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Informal problem statement

* Input : n-by-n matrices A and B,
parameter b.

e Output : Approximation of AB that is good if
AB is dominated by its b largest entries
“compressible”).




Basic algorithm

1. Take hash functions s1,s2: [n]! {-1,1} and hy,ho: [n] ! [b].

2. Compute the polynomial

| _ InIn | | n |
CiXI — Aix Sl(i)Xhl(') % Bkj Sz(j)xhz(l)
i k=1 =i j=1

3. Extract unbiased estimator

(AB )i ! s1(1)S2(J) Chy(i)+ha()
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3. Extract unbiased estimator Ohassvalion: Each

(AB)ij ! s1(1)S2()) Chy(i)+ha) coefficient ¢; is a
sum of entries of AB

with random signs




Why unbiased?

Lemma: If s1 and s> are pairwise independent,

N N (1 ifig =idp and j1 =
E[31(21)81(22)82(]1)32(]2)]:< 0 othlerWiSQe 1 )

\\

Using lemma, expected value of s1(7)s2(7) Z c; " is:

E | s1()s2(5) ) (Z Ak s1(7) mhl(i)) (Z Byj s2(7) fL‘hZG))
k=1 \i=1 j=1

Aik S%(Z)Alk Cl?hl(i)S%(j)Bkj ath(j)
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What is the variance?

e Consider the “noise” in estimator caused by (AB);;-

Xy = { s1(¢")s2(3")(AB)irjr it hi(i) + ha(j) = ha (') 4 h2(J")

0 otherwise

e [f h1,hy are 3-wise independent, these random
variables are uncorrelated, so:

Var (Z Xi/j/) = Zvar (Xi’j’) — ZE[XZQ’]’]
i’ 5’ i’,5" v

< 3 (AB)% /b = ||ABI[3 /b

YAy,
[2RW]




Sparse outputs

e Suppose AB has at most b/3 nonzero entries.

e Then with probability 2/3 there is no noise in
a given estimator.

e Repeat O(log 1) times and take median
estimate, to get exact result whp.




Time analysis

e Construct 2n degree b polynomials: O(n?+nb).

e Multiply n pairs of degree b polynomials, using
FFT: O(nb log b).

e Extracting estimates: O(n2).

Total time : O(n?+nb log b).
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Background

* The polynomial computed is in fact a Count-
Sketch [Charikar et al. "04], an early compressed
sensing method.

* Polynomial multiplication combines Count-
Sketches of column vector of A and a row
vector of B into a Count-Sketch for their outer
product.

e Add up outer product sketches to get a sketch
for AB.
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Some related results

e Folklore : Computing AB with b nonzeros in
time O(nb) if there are no cancellations.

e Cohen and Lewis O99For nonnegative matrices,
estimate AB with low relative error.

e Iwen and Spencer O09Computing AB with < b/n
nonzeros in each column in time O(nb).

e Drineas, Kannan, Mahoney O06; Sarl—s Q06
Computing AB with low fotal error in terms of

[AllF and || B[ F.
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Two rows of A are correlated. Which ones?

Case study




Sample covariance matrix




Sample covariance matrix




Sample covariance matrix

estimated using compressed matrix multiplication




Sample covariance matrix

estimated using compressed matrix multiplication

FAAT)=

Showing large values not explained by hash collisions.




Some open problems

e (Can other problems with “sparse
solutions” be solved etficiently using
compressed sensing techniques?

- Matrix inversion?

- Linear systems with a sparse solution? | | 5,

- Sparse transitive closure of a graph?

- Product of > 2 matrices?




Discussion:
Combinatorial algorithms

e Compressed MM can be considered “combinatorial”.

e Another view: No large hidden constants

(in contrast to “algebraic” approaches leading to w < 2.3727).




Discussion:
Combinatorial algorithms

e Compressed MM can be considered “combinatorial”.

e Another view: No large hidden constants

(in contrast to “algebraic” approaches leading to w < 2.3727).

e [tis interesting to consider what other subclasses of
matrix products can be computed in time, say, n%*¢,
using algorithms with these properties.
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Hidden slide: Extra application

BUT IF YOURE WORRIED AROUT
BOMBS, WHY ARE YOU LETTING
ME KEEP MY LAPTOP RATTERIES?
W I QVERVOLTED THEM AND
BREACHED THE CEUS, IT WOLD
MAKE A SIZEARE EXPLOSION.
OH GO, l

(TS OKAY, DEAR. IN AMOMENT
HELL REALIZE T HAVE A GooD
FOINT AND RETURN MY WATER.

http:/xked.com/651/
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