
OCT 30, 2007CLAUS BRABRAND PROGRAMMING PARADIGMS

LOGIC-PROGRAMMING
IN PROLOG

Claus Brabrand
brabrand@itu.dk

IT University of Copenhagen
[http://www.itu.dk/people/brabrand/]

"Programming Paradigms", Dept. of Computer Science, Aalborg Uni. (Fall 2007)

[2]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Plan for Today

Scene V: "Monty Python and The Holy Grail"
Lecture: "Relations & Inf. Sys." (10:15 – 11:00)
Exercise 1 (11:15 – 12:00)
Lunch break (12:00 – 12:30)
Lecture: "PROLOG & Matching" (12:30 – 13:15)
Lecture: "Proof Search & Rec" (13:30 – 14:15)
Exercises 2+3 (14:30 – 15:15)
Exercises 4+5 (15:30 – 16:15)

[3]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Outline (three parts)

Part 1:
"Monty Python and the Holy Grail" (Scene V)
Relations & Inference Systems

Part 2:
Introduction to PROLOG (by-Example)
Matching

Part 3:
Proof Search (and Backtracking)
Recursion

OCT 30, 2007CLAUS BRABRAND PROGRAMMING PARADIGMS

MONTY PYTHON

Keywords:
Holy Grail, Camelot, King Arthur,
Sir Bedevere, The Killer Rabbit®,
Sir Robin-the-not-quite-so-brave-as-Sir Lancelot

[5]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Movie(!)

"Monty Python and the Holy Grail" (1974)
Scene V: "The Witch":

[6]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

The Monty Python Reasoning:

"Axioms" (aka. "Facts"):

"Rules":

female(girl). %- by observation -----

floats(duck). %- King Arthur -----

sameweight(girl,duck). %- by experiment -----

witch(X) :- female(X) , burns(X).

burns(X) :- wooden(X).

wooden(X) :- floats(X).

floats(X) :- sameweight(X,Y) , floats(Y).

[7]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Inductive Reasoning: witch(girl)

"Induction":
witch(girl)

burns(girl)female(girl)

wooden(girl)

floats(girl)

floats(duck)sameweight(girl,duck)

%- by observation -----

%- by experiment ----- %- King Arthur -----

floats(X) :- sameweight(X,Y) , floats(Y).

witch(X) :- female(X) , burns(X).

burns(X) :- wooden(X).

wooden(X) :- floats(X).
↑

(aka. ”bottom-up reasoning”)

[8]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Deductive Reasoning: witch(girl)

"Deduction":
witch(girl)

burns(girl)female(girl)

wooden(girl)

floats(girl)

floats(duck)sameweight(girl,duck)

%- by observation -----

%- by experiment ----- %- King Arthur -----

floats(X) :- sameweight(X,Y) , floats(Y).

witch(X) :- female(X) , burns(X).

burns(X) :- wooden(X).

wooden(X) :- floats(X).
↓

(aka. ”top-down reasoning”)

[9]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Induction vs. Deduction
Induction
(aka. “bottom-up reasoning”):

Specific → General
(or: concrete → abstract)

Deduction
(aka. “top-down reasoning”):

General → Specific
(or: abstract → concrete)

“Same difference” (just two different directions of reasoning...)

Deduction ↔ Induction
(just swap directions of arrows)

↑ ↓

[10]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Hearing: Nomination of CIA Director,
General Michael Hayden (USAF).

LEVIN:

"You in my office discussed, I think, a very interesting approach, which is the difference
between starting with a conclusion and trying to prove it and instead starting with
digging into all the facts and seeing where they take you.

Would you just describe for us that difference and why [...]?"

LEVIN: U.S. SENATOR CARL LEVIN (D-MI)
HAYDEN: GENERAL MICHAEL B. HAYDEN (USAF),

NOMINEE TO BE DIRECTOR OF CIA

CQ Transcriptions
Thursday, May 18, 2006; 11:41 AM

"DEDUCTIVE vs. INDUCTIVE REASONING"

HAYDEN:

"Yes, sir. And I actually think I prefaced that with both of these are legitimate forms of
reasoning,

that you've got deductive [...] in which you begin with, first, [general]
principles and then you work your way down the specifics.

And then there's an inductive approach to the world in which you start
out there with all the data and work yourself up to general principles.

They are both legitimate."

OCT 30, 2007CLAUS BRABRAND PROGRAMMING PARADIGMS

INFERENCE SYSTEMS

Keywords:
relations, axioms, rules,
fixed-points

[12]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Relations

Example1: “even” relation:
Written as: as a short-hand for:
… and as: as a short-hand for:

Example2: “equals” relation:
Written as: as a short-hand for:
… and as: as a short-hand for:

Example3: “DFA transition” relation:
Written as: as a short-hand for:
… and as: as a short-hand for:

|_even ⊆

Z

|_even 4

|_even 5

4 ∈

|_even

5 ∉

|_even

2 ≠

3 (2,3) ∉

‘=’

‘=’ ⊆

Z ×

Z

(2,2) ∈

‘=’2 = 2

‘→’ ⊆

Q × Σ × Q

q → q’σ (q, σ, q’) ∈

‘→’

(p, σ, p’) ∉

‘→’p → p’σ

[13]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Inference System

Inference System:
Inductive (recursive) specification of relations
Consists of axioms and rules

Example:
Axiom:

“0 (zero) is even”!

Rule:
“If n is even, then m is even (where m = n+2)”

|_even 0

|_even n
|_even m

m = n+2

|_even ⊆

Z

[14]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Terminology

Meaning:
Inductive:
“If n is even, then m is even (provided m = n+2)”; or
Deductive:
“m is even, if n is even (provided m = n+2)”

|_even n
|_even m

m = n+2

premise(s)

conclusion

side-condition(s)

[15]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Abbreviation

Often, rules are abbreviated:

Rule:
“If n is even, then m is even (provided m = n+2)”; or
“m is even, if n is even (provided m = n+2)”

Abbreviated rule:
“If n is even, then n+2 is even”; or
“n+2 is even, if n is even”

|_even n
|_even n+2

|_even n
|_even m

m = n+2

Even so, this is
what we mean

[16]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Relation Membership? x∈R

Axiom:
“0 (zero) is even”!

Rule:
“If n is even, then n+2 is even”

Is 6 even?!?

The inference tree proves that:

|_even 0
|_even 2
|_even 4
|_even 6

|_even 0

|_even n
|_even n+2

[rule1]
[rule1]
[rule1]
[axiom1]

inference tree

|_even 6

?

[17]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Example: “less-than-or-equal-to”

Relation:

Is ”1 ≤ 2” ? (why/why not)!? [activation exercise]
Yes, because there exists an inference tree:

In fact, it has two inference trees:

0 ≤

0 n ≤

m
n ≤

m+1[rule1][axiom1]

‘≤’ ⊆

N ×

N

n ≤

m
n+1 ≤

m+1[rule2]

0 ≤

0
0 ≤

1

1 ≤

2
[rule2]
[rule1]
[axiom1] 0 ≤

0

1 ≤

1
1 ≤

2

[rule1]
[rule2]
[axiom1]

[18]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Activation Exercise 1

Activation Exercise:
1. Specify the signature of the relation: '<<'

x << y "y is-double-that-of x"

2. Specify the relation via an inference system
i.e. axioms and rules

3. Prove that indeed:
3 << 6 "6 is-double-that-of 3"

[19]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Activation Exercise 2

Activation Exercise:
1. Specify the signature of the relation: '//'

x // y "x is-half-that-of y"

2. Specify the relation via an inference system
i.e. axioms and rules

3. Prove that indeed:
3 // 6 "3 is-half-that-of 6"

Syntactically different
Semantically the same relation

[20]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Relation vs. Function

A function...

...is a relation

...with the special requirement:

i.e., "the result", b, is uniquely determined from
"the argument", a.

f : A →

B

Rf ⊆

A ×

B

∀a∈A, b1 ,b2∈B:
Rf (a,b1) ∧

Rf (a,b2) => b1 = b2

[21]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Relation vs. Function (Example)

The (2-argument) function '+'...

...induces a (3-argument) relation

...that obeys:

i.e., "the result", r, is uniquely determined from
"the arguments", n and m

+ : N ×

N →

N

R+ ⊆

N ×

N ×

N

∀n,m∈N, r1 ,r2∈N:
R+ (n,m,r1) ∧

R+ (n,m,r2) => r1 = r2

[22]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Example: “add”

Relation:

Is ”2 + 2 = 4” ?!?
Yes, because there exists an inf. tree for "+(2,2,4)":

+(0,m,m)[axiom1]

‘+’ ⊆

N ×

N ×

N

+(n,m,r)
+(n+1,m,r+1)[rule1]

+(0,2,2)
+(1,2,3)
+(2,2,4)

[rule1]
[rule1]
[axiom1]

[23]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Relation Definition (Interpretation)

Actually, an inference system:

…is a demand specification for a relation:

The three relations:
R = {0, 2, 4, 6, …} (aka., 2N)
R’ = {0, 2, 4, 5, 6, 7, 8, …}
R’’ = {…, -2, -1, 0, 1, 2, …} (aka., Z)

…all satisfy the (above) specification!

|_R

0 |_R n
|_R n+2[rule1][axiom1]

|_R ⊆

Z

(0 ∈

‘|_R

’) ∧

(∀

n ∈

‘|_R

’ ⇒

n+2 ∈

‘|_R

’)

[24]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Inductive Interpretation ()

A inference system:

…induces a function:

Definition:
‘lfp’ (least fixed point) ~ least solution:

|_R 0
|_R n
|_R n+2[rule1][axiom1]

FR

: P(Z) → P(Z)

|_R ⊆

Z

FR

(R) = {0} ∪

{ n+2 | n ∈

R }

F(Ø) = {0} F2(Ø) = F({0}) = {0,2} F3(Ø) = F2({0}) = F({0,2}) = {0,2,4} …

|_even := lfp(FR

) = ∪

FR
n(Ø)

n

|_R ∈

P(Z)

From rel. to rel.

2N∪ ∪ ∪ =

Fn(Ø) ~ “Anything that can be proved in ‘n’ steps”

⇔

OCT 30, 2007CLAUS BRABRAND PROGRAMMING PARADIGMS

Exercise 1:

11:15 – 12:00

[27]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

1. Relations via Inf. Sys. (in Prolog)

Purpose:
Learn how to describe relations via inf. sys. (in Prolog)

OCT 30, 2007CLAUS BRABRAND PROGRAMMING PARADIGMS

INTRODUCTION TO PROLOG
(by example)

Keywords:
Logic-programming, Relations,
Facts & Rules, Queries, Variables,
Deduction, Functors, & Pulp Fiction :)

[29]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

PROLOG Material

We'll use the on-line material:
"Learn Prolog Now!"

[Patrick Blackburn, Johan Bos, Kristina Striegnitz, 2001]

[http://www.coli.uni-saarland.de/~kris/learn-prolog-now/]

[30]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Prolog
A French programming language (from 1971):

"Programmation en Logique" (="programming in logic")

A declarative, relational style of programming
based on first-order logic:

Originally intended for natural-language processing, but has been used
for many different purposes (esp. for programming artificial intelligence).

The programmer writes a "database" of "facts" and "rules";
e.g.:

The user then supplies a "goal" which the system attempts to prove
deductively (using resolution and backtracking); e.g., witch(girl).

%- FACTS ----------
female(girl).
floats(duck).
sameweight(girl,duck).

%- RULES ----------
witch(X) :- burns(X) , female(X).
burns(X) :- wooden(X).
wooden(X) :- floats(X).
floats(X) :- sameweight(X,Y) , floats(Y).

[31]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Operational vs. Declarative Programming

Operational Programming:
The programmer specifies operationally:

how to obtain a solution

Very dependent on operational details

Declarative Programming:
The programmer declares:

what are the properties of a solution

(Almost) Independent on operational details
PROLOG:
"The programmer describes the logical properties of the result of a computation,
and the interpreter searches for a result having those properties".

- Prolog
- Haskell
- ...

- C
- Java
- ...

[32]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Facts, Rules, and Queries

There are only 3 basic constructs in PROLOG:
Facts
Rules

Queries (goals that PROLOG attempts to prove)

"knowledge base" (or "database")

Programming in PROLOG is all about writing knowledge bases.

We use the programs by posing the right queries.

[33]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Introductory Examples

Five example (knowledge bases)
…from "Pulp Fiction":

...in increasing complexity:
KB1: Facts only
KB2: Rules
KB3: Conjunction ("and") and disjunction ("or")
KB4: N-ary predicates and variables
KB5: Variables in rules

[34]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

KB1: Facts Only

KB1:

Basically, just a collection of facts:
Things that are unconditionally true;

We can now use KB1 interactively:

% FACTS:
woman(mia).
woman(jody).
woman(yolanda).
playsAirGuitar(jody).

?- woman(mia).
Yes

?- woman(jody).
Yes

?- playsAirGuitar(jody).
Yes

?- playsAirGuitar(mia).
No

?- tatooed(joey).
No

?- playsAirGuitar(marcellus).
No

?- attends_dProgSprog(marcellus).
No

?- playsAirGitar(jody).
No

e.g.
"mia is a woman"

[35]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Rules

Rules:
Syntax:
Semantics:

"If the body is true, then the head is also true"

To express conditional truths:
e.g.,
i.e., "Mia plays the air-guitar, if she listens to music".

PROLOG then uses the following deduction principle
(called:
"modus ponens"):

head :- body.

~ body
head
inf.sys.

H :- B // If B, then H (or "H <= B")
B // B.

H // Therefore, H.

playsAirGuitar(mia) :- listensToMusic(mia).

[36]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

KB2: Rules

KB2 contains 2 facts and 3 rules:

which define 3 predicates: (listensToMusic, happy, playsAirGuitar)

PROLOG is now able to deduce...

...using "modus ponens":

% FACTS:
listensToMusic(mia).
happy(yolanda).

playsAirGuitar(mia) :- listensToMusic(mia).
playsAirGuitar(yolanda) :- listensToMusic(yolanda).
listensToMusic(yolanda) :- happy(yolanda).

?- playsAirGuitar(mia).
Yes

playsAirGuitar(mia) :- listensToMusic(mia).
listensToMusic(mia).

playsAirGuitar(mia).

listensToMusic(yolanda) :- happy(yolanda).
happy(yolanda).

listensToMusic(yolanda).

?- playsAirGuitar(yolanda).
Yes

playsAirGuitar(yolanda) :- listensToMusic(yolanda).
listensToMusic(yolanda).

playsAirGuitar(yolanda).

...combined with...

[37]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Conjunction and Disjunction

Rules may contain multiple bodies
(which may be combined in two ways):

Conjunction (aka. "and"):

i.e., "Vincent plays, if he listens to music and he's happy".

Disjunction (aka. "or"):

i.e., "Butch plays, if he listens to music or he's happy".
...which is the same as (preferred):

playsAirGuitar(vincent) :- listensToMusic(vincent),
happy(vincent).

playsAirGuitar(butch) :- listensToMusic(butch);
happy(butch).

playsAirGuitar(butch) :- listensToMusic(butch).
playsAirGuitar(butch) :- happy(butch).

[38]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

KB3: Conjunction and Disjunction

KB3 defines 3 predicates:
happy(vincent).

listensToMusic(butch).

playsAirGuitar(vincent) :- listensToMusic(vincent),
happy(vincent).

playsAirGuitar(butch) :- happy(butch).
playsAirGuitar(butch) :- listensToMusic(butch).

?- playsAirGuitar(vincent).
No

?- playsAirGuitar(butch).
Yes

playsAirGuitar(butch) :- listensToMusic(butch).
listensToMusic(butch).

playsAirGuitar(butch).

...because we cannot deduce:
listensToMusic(vincent).

...using the last rule above

[39]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

KB4: N-ary Predicates and Variables

KB4:

Interaction with Variables (in upper-case):

PROLOG tries to match woman(X) against the rules
(from top to bottom) using X as a placeholder for anything.

More complex query:

woman(mia).
woman(jody).
woman(yolanda).

Defining unary predicate: woman/1 Defining binary predicate: loves/2

?- woman(X).
X = mia
?- ; // ";" ~ are there any other matches ?
X = jody
?- ; // ";" ~ are there any other matches ?
X = yolanda
?- ; // ";" ~ are there any other matches ?
No

loves(vincent,mia).
loves(marcellus,mia).
loves(pumpkin,honey_bunny).
loves(honey_bunny,pumpkin).

?- loves(marcellus,X), woman(X).
X = mia

[40]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

KB5: Variables in Rules

KB5:

i.e., "X is-jealous-of Y, if there exists someone Z
such that X loves Z and Y also loves Z".

(statement about everything in the knowledge base)

Query:

(they both love Mia).

Q: Any other jealous people in KB5?

loves(vincent,mia).
loves(marcellus,mia).
loves(pumpkin,honey_bunny).
loves(honey_bunny,pumpkin).

jealous(X,Y) :- loves(X,Z),
loves(Y,Z).

?- jealous(marcellus,Who).
Who = vincent

NB: (implicit)
existential quantification
(i.e., ”∃

Z”)

[41]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Prolog Terms

Terms:
Atoms (first char lower-case or is in quotes):

a, vincent, vincentVega, big_kahuna_burger, ...
'a', 'Mia', 'Five dollar shake', '#!%@*', ...

Numbers (usual):
..., -2, -1, 0, 1, 2, ...

Variables (first char upper-case or underscore):
X, Y, X_42, Tail, _head, ... ("_" special variable)

Complex terms (aka. "structures"):
(f is called a "functor")

a(b), woman(mia), woman(X), loves(X,Y), ...
father(father(jules)), f(g(X),f(y)), ... (nested)

f(term1, term2, …, termn)

constants

[42]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Implicit Data Structures

PROLOG is an untyped language

Data structures are implicitly defined via
constructors (aka. "functors"):

e.g.

Note: these functors don't do anything; they just
represent structured values

e.g., the above might represent a three-element list:
[x,y,z]

cons(x, cons(y, cons(z, nil)))

OCT 30, 2007CLAUS BRABRAND PROGRAMMING PARADIGMS

MATCHING

Keywords:
Matching, Unification, "Occurs check",
Programming via Matching...

[44]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Matching: simple rec. def. (≅)

Matching:
iff c,c' same atom/number (c,c' constants)

e.g.; mia ≅ mia, mia ≅ vincent, 'mia' ≅ mia, ...
0 ≅

0, -2 ≅

-2, 4 ≅

5, 7 ≅

'7', ...

e.g.; X ≅ mia, woman(jody) ≅ X, A ≅ B, ...

iff f=f', n=m, ∀i recursively: ti ≅ t'i
e.g., woman(X) ≅ woman(mia), f(a,X) ≅ f(Y,b),
woman(mia) ≅ woman(jody), f(a,X) ≅ f(X,b).

'≅' ⊆

TERM ×

TERM

Note: all vars matches compatible ∀i

c ≅ c'

X ≅ t
t ≅ X
X ≅ Y

f(t1 ,…

,tn) ≅

f'(t'1 ,…

,t'm)

always match (X,Y variables, t any term)

co
ns

ta
nt

s
va

ria
bl

es
co

m
pl

ex
te

rm
s

[45]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

"=/2" and QUIZzzzz ...

In PROLOG (built-in matching pred.): "=/2":
=(2,2); may also be written using infix notation:

i.e., as "2 = 2".

Examples:
mia = mia ?
mia = vincent ?
-5 = -5 ?
5 = X ?
vincent = Jules ?
X = mia, X = vincent ?
kill(shoot(gun),Y) = kill(X,stab(knife)) ?
loves(X,X) = loves(marcellus, mia) ?

Yes
No
Yes
X=5

J…=v…
No

X=…,Y=…
No

[46]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Variable Unification ("fresh vars")

Variable Unification:

"_G225" is a "fresh" variable (not occurring elsewhere)

Using these fresh names avoids name-clashes with
variables with the same name nested inside

[More on this later...]

?- X = Y.
X = _G225
Y = _G225

[47]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

PROLOG: Non-Standard Unificat°

PROLOG does not use "standard unification":
It uses a "short-cut" algorithm (w/o cycle detection
for speed-up, saving so-called "occurs checks"):

Consider (non-unifiable) query:

...on older versions of PROLOG:

...on newer versions of PROLOG:

...representing an infinite term

?- father(X) = X.

?- father(X) = X.
Out of memory! // on older versions of Prolog
X = father(father(father(father(father(father(father(

?- father(X) = X.
X = father(**) // on newer versions of Prolog

PROLOG Design Choice:
trading safety for efficiency
(rarely a problem in practice)

[48]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Programming via Matching

Consider the following knowledge base:

Almost looks too simple to be interesting; however...!:

We even get complex, structured output:
"point(_G228,2)".

vertical(line(point(X,Y),point(X,Z)).
horizontal(line(point(X,Y),point(Z,Y)).

?- vertical(line(point(1,2),point(1,4))). // match
Yes
?- vertical(line(point(1,2),point(3,4))). // no match
No
?- horizontal(line(point(1,2),point(3,Y))). // var match
Y=2
?- ; // <-- ";" are there any other lines ?
No
?- horizontal(line(point(1,2),P)). // any point?
P = point(_G228,2) // i.e. any point w/ Y-coord 2
?- ; // <-- ";" other solutions ?
No

Note: scope rules:
the X,Y,Z's are all different
in the (two) different rules!

OCT 30, 2007CLAUS BRABRAND PROGRAMMING PARADIGMS

Short Break:

15 mins

OCT 30, 2007CLAUS BRABRAND PROGRAMMING PARADIGMS

PROOF SEARCH ORDER

Keywords:
Proof Search Order,
Deduction, Backtracking,
Non-termination, ...

[51]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Proof Search Order

Consider the following knowledge base:

...and query:

We (homo sapiens) can "easily" figure out that X=b is
the (only) answer but how does PROLOG go about this?

f(a).
f(b).

g(a).
g(b).

h(b).

k(X) :- f(X),g(X),h(X).

?- k(X).

[52]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Resolution:

1. Search knowledge base (from top to bottom) for
(axiom or rule head) matching with (first) goal:

Axiom match: remove goal and process next goal [→1]
Rule match: (as in this case): [→2]
No match: backtrack (undo; try next choice in 1.) [→1]

2. "α-convert" variables (to avoid later name clashes):
Goal': (unifying goal and match)
Match': [→3]

3. Replace goal with rule body:
Now resolve new goals (from left to right); [→1]

f(a). f(b). g(a). g(b). h(b).
k(X) :- f(X),g(X),h(X).

k(X)

rule head rule body

axioms (5x)

rule (1x)

k(X) :- f(X),g(X),h(X).

k(_G225) :- f(_G225),g(_G225),h(_G225).

k(_G225)

f(_G225),g(_G225),h(_G225).

Possible outcomes:
- success: no more goals to match (all matched w/ axioms and removed)
- failure: unmatched goal (tried all possibilities: exhaustive backtracking)
- non-termination: inherent risk (same / bigger-and-bigger / more-and-more goals)

PROLOG's Search Order

[53]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Search Tree (Visualization)

KB: ; goal:f(a). f(b). g(a). g(b). h(b).
k(X) :- f(X),g(X),h(X).

k(X)

k(X)

f(_G225), g(_G225), h(_G225)

g(a), h(a)

h(a)

g(b), h(b)

h(b)

backtrack

choice point

Yes

X = _G225

_G225 = a _G225 = b

rule1

axiom1

axiom3

axiom2

axiom4

axiom5

OCT 30, 2007CLAUS BRABRAND PROGRAMMING PARADIGMS

RECURSION

Keywords:
Recursion (numerals, addition),
Careful w/ Recursion:

(PROLOG vs. inf.sys.)

[55]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Recursion (in Rules)

Declarative (recursive) specification:

What does PROLOG do (operationally) given query:
?

...same algorithm as before (works fine w/ recursion)

just_ate(mosquito, blood(john)).
just_ate(frog, mosquito).
just_ate(stork, frog).

is_digesting(X,Y) :- just_ate(X,Y).
is_digesting(X,Y) :- just_ate(X,Z),

is_digesting(Z,Y).

?- is_digesting(stork, mosquito).

[56]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Do we really need Recursion?

Example: Descendants
"X descendant-of Y" ~ "X child-of, child-of, ..., child-of Y"

Okay for above knowledge base; but what about...:

child(anne, brit).
child(brit, carol).

descend(A,B) :- child(A,B).
descend(A,C) :- child(A,B),

child(B,C).

child(anne, brit).
child(brit, carol).
child(carol, donna).
child(donna, eva).

?- descend(anne, donna).
No :(

[57]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Need Recursion? (cont'd)
Then what about...:

Now works for...:

...but now what about:

Our "strategy" is:
extremely redundant; and
only works up to finite K!

descend(A,B) :- child(A,B).
descend(A,C) :- child(A,B),

child(B,C).
descend(A,D) :- child(A,B),

child(B,C),
child(C,D).

?- descend(anne, donna).
Yes :)

?- descend(anne, eva).
No :(

[58]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Solution: Recursion!

Recursion to the rescue:

Works:

...for structures of arbitrary size:
...even for "zoe":

...and is very concise!

descend(X,Y) :- child(X,Y).
descend(X,Y) :- child(X,Z),

descend(Z,Y).

?- descend(anne, eva).
Yes :)

?- descend(anne, zoe).
Yes :)

[59]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Operationally (in PROLOG)

Search tree
for query:

descend(a,d)

Yes

rule1

axiom3

child(a,b).
child(b,c).
child(c,d).
child(d,e).

descend(X,Y) :- child(X,Y).
descend(X,Y) :- child(X,Z),

descend(Z,Y).

?- descend(a,d).
Yes :)

choice point

child(a,d)

backtrack

child(a,_G1),descend(_G1,d)

rule2

axiom1

descend(b,d)

_G1 = b

child(b,d)

backtrack

rule1 rule2

child(b,_G2),descend(_G2,d)

axiom2_G2 = c

descend(c,d)

choice point

child(c,d)

rule1

[60]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Example: Successor

Mathematical definition of numerals:

"Unary encoding of numbers"
Computers use binary encoding
Homo Sapiens agreed (over time) on decimal encoding
(Earlier cultures used other encoding: base 20, 64, ...)

In PROLOG:

|_num 0
|_num N
|_num succ N[rule1][axiom1]

numeral(0).

numeral(succ(N)) :- numeral(N).

typing in the inference system
"head under the arm"

(using a Danish metaphor).

[61]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Backtracking (revisited)

Given:

Interaction with PROLOG:

numeral(0).

numeral(succ(N)) :- numeral(N).

?- numeral(0). // is 0 a numeral ?
Yes
?- numeral(succ(succ(succ(0)))). // is 3 a numeral ?
Yes
?- numeral(X). // okay, gimme a numeral ?
X=0
?- ; // please backtrack (gimme the next one?)
X=succ(0)
?- ; // backtrack (next?)
X=succ(succ(0))
?- ; // backtrack (next?)
X=succ(succ(succ(0)))
... // and so on...

[62]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Example: Addition

Recall addition inference system (~3 hrs ago):

In PROLOG:

However, one extremely important difference:

+(0,M,M)[axiom1]‘+’ ⊆

N ×

N ×

N +(N,M,R)
+(N+1,M,R+1)[rule1]

add(0,M,M).

add(succ(N),M,succ(R)) :- add(N,M,R).

Again:
typing in the inference system

"head under the arm"
(using a Danish metaphor).

add(0,M,M).

add(succ(N),M,R) :- add(N,succ(M),R).

inf. sys. vs. PROLOG

math. ∃

inf.tree vs. fixed search alg.

vs.+(0,M,M)[axiom1]
+(N,M+1,R)
+(N+1,M,R)

[rule1]

no ☺ loops
- top-to-bottom
- left-to-right
- backtracking

?- add(X,succ(succ(0)),succ(0)).X?: +(X,2,1)

[63]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Be Careful with Recursion!

Original:
Query:

rule bodies:

rules:

bodies+rules:

is_digesting(X,Y) :- just_ate(X,Z),
is_digesting(Z,Y).

is_digesting(A,B) :- just_ate(A,B).

is_digesting(A,B) :- just_ate(A,B).
is_digesting(X,Y) :- is_digesting(Z,Y),

just_ate(X,Z).

is_digesting(X,Y) :- is_digesting(Z,Y),
just_ate(X,Z).

is_digesting(A,B) :- just_ate(A,B).

just_ate(mosquito, blood(john)).
just_ate(frog, mosquito).
just_ate(stork, frog).

EX
ER

C
IS

E:
W

ha
t h

ap
pe

ns
 if

 w
e

sw
ap

...

?- is_digesting(stork, mosquito).

is_digesting(A,B) :- just_ate(A,B).
is_digesting(X,Y) :- just_ate(X,Z),

is_digesting(Z,Y).

OCT 30, 2007CLAUS BRABRAND PROGRAMMING PARADIGMS

Exercises 2+3:

14:30 – 15:15

[65]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

2. Finite-State Search Problems

Purpose:
Learn to solve encode/solve/decode search problems

[66]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

3. Finite-State Problem Solving

Purpose:
Learn to solve encode/solve/decode search problems

OCT 30, 2007CLAUS BRABRAND PROGRAMMING PARADIGMS

Exercises 4+5:

15:30 – 16:15

[68]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

4. Multiple Solutions & Backtracking

Purpose:
Learn how to deal with mult. solutions & backtracking

4

[69]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

5. Recursion in Prolog
Purpose: Learn how to be careful with recursion

5

[70]
CLAUS BRABRAND

?-

PROGRAMMING PARADIGMS OCT 30, 2007

Hand-in #5

Hand-in:
To check that you are able to solve problems in Prolog

explain carefully how you repr. & what PROLOG does!

	LOGIC-PROGRAMMING �IN PROLOG
	Plan for Today
	Outline (three parts)
	MONTY PYTHON
	Movie(!)
	The Monty Python Reasoning:
	Inductive Reasoning: witch(girl)
	Deductive Reasoning: witch(girl)
	Induction vs. Deduction
	Hearing: Nomination of CIA Director, �General Michael Hayden (USAF).
	INFERENCE SYSTEMS
	Relations
	Inference System
	Terminology
	Abbreviation
	Relation Membership? xR
	Example: “less-than-or-equal-to”
	Activation Exercise 1
	Activation Exercise 2
	Relation vs. Function
	Relation vs. Function (Example)
	Example: “add”
	Relation Definition (Interpretation)
	Inductive Interpretation ()
	Exercise 1:
	1. Relations via Inf. Sys. (in Prolog)
	INTRODUCTION TO PROLOG�(by example)
	PROLOG Material
	Prolog
	Operational vs. Declarative Programming
	Facts, Rules, and Queries
	Introductory Examples
	KB1: Facts Only
	Rules
	KB2: Rules
	Conjunction and Disjunction
	KB3: Conjunction and Disjunction
	KB4: N-ary Predicates and Variables
	KB5: Variables in Rules
	Prolog Terms
	Implicit Data Structures
	MATCHING
	Matching: simple rec. def. ()
	"=/2" and QUIZzzzz...
	Variable Unification ("fresh vars")
	PROLOG: Non-Standard Unificat°
	Programming via Matching
	Short Break:
	PROOF SEARCH ORDER
	Proof Search Order
	Slide Number 52
	Search Tree (Visualization)
	RECURSION
	Recursion (in Rules)
	Do we really need Recursion?
	Need Recursion? (cont'd)
	Solution: Recursion!
	Operationally (in PROLOG)
	Example: Successor
	Backtracking (revisited)
	Example: Addition
	Be Careful with Recursion!
	Exercises 2+3:
	2. Finite-State Search Problems
	3. Finite-State Problem Solving
	Exercises 4+5:
	4. Multiple Solutions & Backtracking
	5. Recursion in Prolog
	Hand-in #5

