , Vertigan first considers a simple, planar construction called the
radial of G, denoted G�, which has one face for every edge of G, and each of whose
faces is bounded by a 4-cycle (including the outer face). Figure 6.4 shows an example.

Figure 6.4: A planar
graph G (black vertices and
edges), and its radial G�

(black and red vertices, red
edges only).

The radial of G is used as a template for forming G2gm
∗# , by placing copies of the

‘tile graphs’ depicted in Figure 6.5 side-by-side along their dashed borders, according
to the face-pattern of the radial. That is, in each face of G� we fit one tile graph T ,
aligning each of the four dashed sides of T with one of the four edges surrounding
the given face in G�, and then we remove G� itself. In this construction the graph
T∗ is used for one of the tiles, and T̃ 2

# for the remaining m − 1 tiles. The tiles are
drawn so that the connection vertices of two adjacent tiles pairwise overlap along
the shared border in the natural way. The tiles are then glued together by identifying
overlapping connection vertices. The resulting graph will clearly be connected, and
also planar, because each tile is planar, the connection of tiles at inner faces of G�

will clearly be planar, and the tile placed at the outer face can always be turned
‘inside-out’ to avoid intersecting edges with the inner tiles. We note that the graph
will also be simple, because the tile graphs T∗ and T̃ 2

# are both simple, and no double

2In [95] the quantity |Es,t(G)| is called TL(G, g; 2, 2).
3The numbers here appear different from those in [95], because Vertigan denotes by n the number

of edges of G, i.e n = |E|, and the number m in [95, (11.11)] is defined as m = 16(|E| − 1).
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Figure 6.5: Tile graphs T̃ 2
# (left) and T∗ (right) with connection vertices in black. The dashed

borders are only helping lines, not edges of the graphs.

edges or loops can form by connecting copies of hem at corresponding connection
vertices along some dashed side. Finally, to complete the construction of G2gm

∗# , an
m-stretch is applied to a subset of the edges. This preserves connectedness, planarity
and also simplicity of the graph.

We get the following result.

Lemma 6.5. Assuming #ETH, there is no exp(o( 8
√
n))-time algorithm computing the

coefficients of w 7→ F (G;w) for simple, planar graphs G with n vertices.

Proof. Indeed, suppose there was such an algorithm. Let G be a planar graph of
maximum degree three, with n vertices and thus m ≤ 3n/2 edges. As usual we can
also assume that the graph is 2-connected and without loops. The corresponding
graph Gs,t from Lemma 6.4 would be a connected, simple, planar graph with n′ ≤
m′ ∈ O(m2) = O(n2) vertices. We could then use the assumed algorithm to
compute, via (6.13), the coefficients of v 7→ F̂ (Gs,t; v), in particular the coefficient

of vd and thus the value of |Es,t(G)|, in time 2o(
8√
n′) = 2o(

4√n). By Theorem 6.2,
there cannot be such an algorithm, assuming #ETH.

Hardness of evaluations. The following proposition establishes part (i) and (ii) of
Theorem 6.2.

Proposition 6.3. Let x, y 6= 1. Then, assuming #ETH,

(i) there is no exp(o( 8
√
n))-time algorithm for Planar Tutte(x, 1), and

(ii) there is no exp(o( 16
√
n))-time algorithm for Planar Tutte(1, y),

for input graphs of O(n2) edges.

Proof. For x 6= 1 the problem Planar Tutte(x, 1) is equivalent to the problem of
evaluating F (G;w) at w = 1/(x − 1) for planar graphs G (this follows from
(6.11)). Let G be a simple, planar graph with n vertices and, by Euler’s equation,
m ∈ O(n) edges, and suppose we want to compute the coefficients of the mth
degree polynomial w 7→ F (G;w).
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(i) By the thickening identity (6.12), an algorithm for Planar Tutte(x, 1) could be
used to compute F (Gk;w) = F (G; kw) for k = 1, . . . ,m + 1, giving m + 1
distinct evaluations of w 7→ F (G;w) and thus the coefficients by interpolation. As
Gk has n vertices and O(m2) = O(n2) edges for k ≤ m + 1, the given bound
follows from Lemma 6.5.

(ii) By (6.3) we have T (G∗k; y, 1) = T (Gk; 1, y) for any planar dual G∗k of
Gk . Thus the above interpolation procedure for obtaining the coefficients of w 7→
F (G;w) could be performed also with an algorithm for Planar Tutte(1, y). We
note that G∗k will be a connected graph with the same number m′ ∈ O(n2) of
edges as Gk , and, by Euler’s theorem, with n∗ ∈ O(m′) ⊂ O(n2) vertices. The
claimed bound for Planar Tutte(1, y) then follows from the above bound for Planar
Tutte(x, 1).

6.4.4 Hardness for remaining points

Finally we consider points on hyperbolas Hq for remaining rationals q /∈ {0, 1, 2, 3}.
For technical simplification we will use the formulation of the multivariate Tutte
polynomial defined in (4.10). Recall that T (G;x, y) is computationally equivalent to
Z(G; q, w), with q = (x− 1)(y − 1) and w = y − 1, whenever q 6= 0.

Hardness of coefficients. We first consider the problem of finding coefficients
of the polynomial w 7→ Z(G; q, w) for planar graphs. Vertigan [95] shows #P-
hardness also of this problem by reduction from two-terminal reliability. However,
this reduction gives a much worse vertex expansion than the corresponding reduction
for the forest-counting polynomial. To get a somewhat better superpolynomial lower
bound, we will instead use Proposition 6.1 and reduce from a point on the hyperbola
H3. We first use an intermediate reduction from [95].

Let

Ẑ(G; q, v) = (1− v)|E|q−|V |Z(G; q, qv/(1− v)) , (6.14)

and note that this is a polynomial in v.

Lemma 6.6. Given a connected, planar graph G with n vertices and m edges, and
a natural number k, there is a simple, connected, planar graph G〈k〉 with m′ ∈
O(k4m2) edges, such that with d = m′ − 2k2m and xk = 1 + (q − 1)k ,

[vd]Ẑ(G〈k〉; q, v) = (q − 1)k·κ(E)T (G;xk, xk) .

Proof. In [95], a graph called Gk# is constructed by glueing together copies of a

certain tile graph T̃ k# in the same fashion as described in the proof of Lemma 6.4.

The graph T̃ k# is a generalization of the graph T̃ 2
# in Figure 6.5 to 4k connection

vertices, with the same grid-like structure. Thus Gk# will also be connected, simple
and planar.
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Let (V ′, E′) = Gk#. From [95, (11.2)]4 it follows that

|E′| = 8k3(k + 1)m2 + 4k2m ∈ O(k4m2) ,

and it is shown in [95, Lemma 12.3] that with d = |E′| − 2k2m,

(q − 1)k·κ(E)T (G;xk, xk) = [vd]CvT

(
Gk#;

1

v
, 1 +

qv

1− v

)
,

where Cv = vn
′−κ(E′)(1 − v)m

′−n′+κ(E′). The expression on the right hand side
can also be written as [vd]Ẑ(Gk#; q, v).

We get the following result.

Lemma 6.7. Let q /∈ {0, 1, 2}. Then, assuming #ETH, there is no exp(o( 24
√
n))-time

algorithm computing the coefficients of w 7→ Z(G; q, w) for simple, planar graphs G
of n vertices.

Proof. Let α = 1+
√

3, and note that (α, α) ∈ H3 and that this is an algebraic point.
It follows from Proposition 6.1 that there can be no exp(o(

√
n))-time algorithm for

Planar Tutte(α, α) under #ETH, even when restricted to graphs of m ∈ O(n2) edges.
As (α, α) is a point on the line y = x in the Tutte plane, the same lower bound
must then apply to the problem of computing the coefficients of x 7→ T (G;x, x)
for planar graphs G with O(n2) edges. This is the starting point.

Now suppose there was an exp(o( 24
√
n))-time algorithm computing the coef-

ficients of w 7→ Z(G; q, w) for planar graph with O(n2) edges. Let G be such
a graph, let k ≤ m + 1, and consider the corresponding connected, simple, pla-
nar graph G〈k〉 as defined in Lemma 6.6. Since G has m ∈ O(n2) edges, the
graph G〈k〉 has n′ ≤ m′ ∈ O(m2k4) ⊆ O(n12) vertices, according to Lemma 6.6.
We could then use the assumed algorithm to compute, via (6.14), the coefficients of
v 7→ Ẑ(G〈k〉; q, v). In particular, we would get the coefficient of vd and thus the
value of T (G;xk, xk), with xk = 1 + (q − 1)k and d as defined in Lemma 6.6,
since q 6= 1. Repeating this procedure for k = 1, . . . ,m + 1 would provide m + 1
evaluations of the mth degree polynomial x 7→ T (G;x, x), and these evaluations
would all be distinct since q /∈ {0, 1, 2}. Hence we could get the full polynomial
x 7→ T (G;x, x) by interpolation. The claim then follows from the above discus-
sion.

Hardness of evaluations. The following proposition establishes part (iii) and (iv) of
Theorem 6.2.

Proposition 6.4. Let (x, y) be a nontrivial point in the Tutte plane with q =
(x − 1)(y − 1) /∈ {0, 1, 2}. Then, assuming #ETH, there is no algorithm for Pla-
nar Tutte(x, y) with running time

4Again, in [95] Vertigan denotes by n the number of edges of G, i.e n = |E|, and the number m in
[95, (11.2)] is defined as m = 4k2n.
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(i) exp(o( 24
√
n)) if x 6= 1 and y /∈ {0,−1} for input graphs of O(n2) vertices,

(ii) exp(o( 48
√
n)) if x 6= 1 and y ∈ {0,−1} for simple input graphs.

Proof. Let G be a connected, simple, planar graph with n vertices and m ∈ O(n)
edges (by Euler’s equation), and suppose we want to compute the coefficients of the
mth degree polynomial w 7→ Z(G; q, w). Recall that for q 6= 0 the problem Planar
Tutte(x, y) is computationally equivalent to evaluation of Z(G; q, w) at w = y − 1
for planar graphs G.

(i) For y /∈ {0,−1}, corresponding to w /∈ {−1,−2}, we use thickening and
interpolation. By (4.19) a k-thickening for the multivariate Tutte polynomial corre-
sponds to the weight shift w 7→ (1 + w)k − 1, so we get distinct weight shifts
for distinct values of k for the given restriction on w. Thus we could apply an
algorithm for Planar Tutte(x, y) to input graphs Gk for k = 1, . . . ,m + 1, to get
m + 1 distinct evaluations Z(Gk; q, w) = Z(G; q, wk), and then the coefficients
of w 7→ Z(G; q, w) by interpolation. As Gk has n vertices and O(m2) ⊂ O(n2)
edges for all k ≤ m+ 1, the result follows from Lemma 6.7.

(ii) For y ∈ {0,−1}, corresponding to w ∈ {−1,−2} we use the same argument
with stretches instead of thickenings. Note that since G is simple and planar, the
graph Gk is also simple and planar with O(m2) = O(n2) vertices for any k ≤ m+1.
By (4.18), a k-stretch for the multivariate Tutte polynomial corresponds to a weight
shift w 7→ w′, where (1 + q/w′) = (1 + q/w)k . We must ensure that distinct
values of k gives gives distinct weight shifts. For w = −1 this is true provided
q /∈ {1, 2}, which holds by assumption. For w = −2 this is true provided q /∈ {2, 4},
which also holds by assumption since (w, q) = (−2, 4) corresponds to the point
(x, y) = (−1,−1), which is a trivial point in the Tutte plane and thus excluded by
assumption. The result then follows from Lemma 6.7.

6.5 Discussion

From Theorem 6.1 we have an asymptotically tight lower bound for the problem Planar
Tutte(x, y) for points on the hyperbola H3. Compared to this result, the bounds for
other regions of the plane provided by Theorem 6.2 certainly leave substantial gaps
to the O(

√
n)-exponential upper bound. There is no apparent reason why points on

the hyperbola H3 should present much harder problems than points on any other
curve in the Tutte plane, so it seems likely that the lower bounds of Theorem 6.2
can be significantly improved. In this section we look at some approaches to this
problem, as well as obstacles that were encountered.

6.5.1 The chromatic line

On the chromatic line y = 0, the Tutte polynomial specializes to the chromatic
polynomial χ(G;x) defined in (4.3). For points on this line we only have a lower
bound exponential in Ω( 48

√
n) under #ETH from Theorem 6.2(iii), except for the
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point (−2, 0) where a tight lower bound exponential in Ω(
√
n) follows from Theo-

rem 6.1. For both multigraphs and simple graphs this one point (−2, 0) determines
the exponential-time complexity of any other point on the chromatic line, by a well-
known reduction due to Linial [75], based on the following identity:

Theorem 6.6 (Linial [75]). Let i ∈ {1, 2, . . .} and let r be any real number. Then

χ(G+Ki; r) = r(r − 1) . . . (r − i+ 1) · χ(G; r − i) , (6.15)

where G + Ki is the graph consisting of G and a clique Ki on i vertices, each of
which is adjacent to every vertex of G.

For planar graphs we cannot use this reduction, as the graphs G + Ki are very
nonplanar in general. It would be interesting to find a planarity-preserving reduction
for the chromatic line.

The status of line is particularly intriguing as there can only be a finite number
of points on it where the tight lower bound does not hold, considering the remark in
Section 4.3.2.

6.5.2 Coefficients via #3-Terminal Min-Cut

The lower bounds of Theorem 6.2 (iii) and (iv) are particularly far from the upper
bound. This is due to the exp(Ω( 24

√
n))-time lower-bound of Lemma 6.7 for com-

puting coefficients of w 7→ Z(G; q, w) for simple planar graphs. We can compare
this to Lemma 5.3 of the previous chapter, which gives a lower bound of exp(Ω(m))
under #ETH, for the same problem for general simple graphs. That bound, as well
as the approximation-hardness result of [48], rests ultimately on the hardness of the
following problem

Simple #3-Terminal Min-Cut

Input: A simple graph G = (V,E) with n vertices, m edges
and terminals t1, t2, t3 ∈ V .

Task: Find the number of cuts of minimum size such that
t1, t2 and t3 are in distinct components.

Dahlhaus et al. [26] showed that the decision version of this problem is NP-complete,
and a lower bound of exp(Ω(m)) for the counting version under #ETH follows in
[29, Theorem C.1]. However, Dahlhaus et al. also showed that the decision problem
Planar 3-Terminal Min-Cut is in P, which leaves the status of the counting version
open for planar graphs. It may very well be in FP.

Moreover, even if Simple #3-Terminal Min-Cut would be hard also for planar
graphs, the reduction to the coefficient problem used for Lemma 5.3 is not planarity
preserving. The first step of this reduction is the proof of [30, Lemma 1], where three
new edges are added to the input graph G to Simple #3-Terminal Min-Cut. Then, for
Lemma 5.3, these newly added edges would be removed again using deletions and
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contractions, and this does not necessarily make the resulting graphs planar even if
G was. For example, the following graph is planar,

a
b c

,

but if we add edges ab, bc and ac, and then contract them, we get the nonplanar
graph K5.

6.5.3 An alternative starting point

While Goldberg and Jerrum used the problem Simple #3-Terminal Min-Cut as the
the starting point for the approximation-hardness results in [48], concerning general
graphs, they chose a different problem for the planar version in [49], namely

∆3-Planar Vertex Cover

Input: A simple, planar graph G of maximum degree three,
with n vertices, m edges, and a number k ∈ N.

Task: Decide whether G has a vertex cover of size at most k.

Except for the hyperbola H3, all other regions covered in [49] are treated by
the same, somewhat elaborate, reduction from this problem. As it stands, that
construction increases the number of vertices by an unspecified polynomial factor,
and since no fixed degree can be given on the polynomial expansion, no concrete
superpolynomial lower bound follows. So far, no alternative reduction from the same
problem has been found. However, as the following result shows, such a reduction
would indeed provide some superpolynomial lower bound under ETH.

Theorem 6.7. Assuming ETH, there is no exp(o(
√
n))-time algorithm for ∆3-Planar

Vertex Cover.

This result follows from Lemma 6.8 – 6.10 below. The starting point is the follow-
ing hardness result for the nonplanar version of the problem by Cai and Juedes [19].

Lemma 6.8 (Theorem 4.2 in [19]). Assuming ETH, there is no exp(o(n))-time algo-
rithm for ∆3-Vertex Cover.5

We then use a reduction from ∆3-Vertex Cover to Planar Vertex Cover given in
the same paper. In fact, the construction never produces vertices of degree more
than 6. We state this stronger result here, and clarify some details of the proof for
completeness.

Lemma 6.9 (Lemma 5.1 in [19]). There is a mapping reduction from ∆3-Vertex Cover to
∆6-Planar Vertex Cover, mapping graphs G of maximum degree three and n vertices
to planar graphs G′ of maximum degree six and O(n2) vertices.

5In [19] the bound is stated in terms of the size k of the vertex cover, but the given proof is for the
stronger claim with k = n.

80



CHAPTER 6. LOWER BOUNDS FOR PLANAR GRAPHS

Proof. Given a graph G of maximum degree three, consider a drawing of G in the
plane such that at most two edges cross at any given point. We construct a planar
graph G′ by inserting a small copy of the graph X shown in Figure 6.6 at any point
in in the drawing where two edges intersect, as demonstrated in Figure 6.7, so that
no new edge intersections are formed.

Figure 6.6: The crossover
gadget X , with connection
vertices in black.

X X

Figure 6.7: Example demonstrating the proper insertion of the crossover gadget X .

It is shown in [45] that the graph G has a vertex cover of size k if, and only if,
G′ has a vertex cover of size k′ = k + 13c(G), where c(G) is the number of edge-
intersections in the drawing of G. Since G has maximum degree three, it follows that
c(G) ≤ (3n/2)2, so the number of vertices in G′ is n′ = n + 22c(G) ∈ O(n2).
From the fact that G has maximum degree three and X has maximum degree
six, with connection vertices of maximum degree four, it follows that G′ will have
maximum degree six.

Finally, we consider [43, Lemma 1], which gives a reduction from Planar Vertex
Cover to ∆3-Planar Vertex Cover of quadratic vertex expansion. By a very slight
adjustment, we can use this to reduce from ∆6-Planar Vertex Cover instead (in
fact, any degree-bounded version would do), with only linear vertex expansion, and
Theorem 6.7 follows.

Lemma 6.10. For any fixed d > 3, there is a mapping reduction from ∆d-Planar
Vertex Cover to ∆3-Planar Vertex Cover, mapping graphs G of maximum degree d
and n vertices to planar graphs G′ of maximum degree 3 and O(dn) vertices.

Proof. We follow the construction of [43, Lemma 1]. Given a planar graph G = (V,E)
of maximum degree d and n vertices, consider a fixed planar drawing of G. Pick
v ∈ V , and let u1, . . . , us ∈ V be the neighbors of v in clockwise order. Expand v
into an alternating red-black cycle Cv of length 2d (instead of length n as proposed
in [43]), as demonstrated in Figure 6.8, so that ui and ui+1 become neighbors of
consecutive black vertices in Cv . Add a vertex zv in the center of Cv , and an edge
between zv and one of the red vertices in Cv , which we denote by rv .

v
u5

u4u3

u2

u1

zv
rv

u5

u4u3

u2

u1
Cv

Figure 6.8: Expansion of a vertex v of degree 5 in a graph of maximum degree d = 6.

81



6.5. DISCUSSION

Repeat this for every v ∈ V . The resulting graph G′ = (V ′, E′) is planar, of
maximum degree three, and with |V ′| = (2d + 1)n. Moreover, if G has a vertex
cover C of size k then G′ has the following vertex cover of size k′ = k + dn, with
CBv resp. CRv denoting the set of black resp. red vertices in Cv ,

C′ = {rv : v ∈ C} ∪ {CBv : v ∈ C} ∪ {CRv : v /∈ C} .

Conversely, suppose G′ has a vertex cover C′ of size k′ = k + dn. We can assume
w.l.o.g. that C′ contains the vertex rv for all v ∈ V ; otherwise there is another vertex
cover of at most the same size with this property. As every edge in G corresponds
to an edge in G′ with black end vertices, the following gives a vertex cover in G,

C = {v ∈ V : CBv ∩ C′ 6= ∅} .

To estimate the size of this set, we note that C′ must contain at least d vertices from
every cycle Cv , i.e. |Cv ∩ C′| ≥ d. Together with the fact than

k + dn = |C′| =
∑
v∈V
|Cv ∩ C′| ,

it follows that all except at most k cycles Cv has exactly d vertices in C′. Since
rv ∈ C′, this means that all except at most k cycles Cv contribute only red vertices
to C′. Thus |C| ≤ k, which concludes the proof.
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Chapter 7

Open Problems

In Chapter 3, a 2knO(1)-time Monte Carlo algorithm was presented for the K-Cycle
problem. This algorithm can find a shortest solution of given parity, but more than
that we cannot specify the length of the output. This could be something for future
investigations. It would also be interesting to know how close to this time bound a
deterministic algorithm could get, as the current best deterministic algorithm is still
doubly exponential in k10 [62]. Finally, it would of course be nice to find a relevant
application of this result.

As for the lower bounds in the Tutte plane, the line y = 1, except for the point
(1, 1), is still left completely open for simple graphs, and even for multigraphs the
best we have on this line is the exp(Ω( 8

√
n))-bound from the planar case. For

simple graphs, only the chromatic line has a lower bound matching the upper bound
of exp(O(n)), all other results being of type exp(Ω(n/ logk n)), where k depends
on the size expansion of the given reduction. It does not seem unreasonable that this
tight bound of the chromatic line could be extended to further points in the plane, or
at least that some of the lower bounds could be sharpened by improved reductions.
Even more so, the lower bounds of type exp(Ω( k

√
n)) reported for the planar case

are for most points very far from the upper bound exp(O(
√
n)), as discussed in

Section 6.5.
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Appendix A

List of named problems

Below is a list of the statements of computational problems mentioned in the thesis.
Other problems are variations or specializations of these problems, according to the
following conventions, where Q denotes a given problem:

#Q is the standard counting version of Q (a decision problem),
Simple Q is the restriction of Q to simple input graphs,
Planar Q is the restriction of Q to planar input graphs,
Cubic Q is the restriction of Q to cubic input graphs, and

∆d-Q is the restriction of Q to input graphs of maximum degree d.

3-Coloring

Input: A graph G with n vertices and m edges.
Task: Decide whether G has a proper 3-coloring.

3-Sat

Input: A 3-CNF formula ϕ with n variables and m clauses.
Task: Decide whether ϕ is satisfiable.

3-Terminal Min-Cut

Input: A graph G = (V,E) with n vertices, m edges, three terminals
t1, t2, t3 ∈ V and a number k ∈ N.

Task: Decide whether there is a cut of size k such that t1, t2 and t3
are in distinct components.

Clique

Input: A graph G with n vertices, and a number k ∈ N.
Task: Decide whether G contains a clique of k vertices.
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Disjoint Paths

Input: A simple graph G = (V,E) with n vertices, and k vertex pairs
(s1, t1), . . . , (sk, tk).

Task: Decide whether G contains k mutually disjoint paths P1, . . . , Pk
such that Pi connects si to ti.

Disjoint Factors

Input: A finite string s of digits from {1, 2, . . . , k}.
Task: Decide whether there are k disjoint substrings s1, . . . , sk of s

such that si starts and end with the digit i.

Exact Hitting Set

Input: A hypergraph H consisting of m subsets of a finite set V .
Task: Decide whether there is a subset S ⊂ V such that

|S ∩ E| = 1 for all E ∈ H.

Hamiltonian Cycle (Path)

Input: A graph G with n vertices and m edges.
Task: Decide whether G contains a Hamiltonian cycle (path).

Hitting Set

Input: A hypergraph H consisting of m subsets of a finite set V .
Task: Decide whether there is a subset S ⊂ V such that

|S ∩ E| 6= 0 for all E ∈ H.

Independent Set

Input: A graph G with n vertices, and a number k ∈ N.
Task: Decide whether G contains an independent set of k vertices.

K-Cycle

Input: A simple graph G = (V,E) with n vertices, and a subset
K ⊆ V ∪ E of size k.

Task: Decide whether G contains a K-cycle.

k-Cycle (-Path)

Input: A graph G with n vertices and m edges, and a number k ∈ N.
Task: Decide whether G contains a cycle (path) of length k.

l-K-Hole

Input: A simple graph G = (V,E) with n vertices, a subset K ⊂ V
of size k = (log n)O(1), and a number l ≥ 3.

Task: Decide whether G contains an induced cycle of length l,
containing all vertices in K .
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APPENDIX A. LIST OF NAMED PROBLEMS

Monochrome K-Cycle

Input: An simple, edge-colored graph G = (V,E) with n vertices,
and a subset K ⊆ V ∪ E of size k.

Task: Decide whether G contains a monochrome K-cycle.

Steiner Tree

Input: A graph G = (V,E) with n vertices, a set of s terminals
t1, . . . , ts ∈ V , and a number k ∈ N.

Task: Decide whether G contains a tree connecting all terminals
and including at most k other vertices.

Tutte(x, y)

Input: A multigraph G with n vertices and m edges.
Task: Compute T (G;x, y), as defined in (4.2).

Path Repiability(p)

Input: A graph G = (V,E) with n vertices, m edges,
and terminals s, t ∈ V .

Task: Compute Rs,t(G; p), as defined in (6.7).

Vertex Cover

Input: A simple graph G with n vertices, m edges, and k ∈ N.
Task: Decide whether G has a vertex cover of size at most k.
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