Exercises on slide 11

Exercise 1
Argue that A and \bar{A} are disjoint.

Solution
By definition of the complement, \bar{A} is the set of those elements from the universal set \mathbb{U}, which are not in A, so if $x \in A$ then $x \notin \bar{A}$ and if $x \in \bar{A}$ then $x \notin A$, thus there is no such x that $x \in A$ and $x \in \bar{A}$, therefore $A \cap \bar{A} = \emptyset$.

Exercise 2
Let $\mathbb{U} = \mathbb{N}$. What is the complement of $\{x : x^2 - 3x - 4 = 0\}$? What if $\mathbb{U} = \mathbb{Q}$?

Solution
$A = \{x : x^2 - 3x - 4 = 0\} = \{x : (x - 4)(x + 1) = 0\}$, then $\bar{A} = \{x : x^2 - 3x - 4 \neq 0\}$. Thus for $\mathbb{U} = \mathbb{N}$, $A = \{4\}$ and $\bar{A} = \{0, 1, 2, 3, 5, 6, 7, \ldots\}$. And for $\mathbb{U} = \mathbb{Q}$, $A = \{-1, 4\}$ and $\bar{A} = \mathbb{Q} \setminus \{-1, 4\}$.

Exercise on slide 12

Exercise 1
What’s the power set of $\{a, b, c\}$?

Solution
$\mathcal{P}(\{a, b, c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$

Exercise 2
Give an intuitive explanation of $\mathcal{P}(\mathbb{N})$.
Solution

\(\mathcal{P}(\mathbb{N}) \) is a set of all subset of \(\mathbb{N} \) including the empty set \(\emptyset \) and \(\mathbb{N} \) itself.

\[\mathcal{P}(\mathbb{N}) = \{ \emptyset, \{0\}, \{1\}, \{2\}, \ldots, \{0, 1\}, \{0, 2\}, \ldots, \{0, 1, 2\}, \ldots, \{0, 1, 2, \ldots, n, \ldots\}, \ldots, \mathbb{N} \}. \]

Exercises on slide 14

Exercise 1

Give a partition of the real numbers \(\mathbb{R} \).

Solution

An example of a partition of \(\mathbb{R} \) can be \(\{A, B, C\} \), where \(A = \{x : x > 0\} \), \(B = \{0\} \) and \(C = \{x : x < 0\} \). It is because \(A \), \(B \) and \(C \) are not empty sets, they are pairwise disjoint and their union is equal to \(\mathbb{R} \).

Exercise 2

Does there exist a partition of \(\emptyset \)?

Solution

The partition of \(\emptyset \) is \(\emptyset \).

The empty set can be written \(\{A_i : i \in I\} \) where \(I = \emptyset \). Recall the definition of a partition:

(a) \(A_i \neq \emptyset \), for all \(i \in I \)
(b) \(\bigcup_{i \in I} A_i = \emptyset \)
(c) \(A_i \cap A_j = \emptyset \), \(i \neq j \), for all \(i, j \in I \)

(a) is trivially satisfied since \(I = \emptyset \) from above. Also, (b) is vacuously satisfied since the union of all sets indexed over an empty set is empty. Finally, again since \(i \) and \(j \) range over an empty set there are no sets \(A_i \) and \(A_j \) so (c) holds trivially.

Exercise on slide 15

Give an example where \((a, b) \in A \) but \((b, a) \notin A \).

Solution

Let \(A = \{(x, y) : x \text{ is a father of } y\} \). Then if Adam is a father of Bob, \((Adam, Bob) \in A \) but \((Bob, Adam) \notin A \), because Bob is a son of Adam, and so he cannot be his father.

Exercise on slide 21

Compute \((R_3 \circ R_2) \circ R_1\).
Solution

By the theorem on the lecture slide 21 \(R_3 \circ (R_2 \circ R_1) = (R_3 \circ R_2) \circ R_1 \).
Thus \((R_3 \circ R_2) \circ R_1 = \{(Adam, 30), (Bob, 63), (Chris, 52), (Dave, 30), (Eve, 63)\} \)

Exercise on slide 22

Why is not \(<\) on \(\mathbb{N}\) an equivalence relation? Why is not \(\leq\)?

Solution

\(<\) is not an equivalence relation on \(\mathbb{N}\), because it is not reflexive. It follows from the fact that for all \(a \in \mathbb{N}\) it holds that \(a \not< a\).
\(\leq\) is not an equivalence relation on \(\mathbb{N}\), because it is not symmetric. A counter example illustrating that \(\leq\) is not symmetric is \(4 \leq 5\) but \(5 \not\leq 4\).

Exercise on slide 27

Why is \(\subseteq\) not a total order on \(\mathcal{P}(A)\) if \(A\) contains at least two elements?

Solution

It is because not any two elements in \(\mathcal{P}(A)\) can be related. For example, if \(A = \{a, b\}\), then \(\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\). Here the two sets \(\{a\}\) and \(\{b\}\) cannot be related by \(\subseteq\).

Exercise on slide 30

Let \(f(x) = 2x + 3\) and \(g(x) = 3x + 2\) be functions on \(\mathbb{N}\). What is \((g \circ f)(x)\)?

Solution

\((g \circ f)(x) = 3(f(x)) + 2 = 3(2x + 3) + 2 = 6x + 11\).

Exercises on slide 35

Exercise 2

Argue that for all \(n \in \mathbb{Z}^+\) the relation \(R_n\) on \(\mathbb{Z}^+\), defined by \(aR_nb\) if and only if \(a\%n = b\%n\), is an equivalence relation.

Solution

In order to be an equivalence relation \(R_n\) must be reflexive(i), symmetric(ii) and transitive(iii).
(i) \(\forall a \in \mathbb{Z}^+: a\%n = a\%n\). Therefore \(R_n\) is reflexive.
(ii) \(\forall a, b \in \mathbb{Z}^+: a\%n = b\%n\) implies that \(b\%n = a\%n\). Therefore \(R_n\) is symmetric.
(iii) \(\forall a, b, c \in \mathbb{Z}^+: a\%n = b\%n\) and \(b\%n = c\%n\) implies that \(a\%n = c\%n\). Therefore \(R_n\) is transitive.
Exercise 3
Argue why an equivalence relation that is also a function must be the identity. The identity $I : A \to A$ is defined by $I(a) = a$ for all $a \in A$.

Solution
Let R be an equivalence relation on A and a function $R : A \to A$. Then by the definition of a function, for every $a \in A$, there is one and only one $b \in A$ so that $(a, b) \in R$, which means that aRb. As it follows from the fact that an equivalence relation is reflexive, for every $a \in A$ aRa. Hence for every $a \in A$, there is one and only one $b \in A$ so that $(a, b) \in R$, and such $b = a$. Thus R is the identity.

Exercise 3.2.3 on page 80 in DM for NT
Let $U = \{x : x$ is an integer and $2 \leq x \leq 10\}$. In each of the following cases, determine whether $A \subseteq B$, $B \subseteq A$, both or neither:
(i) $A = \{x : x$ is odd $\}$ $B = \{x : x$ is a multiple of 3 $\}$
(ii) $A = \{x : x$ is even $\}$ $B = \{x : x^2$ is even $\}$
(iii) $A = \{x : x$ is even $\}$ $B = \{x : x$ is a power of 2 $\}$
(iv) $A = \{x : 2x + 1 > 7\} B = \{x : x^2 > 20\}$
(v) $A = \{x : \sqrt{x} \in \mathbb{Z}\} B = \{x : x$ is a power of 2 or 3 $\}$
(vi) $A = \{x : \sqrt{x} \leq 2\} B = \{x : x$ is a perfect square $\}$
(vii) $A = \{x : x^2 - 3x + 2 = 0\} B = \{x : x + 7$ is a perfect square $\}$.

Solution
$U = \{2, 3, 4, 5, 6, 7, 8, 9, 10\}$
(i) neither, $A = \{3, 5, 7, 9\} B = \{3, 6, 9\}$
(ii) both, $A = \{2, 4, 6, 8, 10\} B = \{2, 4, 6, 8, 10\}$
(iii) $B \subseteq A$, $A = \{2, 4, 6, 8, 10\} B = \{2, 4, 8\}$
(iv) $B \subseteq A$, $A = \{4, 5, 6, 7, 8, 9, 10\} B = \{5, 6, 7, 8, 9, 10\}$
(v) $A \subseteq B$, $A = \{4, 9\} B = \{2, 3, 4, 8, 9\}$
(vi) neither, $A = \{2, 3, 4\} B = \{4, 9\}$
(vii) both, $A = \{2\} B = \{2\}$.

Exercise 3.2.8 on page 81 in DM for NT
(i) Prove that, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
(ii) Deduce that, if $A \subseteq B$, $B \subseteq C$ and $C \subseteq A$, then $A = B = C$.

Solution
(i) Let $x \in A$, then it follows from $A \subseteq B$ that $x \in B$, then it follows from $B \subseteq C$ that $x \in C$. This proves that every element of A also belongs to C, so $A \subseteq C$.
(ii) $A \subseteq B$, $B \subseteq C$, so it follows from (i) that $A \subseteq C$. If $A \subseteq C$ and $C \subseteq A$ then by the
theorem on the lecture slide 8 $A = C$. From $A = C$, $A \subseteq B$ and $B \subseteq C$ follows that $C \subseteq B$ and $B \subseteq C$, and thus by the same theorem $B = C$. Therefore $A = B = C$.

Exercise 3.2.10 on page 81 in DM for NT

Consider the set R of all sets which are not elements of themselves. That is, $R = \{ A : A \text{ is a set and } A \notin A \}$.

Find a set which is an element of R. Can you find a set which is not an element of R?

Explain why R is not a well defined set. (Hint: is R itself an element of R?)

Solution

Let B is a set and $B \in R$, then by definition of R $B \notin B$. An example of such set B can be $B = \{1\}$ and many others, because usually $B \notin B$, like $\{1\} \notin \{1\}$.

Let us now find a set C which is not an element of R, so $C \notin C$ must hold. An example of such set can be $C = \{\ldots\{\{1\}\}\ldots\}$, because $\{\ldots\{\{1\}\}\ldots\} \in \{\ldots\{\{1\}\}\ldots\}$.

R is not well defined, because assuming that $R \in R$, it follows from the definition of R that $R \notin R$, and assuming that $R \notin R$, it follows that $R \in R$. Such definition of R leads to a contradiction.

Exercise 3.5.4 on page 106 in DM for NT

Which of the following are partitions of \mathbb{R}, the set of real numbers? Explain your answers.

(i) $\{I_n : n \in \mathbb{Z}\}$, where $I_n = \{ x \in \mathbb{R} : n \leq x \leq n + 1 \}$.

(ii) $\{J_n : n \in \mathbb{Z}\}$, where $J_n = \{ x \in \mathbb{R} : n \leq x < n + 1 \}$.

(iii) $\{K_n : n \in \mathbb{Z}\}$, where $K_n = \{ x \in \mathbb{R} : n < x < n + 1 \}$.

Solution

(i) $\{I_n : n \in \mathbb{Z}\}$ is not a partition of \mathbb{R}, because $I_n \cap I_{n+1} \neq \emptyset$, and it follows from the fact that $\exists x = n + 1 : x \in I_n$ and $x \in I_{n+1}$.

(ii) $\{J_n : n \in \mathbb{Z}\}$ is a partition of \mathbb{R}, because $\forall n \in \mathbb{Z} J_n \neq \emptyset$, $\bigcup_{n \in \mathbb{Z}} J_n = \mathbb{R}$ and $J_i \cap J_j = \emptyset$ if $i \neq j$ for all $i, j \in \mathbb{Z}$.

(iii) $\{K_n : n \in \mathbb{Z}\}$ is not a partition of \mathbb{R}, because $\bigcup_{n \in \mathbb{Z}} K_n \neq \mathbb{R}$, and it follows from the fact that $\forall i \in \mathbb{Z} : i \in \mathbb{R}$ and $i \notin K_n \forall n \in \mathbb{Z}$.

Exercise 5 on page 140 in DM with Combinatorics

Which of the following functions, whose domain and codomain are the real line, are one-to-one, which are onto, and which have inverses:

(a) $f(x) = |x|

(b) $f(x) = x^2 + 4

(c) $f(x) = x^3 + 6
(d) \(f(x) = x + |x| \)
(e) \(f(x) = x(x - 2)(x + 2) \)

Solution
(a) \(f(x) = |x| \).
This function is not one-to-one, because \(\exists x_1 \) and \(\exists x_2 : f(x_1) = f(x_2) \) and \(x_1 \neq x_2 \), for example \(x_1 = 3 \) and \(x_2 = -3 \).
This function is not onto, because there exists such \(y \), that for every \(x : f(x) \neq y \), for example, \(y < 0 \), where \(f(x) \geq 0 \) for every \(x \).
This function can have inverse \(f^{-1}(y) \) only on \(y \in [0, +\infty) \), because \(f(x) \geq 0 \) for all \(x \in (-\infty, +\infty) \), moreover \(f^{-1}(y) = \pm y \), that is not a function.

(b) \(f(x) = x^2 + 4 \)
This function is not one-to-one, because \(\exists x_1 \) and \(\exists x_2 : f(x_1) = f(x_2) \) and \(x_1 \neq x_2 \), for example \(x_1 = 3 \) and \(x_2 = -3 \).
This function is not onto, because there exists such \(y \), that for every \(x : f(x) \neq y \), for example, \(y < 4 \), where \(f(x) \geq 4 \) for every \(x \).
This function can have inverse \(f^{-1}(y) \) only on \(y \in [4, +\infty) \), because \(f(x) \geq 4 \) for all \(x \in (-\infty, +\infty) \), moreover \(f^{-1}(y) = \pm \sqrt{y - 4} \), that is not a function.

(c) \(f(x) = x^3 + 6 \)
This function is one-to-one, because \(\forall x_1 \) and \(\forall x_2 : f(x_1) = f(x_2) \) implies that \(x_1 = x_2 \), as it follows from \(x_1^3 + 6 = x_2^3 + 6 \) that \(x_1 = x_2 \).
This function is onto, because for every \(y \), there exists \(x : f(x) = y \).
This function have inverse \(f^{-1}(y) \) on \(y \in (-\infty, +\infty) \), and \(f^{-1}(y) = \sqrt[3]{y - 6} \), that is a function.

(d) \(f(x) = x + |x| \)
This function is not one-to-one, because \(\exists x_1 \) and \(\exists x_2 : f(x_1) = f(x_2) \) and \(x_1 \neq x_2 \), for example \(x_1 = -3 \) and \(x_2 = -4 \).
This function is not onto, because there exists such \(y \), that for every \(x : f(x) \neq y \), for example, \(y < 0 \), where \(f(x) \geq 0 \) for every \(x \).
This function can have inverse \(f^{-1}(y) \) only on \(y \in [0, +\infty) \), because \(f(x) \geq 0 \) for all \(x \in (-\infty, +\infty) \), moreover for \(y > 0 \) the inverse is defined as \(f^{-1}(y) = \frac{y}{2} \), and for \(y = 0 \ f^{-1}(y) = a \), where \(a \) can be any real number that \(\leq 0 \), so such inverse is not a function.

(e) \(f(x) = x(x - 2)(x + 2) \)
This function is not one-to-one, because \(\exists x_1 \) and \(\exists x_2 : f(x_1) = f(x_2) \) and \(x_1 \neq x_2 \), for example \(x_1 = 0 \) and \(x_2 = 2 \).
This function is onto, because for every \(y \), there exists \(x : f(x) = y \).
This function have inverse \(f^{-1}(y) \) on \(y \in (-\infty, +\infty) \), and \(f^{-1}(0) = 0, 2 \) or \(-2 \), that is not a function.
Exercise 5 on page 160 in DM with Combinatorics

Show that the set \(A = \{-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, \ldots\} \) is countably infinite.

Solution

This set \(A \) is countably infinite, because there exists a bijection \(f : A \to \mathbb{Z}^+ \), where \(f(a) = a + 11 \) for \(a \in A \).