

Use	
 Case	
 Experiment	

Solution	
 proposed	
 by:	

Working	
 Group	
 Software	
 Engineering	

University	
 of	
 Heidelberg,	
 Germany	

	

Prof.	
 Dr.	
 Barbara	
 Paech	

Alexander	
 Delater	

Robert	
 Heinrich	

Rumyana	
 Proynova	

	

	

 2

1. Introduction

In this case study we have applied our method TORE (Task-oriented Requirements Engineering)1.
The essential difference to usual use case approaches is to start from a system independent user task
description. These user tasks are refined into use cases by looking in detail at domain data and
workspaces which capture a high-level view on the user interfaces.

2. Overview

In the following we provide

1. A list of assumptions we made which were not explicitly stated in the specification. These are
assumptions were triggered by questions which had to be answered to come up with the
TORE descriptions.

2. A usage diagram giving an overview on the user tasks and use cases and the actors involved.
The user tasks are not detailed in the following for reasons of space.

3. A domain data diagram capturing the most important terms used in the use cases.
4. The use cases. We use the following notation for the description of the UC steps. Each actor

step is labeled Ai and each system step is labeled Sj. The order of execution is from left to
right and top-down. Optional steps can be carried out in any order. The steps marked with
[optional *] can be repeated many times. If a step marked with [optional X] is carried out once,
no further optional step of this use case can be carried out. VARj describes different ways of
performing a step.

5. The workspaces. Workspaces structure the data and functions into subset which are provided
to the user coherently. In general a workspace will correspond to several views on the user
interface because not all information of one workspace can be captured on one screen. For
this case study only few views for each workspace are sufficient. Therefore we describe the
workspaces by screen shots. However, in a real project there are reasons to not use directly
the screen shots because at this stage screen details do not yet reflect usability criteria. So
the specific layout is misleading.

3. Assumptions

-­‐ User names are not unique. Therefore, the user must submit his or her e-mail address (we
assume that this is unique not only for a given moment, but also that old employees’
addresses aren’t recycled). The system reads the employee’s name and phone number from
the company’s employee database.

-­‐ A user may want to reopen an old request, if a problem that appeared solved reemerges.
-­‐ A request is complete, if it contains the data listed in the business rules.
-­‐ When a new request is entered, it automatically has the status “first line”. If it cannot be

handled immediately, the status has to be changed by a first line supporter to “second line”.
-­‐ The user can add information to the problem description field. S/he isn’t allowed to delete

existing information in that field or to change other fields.
-­‐ The user is allowed to close his/her request.
-­‐ A supporter can forward a request to a colleague (an expert) or release it for a whole line.
-­‐ A supporter is allowed to close a request without solving it, when solution is impossible or not

wanted by the organization.
-­‐ In the “requests” workspace, the supporter can see a list of all requests ordered by any

parameter
-­‐ The management wants to be able to filter statistics for given parameters (e.g. the

management wants to see a list of all requests filed in a given time period)
-­‐ The management wants to utilize the statistics independently of the hotline system, so it needs

an export function for different formats (e.g. print on paper, export to an Excel sheet, etc.)

1 B. Paech and K. Kohler. Task-Driven Requirements in Object-Oriented Development. Perspectives on Requirements Engineering 753
(2003), 45-67.

 3

-­‐ To address the problem with the supporters not entering minor requests, the system will
feature a single-click possibility for the entering of minor requests. It will automatically record
the time and the supporter, and assign the category “minor” and the status “closed”. We
assume that it is acceptable that all other data of the request don’t get recorded, as the
alternative is no record at all.

-­‐ The expected closing date isn’t used in determining which requests are orphaned. However,
the supporter can record it for the convenience of the IT user.

-­‐ We assume that when an actor starts a use case in a given workspace, he/she has
authorization to use the workspace, because he/she is already logged in. We only mention a
log in or a log out where it is essential for the use case flow.

4.	
 Usage Diagram

Figure 1: Usage Diagram (blue bubbles are user tasks, white bubbles are use cases)

Note: The use case which does not involve an actor is carried out by the system autonomously.

 4

5. Data model

Figure 2: Data Model (usual entity-relationships diagram notation)

A list of the possible statuses:

-­‐ First line: A first-line supporter must take on the request, for instance because it just arrived.
-­‐ Second line: A second-line supporter must take on the request.
-­‐ Taken: .The request is handled by a supporter (the owner). The owner may change from one

line to another while he is handling the request.
-­‐ Parked: The request awaits something, for instance an external delivery, and hotline need not

do anything meanwhile.
-­‐ Closed: The request has been handled. However, it may be opened again, for instance

because the user doesn't think the problem has been solved.
-­‐ Open requests are those that are neither parked, nor closed.

 5

6. Use Cases

Name Trigger and control hotline problem solution
Actor IT user
Supporting Actors None
Goal The hotline knows about the request.
Precondition The user encounters a problem.

[Workspace: none]
Actor System
A1) The actor places a new
request or reopens an already
closed request electronically
[Exception: not possible to
place/reopen request
electronically].

S1)
VAR1: The system receives a new
request, checks the information for
completeness and adds the user
data from the employee data base
[Exception: information not
complete]. It sets the status of the
new request to “first line” and the
category to “Unknown” and sends
the actor an acknowledgement
[System function: open]
VAR2: the system sets the status
of the reopened request to “first
line” and sends the actor an
acknowledgement [System
function: reopen].

A2) [optional *] [include UC Clarify
request]

A3) [optional *] The actor views
the request to check the status.

S3) The system provides the
information on the request
[System function: show request
details].

Description

A4) [optional X] If the actor solves
the problem himself/herself,
he/she closes the request.

S4) The system sets the status of
the request to “closed” and
records that it was closed by the
user [System function: close].

Exceptions - [Not possible to place/reopen request electronically]: If the actor
is not able to place or reopen the request electronically, the
actor places or reopens the request by telephone or personally
[include UC Accept Request].

- [Information not complete]: If the request is incomplete [R1] the
system sends a warning. The actor completes the missing
information [Proceed to S1] or cancels.

Rules R1: The request is complete when user name, user email, subject,
problem description and date placed are given.
R2: A new request or a reopened request always gets the initial state
“first line”.

Quality Requirements None
Data, Functions - Data

-­‐ User data
-­‐ Request data

- System Functions
-­‐ open
-­‐ reopen
-­‐ show request details
-­‐ close

Postconditions The system recorded the request and all necessary information.
Included Use Cases - Clarify request

- Accept request
Table 1: Use Case „Trigger and control hotline problem solution“

 6

Name Accept request
Actor First line supporter
Supporting Actors IT User
Goal The request is accepted
Precondition [Workspace: request]
Description Actor System

A1) actor receives IT help request
from IT user

VAR1: IT user reports new
problem by phone
VAR2: IT user reports new
problem in person
VAR3: IT user asks for reopening
of old request by phone
VAR4: IT user asks for reopening
of old request in person

A2) actor enters request details

VAR1) if user reported a new
problem, the actor enters all data
VAR2) if user asked for reopening
of old request, the actor reopens
the old request and updates its
data
VAR3) if the user reported a minor
problem which can be solved very
quickly, the actor only records a
minor request, without entering
the request data into the fields.

 S2.1) system checks data for
completeness [Exception:
information not complete]
S2.2)
If VAR1:system stores data and
sends an acknowledgement
[System function: open]
If VAR2: system reopens old
request and sends an
acknowledgement [System
function: reopen]
If VAR3: system records a new
request of the category “minor”. It
automatically sets the category to
“minor”, the date placed and the
expected closing date to the
current date, and the owner to the
actor. The remaining fields remain
empty. [System function: open]
Then it automatically closes the
request. [System function: close]

A3) [optional X] If the actor cannot
handle the request immediately,
s/he changes its status to “second
line”

S3) The system sets the request
status to “second line” [System
function: update request data]

Exceptions [Information not complete]: If the request is incomplete [R1] the system
sends a warning. The actor gets the missing information from the user
and completes it [proceed to S1] or cancels.

Rules R1: The request is complete when name, user email, problem
description and date placed are contained.
 R2: A new request always has the status „first line“

Data, Functions - Data
-­‐ User data
-­‐ Request data

- System functions
-­‐ open
-­‐ reopen
-­‐ close
-­‐ update request data

Postconditions The system recorded the request and all necessary information.
Included Use Cases None

Table 2: Use Case „Accept Request“

 7

Name Clarify request
Actor First line support, second line supporter
Supporting Actors IT user
Goal The request is clarified
Precondition [Workspace: request]

The supporter needs additional information to solve the problem.
Description Actor System

A1) [optional *] The actor asks the
IT user for additional information.
VAR1) the actor asks the IT user
for additional information by phone
VAR2) the actor asks the IT user
for additional information by e-mail
VAR3) the actor asks the IT user
for additional information in person

A2) [optional *] The actor asks a
previous owner of the request for
additional information
VAR1) the actor asks the previous
owner for additional information by
phone
VAR2) the actor asks the previous
owner for additional information by
e-mail
VAR3) the actor asks the previous
owner for additional information in
person

A3) the actor or the IT user enters
additional information

VAR 1) The IT user inserts
additional information to the
request by himself/herself
electronically.
[Exception: not possible to provide
information electronically]
VAR 2) The actor inserts
additional information to the
request by himself/herself
electronically.

S3) The system records the
additional information. [System
function: update request data].

Exceptions [Not possible to provide information electronically]: If the IT user is not
able to provide the information electronically, the IT user provides the
information by telephone or personally [Proceed To VAR2].

Rules R1: The user is only allowed to provide additional information to the
description. He/she is not allowed to change other fields. He/she is not
allowed to delete information in the description field. The IT supporter is
allowed to make any changes to following fields: status, priority,
category, expected closing date, problem description.

Quality Requirements None
Data, Functions System functions

- update request data
Postconditions The system recorded additional information
Included Use Cases None

Table 3: Use Case „Clarify request“

 8

Name Handle request
Actor Supporter (first/second line)
Supporting Actors IT user
Goal Solve a problem.
Precondition [Workspace: request]

Actor System
A1)

VAR1) the actor takes on an open
request from his/her line.
[Exception: There are no open
requests]
VAR2) the actor receives a
request forwarded to him/her.

S1)

If VAR1) The system records the
actor as owner of the request.
[System function: take on request]

A2) [optional *] The actor adds
information
[Include UC Clarify request]

A3) [optional X] The actor
forwards the request.

VAR1) forward to second line
VAR2) forward to specific expert
(no matter what line) [include UC
Handle request]

S3) The system forwards the
request [System function: forward
request]

If VAR1) The system changes the
owner to “not set” and the status
to “second line”
If VAR2: The system sets the
expert as the owner and notifies
him/her about the forwarded
request. If he/she is logged in at
the moment, the system sends an
alert in a way designed to attract
his/her attention (e.g. a pop-up
window). Else it sends the alert as
soon as the expert logs in.

A4) [optional *] The actor looks up
information of the request.

S4) The system provides
information about the request.
[System function: show request
details]

Description

A5) [optional X] The actor solves
the problem and closes the
request.

S5) The system closes the
request. The system sends the
user a notification.
[System function: close request]

Exceptions [There are no open requests]: The system contains no open requests.
Rules None
Quality Requirements None
Data, Functions System functions:

-­‐ take on request
-­‐ show request details
-­‐ add information to description field
-­‐ forward request
-­‐ close request

Postconditions The request is closed in the system.
Included Use Cases Clarify request; Handle request

Table 4: Use Case „Handle Request“

 9

Name Set support level
Actor First line supporter or second line supporter
Supporting Actors None
Goal Work on desired type of problems
Precondition [Workspace: supporters, request]

Actor System
A1) The actor requests a new type

 VAR1) The actor has no type
assigned yet
 VAR2) The actor has a type
assigned and wants to switch to
another type

S1.1) The system checks whether
there are enough supporters of
the non-target type
[R1][Exception: not enough
supporters of the non-target type]
S1.2) if the actor owns open
requests, the system sets their
status to “second line” [System
function: update request data]
S1.3) the system sets the actor’s
supporter type [System function:
change supporter type]
S1.4) the system sends the actor
an acknowledgement
S 1.5) the system notifies the
other supporters that a change
has taken place

A2) Actor starts working as a
supporter of the new type.

Description

A3) Actor logs out S3.1) System changes the actor’s
type to “not available”
S3.2) [optional] If too few
supporters of the actor’s type
remain logged in, system warns
the other supporters

Exceptions [not enough supporters of the non-target type]
- If actor already has a type: the system warns the actor that a

change of his/her role is not possible at the moment
- If actor has no type assigned yet: the system tells the actor

there are not enough supporters of the non-target type and
asks the actor to work as the type needed. Actor decides to
maintain his/her decision or to take the target type offered by
the system. In both cases, the scenario proceeds to step S1.2.

Rules R1: When the actor changes his/her type, there should be at least one
other supporter who belongs to the changing actor’s initial type.

Data, Functions Data
- Supporter type

System functions
- change supporter type
- update request data

Postconditions The actor belongs to the other type
Included Use Cases None

Table 5: Use Case „Set Support Level“

 10

Name Get statistics
Actor Manager
Supporting Actors None
Goal Receive statistics
Precondition [Workspace: Statistics]

Actor System
A1) The actor requests statistics
for specified parameters

S1) The system offers statistics
[System functions: show statistics]

Description

A2) [optional *] The actor triggers
the statistics export in a specified
format

S2) The system exports statistics
in desired format [System
function: export data]
[Exception: No information exists
for the specified parameters]

Exceptions [Exception: No information exists for the specified parameters]
• System warns actor

Rules None
Data, Functions System functions:

-­‐ Show statistics
-­‐ Export data

Postconditions no changes in system state
Included Use Cases None

Table 6: Use Case „Get Statistics“

Name Warn about orphaned requests
Actor System
Supporting Actors None
Goal Warn the supporters about requests which stay open too long.
Precondition None.

System
S1) The system checks regularly [R1] whether there are orphaned
requests.

Description

S2)
VAR1) If there are orphaned requests, the system reminds the owners
of the orphaned requests to handle it.
[System function: warn owner]
VAR2) If there are no orphaned requests, the systems sends no
warnings

Exceptions
Rules R1: If a request has been open for more than a week without having the

status “parked”, it is considered orphaned.
Quality Requirements None
Data, Functions System functions

-­‐ warn owner
Postconditions Supporters have been warned about not completed requests.
Included Use Cases None

Table 7: System Activity „Warn about orphaned requests“

 11

7. Workspaces

Figure 3: Workspace statistics, screen 1

Figure 4: Workspace statistics, screen 2

Figure 5: Workspace request, screen 1

 12

Figure 6: Workspace request, screen 2

Figure 7: Workspace supporters

