Use Case Modeling @ Fraunhofer IESE

Sebastian Adam Sebastian.Adam@iese.fraunhofer.de

Joerg Doerr Joerg.Doerr@iese.fraunhofer.de
Anne Gross Anne.Gross@iese.fraunhofer.de
Kizito Mukasa Kizito.Mukasa@iese.fraunhofer.de

1) Introductory Information on Deployed M odelling Process and Produced Artefacts

The Use Cases for this experiment were created by using an instance of the TORE approach
as used at Fraunhofer IESE in Kaiserdlautern, Germany. Here, we shortly summarize the main
information that is needed to understand why we created the resulting artefacts in Chapter 2.
Some further explanation on our usage of TORE is given in Appendix A. One should
understand that the requirements specification according to TORE uses Use Cases as an
essential specification artefact, but additional models are provided to fully describe the
requirements. Furthermore, the requirements specification is aimed at describing an intended
solution, making decisions on various levels of abstraction (i.e., it is not intended to be a
purely problem oriented requirements specification).

In afirst step, Stakeholders were identified based on the given problem description (PD). An
exemplary stakeholder role is described using a basic role-definition template. Then, agoa
model was produced from the PD: stakeholders specific problems were identified in the PD
and translated and attached to goals. First solution concepts/ideas emerged and were attached
to the goalmodel. For the To-Be Activities, we created a future (intended) workflow that was
derived from the activity information (tasks) in the PD and the problems/goals as well asthe
first solution ideas in the goal model. The system-responsibilities were determined for the
activities in the workflow model. A Use Case diagram was produced from the workflow and
goal model. The classification used in EPCs and UC-Diagram is:

e UC in Systemboundary: functionality executed automatically by the system=System
Activity (denoted “SA” in UC-Diagram and EPC)

e UC at border: Interaction of system with human=Human System Activity (denoted
“HSA” in UC-Diagram and EPC)

e UC outside system boundary: pure human activity without system support = Human
Activity (denoted “HA” in UC-Diagram and EPC)

In our methodology, we only create textual Use Cases for Human-System activities (i.e, a
subset of the Use Casesin the Use Case Diagram) to determine how the user shall interact
with the system. The Use Case Diagram was reworked after the textual use case description
(introducing new use cases for making use of reuse opportunities). The Human Activities are
not further refined. System Activities from the EPCs/ Use Case Diagram as well as from the
textual use cases are usually described with a system function template. As this was out of
scope for this experiment, we only created alist of system functions. An Interaction Data
Model was produced from PD and Textual Use Cases.

All (resulting) artefacts were not created in awaterfall like manner, but iteratively. This
means that aredesign of higher level artefacts (EPCs, UC-Diagram) took place after amore
detailed modelling (texual Use Case Description) took place.

Asthe effort for this experiment was limited, we did not produce a complete specification for
all TORE artefacts. The following lists the artefacts produced and whether the artefacts can be
seen as compl ete specification or exemplary specification:

Stakeholder description (exemplary), in case of 1% line supporter: complete
specification

Goal Model (aimed for completeness)

Workflow model (aimed for completeness)

UC-Diagram (aimed for compl eteness)

Textual Use Case Description (exemplary), HSA2, HSA3, HSAS are completely
specified Use Cases, HSA 1, HSA4, HSA6, HSA7, HSA8, HSA9 are only working
documents (not finalized). They are included in the submission as they can give a
more clear idea of what these use cases will do.

Interaction Data Model (exemplary)

System Function list (exemplary)

We did not make use of the following TORE decisions and artefacts that are usually
deployed:

As-Is Activities: not enough information was given in the PD

Domain Data: as the data-model is so small, we decided to only use one model
(Interaction Data)

Ul-Structure: out of scope for the experiment

All system level decisions: out of scope for the experiment

2) Resulting Artefacts

2.1) Stakeholder Role description

RD1. First-line
Supporter

Responsibility

The first-line supporter is a member of the hotline
support team, receiving all incoming problems (by
phone, via email, in person or via web-front end). For
each incoming problem he / she has to create an
appropriate request.

In case that the first-line supporter is not able to
process a request right away he/she forwards the
request to a second-line supporter for further
processing.

Furthermore, the first-line supporter has the
responsibility to reassign requests in case that a
second-line supporter rejects a request due to
overload, vacation or the second-line supporter is
absent for a longer period of time.

A first-line supporter can always switch to 2™ line
support team, assumed that there is at least one
person available in the 1% level support team.

Success criteria

e Assure that for each problem a request is
created in the system for statistical purpose.

e Assure that there is at least one person in 1st
line support team.

e Avoid loosing problems by reassigning request.

e Efficient and effective transfer of problems to
internal experts.

HSAZ2. Create request
HSA3. Process 1 level requests

Tasks HSA4. Forward request
HSAG. Login
HSA7. Select support line.
o IT Users
Communication partner .
Second-line supporter
Degree of innovation Low

Existing Knowledge wrt.
Tasks

High knowledge on treating customers adequately.
Not very detailed knowledge on solving problems.

Existing knowledge wrt.
Software/PC

Used to work with PCs and helpdesk support
software.

2.2) Goa Model

suopejay €09 pasn sjoquifs jo puaba siskjeuy Jopjoyaeis

oy warshs = vs
Aoy waIshs Uewnt = SH 109 15N L1
A v =

¢ eoo
wesbeiq On wio)
funnoy pareioy

1209 BUIOH

reob 209
o1 pareroosse welqoid | uswsbeuep

[e09 Aueduwioy

waw
-abeuep

E
se0b Bunolyuod 1e00 pareposse

159nba auy
PUZ 553901d ‘SUSH,

150nbas

erep wenoduw
JoysuelL

ffows o waiqod
voday EVH

1adxe

areudordde yum

wopunwwos
pue 13915

weigoid ay1
pueisiapunsiu suadx3

pua 0y Gam Bin
walqoid uoday TvSH

15nba) 3} U0 S¥iom Jate| oy savoddns.
10} UONEUIOJUI 0 08] <- UOIEUOJUL
euoipp u

uoud e waigoxd
voday 2wH

15anbas

Isanbay

a0 2y}
Jeaddestp ayo SIS “Jj@swIy Jasn ayy
sife) ualo adxa e o yum Jo 1sanbai ay) paniadai Ajleniul oym
waigoid aup BuajsueLL Jouoddns auy Lum e} ued auoyd Aq 1o G801 20%) worgod
oday Ty

uosiad ul uadxa ay reys uenoduwi si)|
T

Sisanbai Buoj <-- papssu aie
aulpoK 10eIu0D

5301105531 [PUAIX3 10 SISERUS

pateuiss
uBissy / Aoud
ubissy (-23)

A@reipauul i eap 5
10UUED S153NbB 3UIPUIS J0 9605

1sanbay
waigosd
uBlsseay
Aenuen

1sanbas auy
puz 5530014 ‘SSH

(piomssed
JaUSIY aI0BI0} Sey SIosh et
‘ase0 U1 *613) 1ew3 BIA 1S G 10
D sisanba) walgoid 'sawIaLIOS

159nbay 103 ‘6vSH

1sanbas au
1T s58001d ‘€VSH,

1sanbas aui

1sonba au

11601600

suadxa (feusaixa)
01 swajqoud Jo Jajsuely
BAIdBYa pUe JUBIIYS

sabueyo
awmspooas Y/ \@eozysy/ 77—\ | ojswejgoidjossysuen (S -
Aipanewoiny -

wawubisse

wayshs uoddns
auIpoy 8y} 19100 0}
Aupqissod ay) skempe aneq

s1sanbai 10g

wajgoid |[e anieday

(aunl

15T Uy st vosiad

T 1eun ainsse)
voneayioN

swajqoid
piodas
(iponewoiny)

sbueyo
fona] Loddns
BunoeiL

panjosas
Aeme wBu usaq aney
Tew s1sanbas piodas

01 BW0sI2qWINI 001 511

MO 1,US90p 135N 3} NG PaNS
uaaq sey wagosd ay) sased Auew uf

o Bupiom

519 ‘swigoid foud
a1 fanins o) 1
ubly e Buipfiana
et e D EEDETEID e sopspes Bupeaisiy (400 3Us/aU pInous ua1jo Moy pue)
R d 153nba1 Waiqoid dn %00] 01 1UAIUBAUOSLL S1I o e
‘s spouad Asnq uj 0) Buipioooe pasojo ag paspbel awosiaqun
Panos aq [walgosd
s1 sonspels 1o} U Uy Buimou 1ou Bukoue sty

pinoys 1sanbai uaym sas
|

Papasu BIep BUIPIOIY -

al
151 04 Suruws (pausiuy st 2102
Apogou teyy i
Buiziea oy Mmmm-_ww_ wajgoud |
By puooss o) wajqoid Buisoo] piony aU) BAI0S 0] AW PATEWSS
sanow sovoddns v _ e I 1P) M._E___ 5 Em.: ne._aww_ Roisy passasoid
o t sonsness Joj Buipiodas Buiaq / panjos aie sisanbas a|qissod se
BJEp BAIOBYD PUE JUBIOT wajqoid usym pauLioyul g U00s se / Aeme 146U panjos

150] 51 158nbaI
sisanbal wajgoid aneH

a|gejrene skempe si uoddns

[9A3] 3113 Tey) 3Ins eI

aseqerep aakojdwa
[euonippe ue Huidaay pioAy
siasn
11 Jo si1senbai wajqoid
10 Buipuey a3

wabin _SM.: e swajgoid ﬁzsn wayshs

295 pU Uo BuOn 81 94 SLIGOX

a0 fanins o1 auods e swaiqoid mnw%%_ w_m._m__”w s
2 1oy prey s1) spouad Asnq U wuanaud o) skem puy 19 oS

nm
I sIaNa| [euoneu Jo BulpueH
- wayshs
e 10U st waIsks
uoddns auoy 30nos-uado WaLND voddns auioy warouns
pue Janaq e alnby
anymu

1ou a1 suooUNS

speo9 Auend

2.3) To-Be Workflow Model

Workflow-Tasks

(

IT problem
encountered

HAL1. Report

problem face

to face

HA2. Report
problem via
phone

HAS3. Report
problem via
email

Problem
reported
manually

HSA1. Report
problem via
web front end

Cross-
cutting
Tasks

A

Manager

HSA8. Make
statistic

analysis

1st Line
Supporter

—
HSA2. Create

Request

HSA3.
Process 1st
line request

Request
cannot be
solved by
oneself

Request
recorded

HSA4.

2nd Line
Supporter

Cross-
cutting
Tasks

1st Line
Supporter

2nd Line
Supporter

HSAG. Login

HSA7. Select

Support
Line

Forward
request

Request read:
for 2nd line

Request
solved

HSAS5.
Process 2nd
line request

Waiting for
spare parts
needed or
Rxpert opinioy

Request
rejected

Batch
Tasks

SA1. Remind

of open
requests

2.4) Use Case Diagram

HA3. Report
problem via email

HA2. Report

problem via phone IT-User

HSA1. Report problem

. i b front end
Hotline System """

HA1. Report
problem face to face

HSA2. Create
Request

HSA8. Make
statistic analysis

HSA3. Process 1st
line request

1st line Supporter (SA4. Eorward Manager

request

HSAB. Login
«uses»

HSA7. Select

Support Line

HSAS. Process 2nd
line request

SAl. Remind of
open requests

2nd line Supporter

HSA9. Edit Request

2.5) Textual Use Case Description

HSA1

Use Case Name Report problem via web front end

Goal Create and send problem request to hotline for processing.
Actor IT-User

Preconditions

This use case describes the functionality provided to the IT-User

Description to manually create a new request, to specify relevant data
(problem description, priority, etc) and send request to hotline
support team.

Exceptions

Business Rules

Quality requirements

(Not in scope of experiment)

Data (Data model)

System Functions

SA6. Automatically create request

Postcondition

HSA2

Use Case Name

Create request

Goal Record all incoming requests in the system.

Actor First-line supporter

Preconditions The Actor is logged in as First-Line Supporter (See Use Case
HSAG. Login)
1. The Actor

Description

1.1 receives request via phone or in person or via email
1.2 triggers a new request
2. The system requests the actor to specify data associated to
the request.
3. The Actor
3.1 specifies data associated to the request
3.2 triggers the system to save the request
2. The system
2.1 saves the new request
2.2 records the request
2.3 displays the new request in the list of hotline
requests
2.4 marks request as “first line”

Exceptions

Business Rules

e Only problems with high priority are allowed to be
requested via phone or in person.

e For statistical purpose it is not allowed to create a
request for more than one problem.

e The Actor must use the existing employee database to
select the user during step 3.1.

Quality requirements

(Not in scope of experiment)

Data (Data model)

e User data (UserID)

e Problem (Description, Category, Cause)

e Request (RequestNumber, Priority, Creator (UserlD of
supporter), SubmissionTime)

System Functions

SA2. Provide template

SA3. Save request

SA4. Record request and processing information
SAS5. Update list of hotline requests

SA9: Set state

Postcondition

The problem request is created in the system and can be further
processed.

HSA3

Use Case Name

Process 1% line request

Goal

Process request as first-line supporter.

Actor

First-line supporter

Preconditions

The Actor is logged in as First-Line Supporter (See Use Case
HSAG. Login). The hotline request list is not empty.

Description

1. The Actor selects request in the list of hotline requests
[rejected request] [absence of owner] [Actor wants to edit
request]

2. The system
2.1 marks the request as taken
2.2 displays all details (attributes) of the request.

2.3 displays possible solutions
3. The Actor
3.1 decides on appropriate solutions [solution not available]
3.2 solves the problem [problem can not be solved right
away]

3.3 assigns problem solution to request

3.4 adds additional comments / information to requests if
needed

3.5 triggers system to save the request

4. The system
4.1 saves the request
4.2 records the request
4.3 marks the request as closed
4.4 updates the hotline request list
4.5 notifies the user that the problem has been solved

Exceptions

[rejected request] or [absence of owner]
1. The system displays all details (attributes) of the request
2. The Actor forwards request to second-line supporter (use
Use Case HSA4.Forward request).
(end of Use Case)

[Actor want to edit request]
1. The Actors edits the request (see Use Case HAS 9. Edit
request)
(end of Use Case)

[problem can not be solved right away]
1. The system displays all details (attributes) of the problem
2. The Actor forwards request to second-line supporter (use
Use Case HSA4.Forward request).
(end of Use Case)

[solution not available]

1. The Actor adds new solution.

2. The system saves new solution.
Continue with step 3.2

Business Rules

N/A

Quality requirements

(Not in scope of experiment)

Data (Data model)

e Request (Status, Owner (UserID of Supporter),
Additionallnformation)

e Problem (All attributes)

e Solutions (Category, Description)

e Solution List

System Functions

SA4: Record request and processing information
SAb: Update list of hotline requests
SA7. Display request details

SA8: Notify user

SA9: Set state

SA10: Assign solution
SA11: Add new solution

Postcondition

A problem request has been successfully processed by the first-
line supporter.

HSA4

Use Case Name

Forward request

Goal

Forward request to expert.

Actor

First-line supporter
Second-line supporter

Preconditions

Description

In case that a problem request can not be solved right away by a
first-line supporter, the first-line supporter can forward the request
to a second-line supporter who will then be the owner of the
request.

In case that a problem request has been rejected by a second-
line supporter or in case that a second-line supporter is not
available to further process a request, the first-line supporter can
reassign the request to another second-line supporter.

In case that a second line supporter can not solve the problem on
his/her own, he/she can forward the request to another second-
line supporter who will be the new owner of the request.

In all cases relevant information is transmitted to the new owner
and the changes are recorded for statistical purpose.

Exceptions

Business Rules

Quality requirements

(Not in scope of experiment)

Data (Data model)

System Functions

Postcondition

HSAS5

Use Case Name

Process 2™ line request

Goal

Process request as second-line supporter

Actor

Second-line supporter

Preconditions

The Actor is logged in as Second-Line Supporter (See Use Case
HSAG. Login). At least one request is assigned to this second-line
supporter.

Description

1. The Actor selects an assigned request (parked or new) in the
list of hotline requests [vacation] [overload] [Actor wants to
edit request]

2. The system
2.1 marks the request as taken
2.2 displays all details (attributes) of the request.

2.3 displays possible solutions

3. The Actor
3.1 decides on appropriate solutions [solution not available]
3.2 solves the problem [problem can not be solved] [external

expert is required] [help of internal expert required]
3.3 assigns problem solution to request
3.4 adds additional comments / information to requests
3.5 triggers system to save the request

4. The system
4.1 saves the request
4.2 records the request
4.3 removes the request from the list of hotline requests
4.4 displays the hotline request list
4.5 notifies the user that the problem has been solved

Exceptions

[vacation] or [overload]
1. The Actor
1.1 rejects the request because of vacation
1.2 optionally adds comments to the request
2. The system
2.1 Marks request as rejected
2.2 Notifies first-line supporter
2.3 Updates list of hotline requests
2.4 Records rejection
(end of Use Case)

[Actor want to edit request]
1. The Actors edits the request (use Use Case HSA 9. Edit
request)
(end of Use Case)

[solution not available]

1. The Actor adds new solution.

2. The system saves new solution.
Continue with step 3.2

[problem can not be solved]
1. The system displays all details (attributes) of the problem
2. The Actor forwards request to another second-line
supporter (use Use Case HSA4.Forward request).
(end of Use Case)

[external expert is required]

1. The Actor

1.1 contacts external expert

1.2 optionally changes estimated time to solution (use Use
Case HSA9. Edit request)

1.3 sets status to “parked”
(end of Use Case)

[help of internal expert required]
1. The Actor
1.1 contacts internal expert
1.2 optionally sends relevant information to expert via
email
2. The system transmits the information to internal expert.
3. The Actor receives response from internal expert
Continue with Step 3.2.

Business Rules

N/A

Quality requirements

(Not in scope of experiment)

Data (Data model)

e Request (Status, Owner (UserID of Supporter),
Additionallnformation)

e Problem (All attributes)

e Solutions (Category, Description)

e Solution List

System Functions

SA4: Record request and processing information
SAS: Update list of hotline requests

SA7. Display request details

SA8: Notify user

SA9: Set state

SA10: Assign solution

SA11: Add new solution

SA12: Reject request

SA13: Transmit information to internal expert

Postcondition

A problem request has been successfully processed by the
second-line supporter.

HSAG6

Use Case Name

Login

Goal

Actor

Supported goal from

model

goal

Addressed problem(s)
goal model)

(see

Preconditions

This use case describes the login-functionality.

Upon login, the user can decide whether he/she want to take
over the role of a first-line supporter or a second-line supporter.
Depending on the chosen role, the system provides the user with
the respective view and functionality to process requests.

Description
Furthermore, the system provides the functionality to assure that
there is at least 1 person in the first-line support team by
automatically assigning the first person that logs into the system
the role of first-line supporter.

Exceptions

Business Rules

Quality requirements

Data (Data model)

e Supporter (Support-Level)

System Functions

Postcondition

HSA7

Use Case Name

Select support level

Goal

Actor

Supported goal from goal

model

Addressed problem(s)
goal model)

(see

Preconditions

Description

This use case describes the functionality to change the support-
level (that is, to switch between the first-line and second-line
support team).

As in case with HSA6. Login the system provides the user with
the respective view and functionality in accordance with the
support level that the user selects.

Furthermore, the system provides the functionality to assure that
there is at least 1 person in the first-level support by notifying the
user that switching to 2" level is not possible if there is no one
else left in the 1* level support team.

Exceptions

Business Rules

Quality requirements

(Not in scope of experiment)

Data (Data model)

e Supporter (Support-Level)

System Functions

Postcondition

HSA8

Use Case Name

Make statistic analysis

Goal

Actor

Supported goal from
model

goal

Addressed problem(s)
goal model)

(see

Preconditions

Description

This use case describes the functionality of assessing statistics
from a manager’s point of view.

Exceptions

Business Rules

Quality requirements

(Not in scope of experiment)

Data (Data model)

System Functions

Postcondition

HSA9

Use Case Name

Edit request

Goal

Actor

Supported goal from goal

model

Addressed problem(s)
goal model)

(see

Preconditions

This use case describes the functionality to edit a request by a
first-line or second-line supporter. This use case is used bdy the
n

Description HSA3. Process 1% line request and HSA5. Process 2" line
request respectively, comprising functionality such as set
reminder, add additional information, change priority or estimated
time to solution.

Exceptions

Business Rules

Quality requirements

(Not in scope of experiment)

Data (Data model)

Request (Reminder Time)

System Functions

Postcondition

2.6) Interaction Data

User

- userMame: String
- phoneNumber. String
- emalAddress: Sfring

RequestList

Supporter

- supportling: String
- expertise: List

+creater | 0.1

+problem +statistic

- userlD: String +sender
- userPassword: User N +list 1
t(0..*
+request reques
Request
0.1 X
- reguestNumber. String
+creater +createdRequest | | 1 miesionTime: Date
. - solutionTime: Date
0. 0.1 - state: String
- lastViewedTime: Date
+0WnNer +takenRequest I X
- prionty: String
0.« 1] reminderTime: int
- additionallnformation: Siring
+reguest
+zupporter o0
0.*
1_.* +problem
Problem
- category: String
- description: Sfring 1
- cause: Siring h
0.
+problem
0.*
+applizdSalution +solution 0.
+createdSolution Solution

.

category: String
description: String

* 0.1

ProblemStatistics

averageFrequency: int
average SolutionTime: int

2.7) List of System Functions

1D Name Description

The system automatically sends a reminder in case that the estimated
SAl Remind of open requests time to solution is reached or a manually set timer is expired.
SA2 Provide template System functionality to specify data related to problem request
SA3 Save request System saves the request including attributes in the system

System automatically records request as well as relevant processing

information (such as change of ownership, duration of processing,
SA4 Record request and processing information rejection, etc) for statistical purpose

System functionality to add requests, remove requests, or update
SA5 Update list of hotline requests information related to requests in the list of hotline requests.

System automatically creates request (including specification of
SA6 Automatically create request relevant data, such as user, description).

The system displays detailed information related to a request
SA7 Display request details (problem attributes)

The systen automatically notifies the user in case that a process has

been solved or in case that an estimated time to solution has been set
SA8 Notify user / changed.

The system sets / changes the state of a problem such as taken,
SA9 Set state parked, open, closed, first line, etc.)
SA10 Assign solution System functionality to look up and assign solution to request
SAll Add new solution System functionality to add new solution.

System functionality to reject the request (including change of status
SA12 Reject request ("rejected") and notifying first line supporter.

System transfers request data (problem, etc.) to internal expert (e.g.,
SA13 Transmit information to internal expert via email).

3) Effort estimate

The effort needed to create these artefacts was estimated with 13 hours.

Appendix A: Short TORE description

TORE is adecision framework that encapsulates 18 decisions on four different levels of
abstraction that typically have to be made during requirements engineering for information
systems (see Figure 1). The benefit of thinking in these decisionsisthat it can serveasa
conceptual model independent of concretely used processes or notations, allowing high
applicability in many different contexts.

Requirements Decision

supported Stakeholder's Stakeholder's
Stakeholders Goals Tasks

System

As-ls Activities To-Be Activities Responsahilities

Domain Data

System Functions Interacticns Interaction-Data Ul-Structure

Mavigation/

Sup. Functions Dialog Ul-Data Screen-Structure

Internal Actions Architecture Internal Data

Figure 1. Decision pointsin the TORE framework

At the Goal & Task Level, the first decision point is Supported Stakeholders. Deciding
which stakeholders should be supported by a system to be developed is usually one of the
initial decisions to be made. Typical notations used to make this decision explicit are
stakeholder maps as used in [10], stereotypical user descriptions such as personas [14], or
simple role descriptions. The second decision point is to capture which Sakeholder’s Goals
exist and shall be supported by the system. With TORE, we support goals of organizations
(business goals) as well as goals of users (individual goals). Typical notations used for
documenting goals are notations used in methods such as KAOS [12], i* [13], or smple
AND/OR goal refinement trees. Typically, the functional goals are refined into Stakeholder’s
Tasks. In asimple information system, the Stakeholder’ s Tasks include the tasks of the users,
while in complex business information systems, this decision point is rather the hierarchy of
business processes. At the Domain Level, each Siakeholder’s Task isthen refined into its As-
Is Activities, i.e., the description of how tasks and processes are currently performed without
the system to be developed. In contrast to that, the To-Be Activities describe the tasks or
business processes as they should be carried out when the system to be developed isin place.
The typical notation used to describe the As-1s and To-Be Activities are process modeling
notations such as EPCs[8], or UML Activity diagrams [7]. With System Responsibilities, one
then determines which of the To-Be Activities are performed automatically, and which are
performed only by humans, respectively by humans using system support. Furthermore,
Domain Data determine which data is handled on the Domain Level, respectively within the
To-Be Activities. Typical notations are ER Diagrams or UML class diagrams.

At the Interaction Level, the Interactions define for all system-supported To-Be Activities
what the concrete usage of a system by a human should look like. Typical notations used for
this decision point include Use Cases [4] or other scenario techniques. For all System
Functions that are identified during the To-Be Activities and Interactions, the System
Functions then describe the corresponding details (visible behavior, input, output, etc.).
Furthermore, the Interaction Data determine the data used in Interactions and System
Functions. Hence, they are typically arefinement of the Domain Data, using similar

notations. With regard to early Ul design, the Ul-Structureisafirst logical grouping of
functions and data, but with neither a detailed layout nor a modality decision. Typical
notations used to document these decisions are workspaces as proposed in [15].

The aforementioned decision points (sometimes a so the ones on the subsequent System
Level, which are left out here) are the typical decision points that we use in order to determine
the aspects to be discussed in our requirements engineering activities. More detailed
information of TORE in general can be found in [6].

[4] A. Cockburn, Writing Effective Use Cases, Addison-Wesley, 2000

[6] B. Paech, K. Kohler, “Task-driven Requirements in Object-oriented Development”, Perspectives on Software
Engineering, Kluwer Academic Publishers, 2004

[7] J. Rumbaugh, et a., The Unified Modeling Lanuage Reference Manual, Addison-Wesley, 1998

[8] G. Keller, M., Nuttgens, A.-W. Scheer, Semantische Prozemodellierung auf der Grundlage , Ereignisgesteuerter
Prozef¥ketten (EPK)" , Universitdt des Saarlandes, 1992

[10] S. Roberston, J., Robertson, Mastering the Requirements Process, Addison-Wesley Professional, 2006

[12] A. Dardenne, A. van Lamsweerde, S. Fickas, ,, Goal

Directed Requirements Acquisition”, Science of Computer

Programming, Vol. 20 pp: 3-50, Apr. 1993

[13] E.SK. Yu, “ Towards modelling and reasoning support for early-phase requirements engineering” , Proceedings of the
Third |EEE International Symposium on Requirements Engineering, |IEEE, 1997

[14] A. Cooper, R. Reimann, D. Cronin, About Face

3.0: The Essentials of Interaction Design, Wiley,

Indianapolis, 2007

[15] H. Beyer, K. Holtzblatt, Contextual Design: Defining Customer Centered Systems, Morgan Kaufmann Publishers, 1998

