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The Problem

Represent a set of n elements (with associated information) using

space (1 + ε)n.

Support operations insert, delete, lookup, (doall) efficiently.

Assume a truly random hash function h
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Related Work

Uniform hashing:

Expected time ≈ 1
ε

h3h1 h2

Dynamic Perfect Hashing,

[Dietzfelbinger et al. 94]

Worst case constant time

for lookup but ε is not small.

Approaching the Information Theoretic Lower Bound:

[Brodnik Munro 99,Raman Rao 02]

Space (1 + o(1))×lower bound without associated information

[Pagh 01] static case.
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Cuckoo Hashing
[Pagh Rodler 01]

Table of size (2 + ε)n.

Two choices for each element.

Insert moves elements;

rebuild if necessary.

Very fast lookup and delete.

Expected constant insertion time.

h1

h2
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d-ary Cuckoo Hashing

d choices for each element.

Worst case d probes for delete and lookup.

Task: maintain L-perfect matching

in the bipartite graph

(L = Elements, R = Cells, E = Choices),

e.g., insert by BFS.

h1

h2

h3
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Experiments
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Tradeoff: Space ↔ Lookup/Deletion Time

Lookup and Delete: d = O
(

log 1
ε

)

probes

Proof Outline:

the bipartite graph (L, R, E)

has an L-perfect matching

⇔ Hall’s Theorem

6 ∃M ⊆ L : |neighbors(M)| < |M |

. . . Chernoff bounds . . .

true whp if d ≥ 2(1 + ε) ln( e
ε
)

h1

h2

h3
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Tradeoff:

Space ↔ Insertion time

Insert:

(

1

ε

)O(log log(1/ε))

, (experiments) −→O(1/ε)?

Expansion property: half the nodes within

O(log(1/ε)) from a free node

Shrinking property: number of far-away nodes

shrinks geometrically with distance

⇒ short average augmenting path length
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Average Case Analysis of Bipartite Matching

[Motwani 94]: A bipartite graph (L, R, E) with |L| = |R| and

|E| > n ln n random edges

has a perfect matching whp.

Time O(|E| log |L| / log log |L|)

Here: slight assymmetry, very sparse, linear time
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Filter Hashing

2 O
(

log2 1
ε

)

layers

2 shrinking geometrically

2 perfect hashing for the overflow table

2 realistic hash functions
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Discussion

h1

h2

h3

d-ary Cuckoo: fast, practical, very space efficient

Open Question

2 “real” hash functions

2 Tighten insertion time

2 average case lookup time

2 average case max cardinality bipartite matching for sparse

symmetric graphs


