

Space Efficient Hash Tables with

Worst Case Constant Access Time

Dimitris Fotakis and Peter Sanders (MPII) Rasmus Pagh (IT U. Copenhagen) Paul Spirakis (CTI)

2

INFORM

Overview

- □ The Problem and Related Work
- □ Cuckoo Hashing
- \Box *d*-ary Cuckoo Hashing
- □ Analysis
- Relation to Bipartite Matching
- □ Filter Hashing
- Discussion

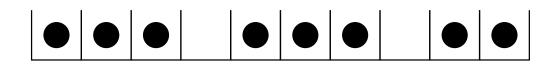
The Problem

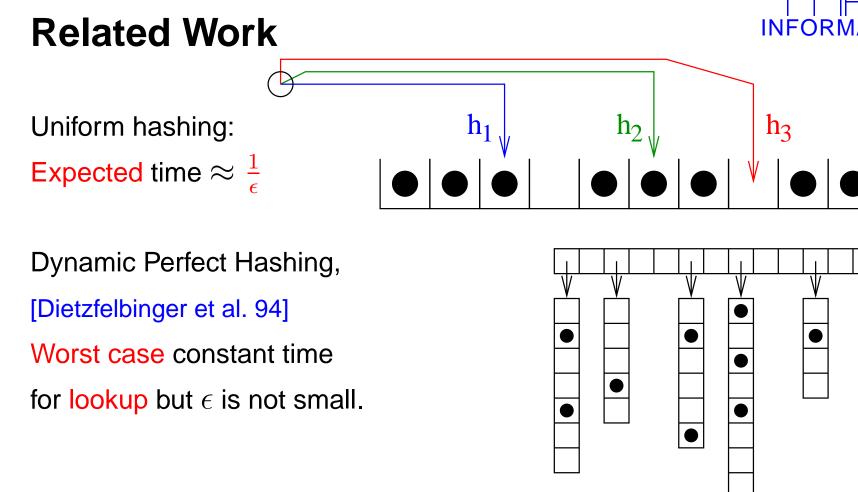
Represent a set of n elements (with associated information) using

space $(1 + \epsilon)n$.

Support operations insert, delete, lookup, (doall) efficiently.

Assume a truly random hash function h





4

Approaching the Information Theoretic Lower Bound:

[Brodnik Munro 99, Raman Rao 02]

Space $(1 + o(1)) \times$ lower bound without associated information [Pagh 01] static case.

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing

Cuckoo Hashing

[Pagh Rodler 01]

Table of size $(2 + \epsilon)n$.

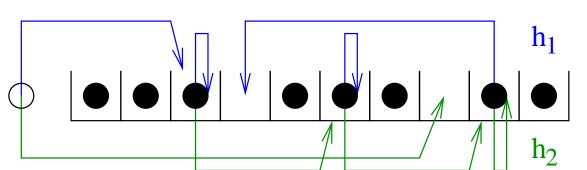
Two choices for each element.

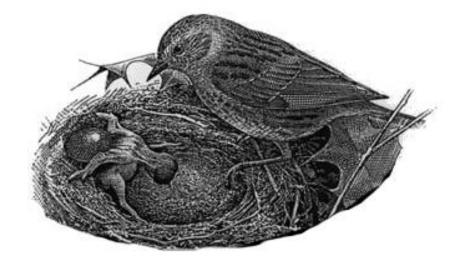
Insert moves elements;

rebuild if necessary.

Very fast lookup and delete.

Expected constant insertion time.





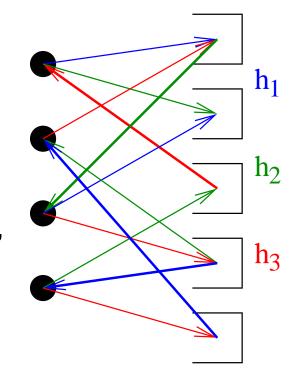
d-ary Cuckoo Hashing

d choices for each element.

Worst case d probes for $\ensuremath{\mathsf{delete}}$ and $\ensuremath{\mathsf{lookup}}$.

Task: maintain L-perfect matching in the bipartite graph (L = Elements, R = Cells, E = Choices),

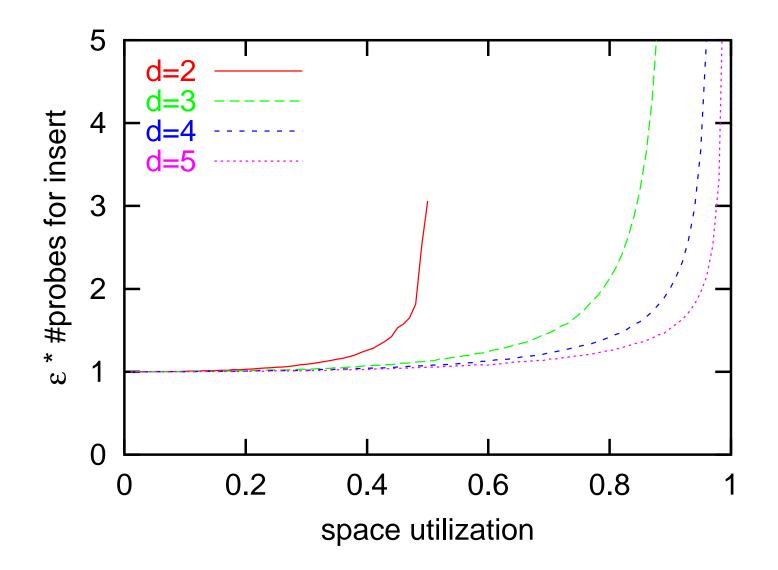
e.g., insert by BFS.



6

INFORMA

Experiments



Tradeoff: Space ↔ Lookup/Deletion Time

Lookup and Delete: $d = \mathcal{O}\left(\log \frac{1}{\epsilon}\right)$ probes

Proof Outline:

the bipartite graph (L, R, E)

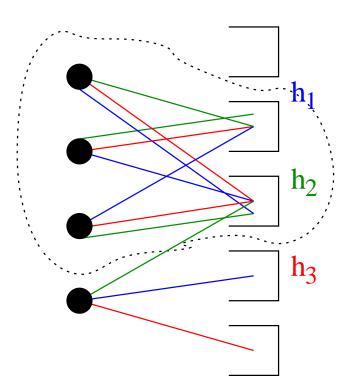
has an L-perfect matching

 \Leftrightarrow Hall's Theorem

 $\not\exists M \subseteq L : |\mathrm{neighbors}(M)| < |M|$

... Chernoff bounds ...

true whp if $d \geq 2(1+\epsilon)\ln(\frac{e}{\epsilon})$



8

INFORMATIK 9

Tradeoff:

$\textbf{Space} \leftrightarrow \textbf{Insertion time}$

Insert: $\left(\frac{1}{\epsilon}\right)^{\mathcal{O}(\log \log(1/\epsilon))}$, (experiments) $\longrightarrow \mathcal{O}(1/\epsilon)$? Expansion property: half the nodes within $\mathcal{O}(\log(1/\epsilon))$ from a free node Shrinking property: number of far-away nodes shrinks geometrically with distance \Rightarrow short average augmenting path length

Average Case Analysis of Bipartite Matching

[Motwani 94]: A bipartite graph $\left(L,R,E\right)$ with $\left|L\right|=\left|R\right|$ and

 $|E| > n \ln n$ random edges

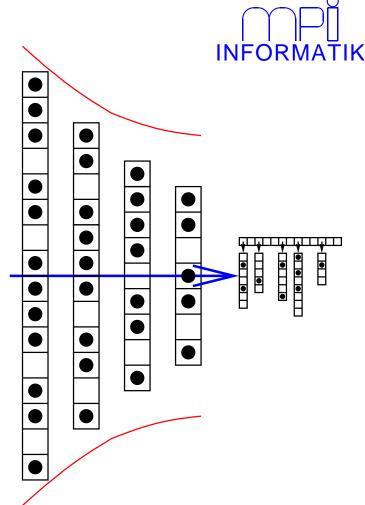
has a perfect matching whp.

Time $\mathcal{O}(|E| \log |L| / \log \log |L|)$

Here: slight assymmetry, very sparse, linear time

Filter Hashing

- $\square \mathcal{O}(\log^2 \frac{1}{\epsilon})$ layers
- □ shrinking geometrically
- perfect hashing for the overflow table
- realistic hash functions



11

Discussion

d-ary Cuckoo: fast, practical, very space efficient

Open Question

- "real" hash functions
- Tighten insertion time
- average case lookup time
- average case max cardinality bipartite matching for sparse symmetric graphs

