
Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

1

Space Efficient

Hash Tables with

Worst Case Constant Access Time

Dimitris Fotakis and Peter Sanders (MPII)

Rasmus Pagh (IT U. Copenhagen)

Paul Spirakis (CTI)

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

2

Overview

2 The Problem and Related Work

2 Cuckoo Hashing

2 d-ary Cuckoo Hashing

2 Analysis

2 Relation to Bipartite Matching

2 Filter Hashing

2 Discussion

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

3

The Problem

Represent a set of n elements (with associated information) using

space (1 + ε)n.

Support operations insert, delete, lookup, (doall) efficiently.

Assume a truly random hash function h

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

4

Related Work

Uniform hashing:

Expected time ≈ 1
ε

h3h1 h2

Dynamic Perfect Hashing,

[Dietzfelbinger et al. 94]

Worst case constant time

for lookup but ε is not small.

Approaching the Information Theoretic Lower Bound:

[Brodnik Munro 99,Raman Rao 02]

Space (1 + o(1))×lower bound without associated information

[Pagh 01] static case.

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

5

Cuckoo Hashing
[Pagh Rodler 01]

Table of size (2 + ε)n.

Two choices for each element.

Insert moves elements;

rebuild if necessary.

Very fast lookup and delete.

Expected constant insertion time.

h1

h2

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

6

d-ary Cuckoo Hashing

d choices for each element.

Worst case d probes for delete and lookup.

Task: maintain L-perfect matching

in the bipartite graph

(L = Elements, R = Cells, E = Choices),

e.g., insert by BFS.

h1

h2

h3

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

7

Experiments

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

ε
*

#p
ro

be
s

fo
r

in
se

rt

space utilization

d=2
d=3
d=4
d=5

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

8

Tradeoff: Space ↔ Lookup/Deletion Time

Lookup and Delete: d = O
(

log 1
ε

)

probes

Proof Outline:

the bipartite graph (L, R, E)

has an L-perfect matching

⇔ Hall’s Theorem

6 ∃M ⊆ L : |neighbors(M)| < |M |

. . . Chernoff bounds . . .

true whp if d ≥ 2(1 + ε) ln(e
ε
)

h1

h2

h3

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

9

Tradeoff:

Space ↔ Insertion time

Insert:

(

1

ε

)O(log log(1/ε))

, (experiments) −→O(1/ε)?

Expansion property: half the nodes within

O(log(1/ε)) from a free node

Shrinking property: number of far-away nodes

shrinks geometrically with distance

⇒ short average augmenting path length

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

10

Average Case Analysis of Bipartite Matching

[Motwani 94]: A bipartite graph (L, R, E) with |L| = |R| and

|E| > n ln n random edges

has a perfect matching whp.

Time O(|E| log |L| / log log |L|)

Here: slight assymmetry, very sparse, linear time

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

11

Filter Hashing

2 O
(

log2 1
ε

)

layers

2 shrinking geometrically

2 perfect hashing for the overflow table

2 realistic hash functions

Fotakis/Pagh/Sanders/Spirakis: d-ary Cuckoo Hashing �� �

�

��
c

INFORMATIK

12

Discussion

h1

h2

h3

d-ary Cuckoo: fast, practical, very space efficient

Open Question

2 “real” hash functions

2 Tighten insertion time

2 average case lookup time

2 average case max cardinality bipartite matching for sparse

symmetric graphs

