
Matrix Multiplication
Rasmus Pagh

IT University of Copenhagen

ITCS, January 10, 2012

1



Matrix Multiplication
Rasmus Pagh

IT University of Copenhagen

ITCS, January 10, 2012

2



Outline

• Algorithm and analysis
• Related work
• Case study: Correlations
• Open problems
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Informal problem statement

• Input : n-by-n matrices A and B, 
            parameter b.

• Output : Approximation of AB that is good if 
AB is dominated by its b largest entries 
(“compressible”).

4



Basic algorithm
1. Take hash functions s1,s2: [n]! {-1,1} and h1,h2: [n] ! [b].

2. Compute the polynomial

3. Extract unbiased estimator
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Why unbiased?
Lemma: If s1 and s2 are pairwise independent,

E[s1(i1)s1(i2)s2(j1)s2(j2)] =

⇢
1 if i1 = i2 and j1 = j2
0 otherwise

.
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What is the variance?
• Consider the “noise” in estimator caused by (AB)i’j’:

• If h1,h2 are 3-wise independent, these random 
variables are uncorrelated, so:

Xi0j0 =

⇢
s1(i0)s2(j0)(AB)i0j0 if h1(i) + h2(j) = h1(i0) + h2(j0)

0 otherwise

.
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Sparse outputs

• Suppose AB has at most b/3 nonzero entries.

• Then with probability 2/3 there is no noise in 
a given estimator.

• Repeat O(log n) times and take median 
estimate, to get exact result whp.
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Time analysis

• Construct 2n degree b polynomials: O(n2+nb).

• Multiply n pairs of degree b polynomials, using 
FFT: O(nb log b).

• Extracting estimates: O(n2).

Total time : O(n2+nb log b).
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Background
• The polynomial computed is in fact a Count-

Sketch [Charikar et al. ’04], an early compressed 
sensing method.
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Background
• The polynomial computed is in fact a Count-

Sketch [Charikar et al. ’04], an early compressed 
sensing method.

• Polynomial multiplication combines Count-
Sketches of column vector of A and a row 
vector of B into a Count-Sketch for their outer 
product.

• Add up outer product sketches to get a sketch 
for AB.
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Some related results
• Folklore : Computing AB with b nonzeros in 

time O(nb) if there are no cancellations.
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Some related results
• Folklore : Computing AB with b nonzeros in 

time O(nb) if there are no cancellations.

• Cohen and Lewis Õ99: For nonnegative matrices, 
estimate AB with low relative error.

||A||F and ||B||F .

• Iwen and Spencer Õ09: Computing AB with ≤ b/n 
nonzeros in each column in time Õ(nb).

• Drineas, Kannan, Mahoney Õ06; Sarl—s Õ06: 
Computing AB with low total error in terms of
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Case study: Correlations

Two rows of A are correlated. Which ones?

A =
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Sample covariance matrix

AAT =
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Sample covariance matrix

AAT =
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Sample covariance matrix

AAT ≈

estimated using compressed matrix multiplication
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Sample covariance matrix

f(AAT)=

Showing large values not explained by hash collisions.

estimated using compressed matrix multiplication
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Some open problems
• Can other problems with “sparse 

solutions” be solved efficiently using 
compressed sensing techniques?

- Matrix inversion?

- Linear systems with a sparse solution?

- Sparse transitive closure of a graph?

- Product of > 2 matrices?
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Discussion:
Combinatorial algorithms

• Compressed MM can be considered “combinatorial”.

• Another view: No large hidden constants
(in contrast to “algebraic” approaches leading to ! < 2.3727).
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Discussion:
Combinatorial algorithms

• Compressed MM can be considered “combinatorial”.

• Another view: No large hidden constants
(in contrast to “algebraic” approaches leading to ! < 2.3727).

• It is interesting to consider what other subclasses of 
matrix products can be computed in time, say, n2+ε, 
using algorithms with these properties.
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Hidden slide: Extra application

=
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http://xkcd.com/651/
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