(DSDS E2012)
A11: “Last Year’s Exam” :-)

48-hour take-home exam:
Introduction to Scripting, Databases,
and System Architecture (aka., DSDS)

(E 2011)

IT University of Copenhagen
January 18, 2012

by Claus Brabrand
[brabrand@itu.dk |

(8 pages)

--- General Information ---

Start date: Wednesday, January 18, 2012 at 13:00 on The DSDS-E2011 Course Blog
Hand-in deadline: Friday, January 20, 2012 at 13:00 at The Exam Office, 2ZE08, ITU

General information about this exam

Exam exercise solving

The students attending the exam are to follow the same procedure they have used when
solving the mandatory assignments in the course, except for the delivery (hand-in) of their
solutions (see details below). This means that students are recommended to set up their own
database on the ITU MySQL server (mysgl.itu.dk) or use the one they have already set
up as part of solving the assignments. Details for setting up a MySQL database on the ITU
server can be found in assignment A6 available on the course blog. You are then to develop
and execute the exam solution scripts on the ITU PHP-Server by placing the PHP and
HTML files in your personal course directory (W:\e2011\DSDS\ username\). Students
who want to develop their exam solution using a different server are welcome to do so, but
need to make sure that the code is accessible to the teacher and external examiner (censor)
by including a web address in the hand-in package to where the source files can both be
inspected and executed (see exam hand-in below) during four weeks following the exam
delivery deadline.

Solving the exam exercises involves both the writing of HTML, PHP, and SQL code as well
as describing parts of the design in natural language, similar to how solutions for
assignments A6-All in the course were done. The natural language used can be either
Danish or English.

Students are welcome to re-use and include files that they have used themselves throughout
the DSDS course (e.g., fn_headerfooter.php, fn input validation.php,
and fn_mydb connect.php). Of course, any such files should also be included on the
CD-ROM and located in the appropriate place on the web server. Information and code
examples freely available on the web (e.g. in PHP programmer’s online forums) are also
valid resources if successfully adapted to the exam exercise and suitably commented. Under
no circumstances, however, are students on the DSDS course allowed to copy and/or share
information with each other as part of solving the exam (see “Check for Plagiarism” below)!

Exam hand-in

The solutions are to be delivered in the shape of .html, .php, .sql, .txt, and
.png/gif/jpg files all to be burnt onto three (3x) identical CD-ROMs and handed in to
the exam office (2E08 at ITU) no later than Friday, January 20, 2012 at 13:00. A web
address to a folder containing a directly executable version of the designed web service' is
to be included: a) on a paper note accompanying the CD-ROMs; and: b) as a clickable link
from a very simple HTML file called “username.html” included on the CD-ROMs. (In both

LE.g, [http://www.itu.dk/stud/£2011/DSDS/username/exam/ |.

b

cases mentioned above, “username” refers to the specific student’s ITU username; e.g.
“brabrand”.) You are not allowed to modify your online service after the deadline.
When you hand in, you also have to print out, fill in, and hand in the standard ITU front
cover’. Beyond this front cover, you should not hand in anything on paper.

Hint: Prepare your delivery in good time (e.g. you should ideally have made sure to have a
working procedure for burning CD-ROMs before the exam starts) because the hand-in
deadline is hard. If you miss it, your next chance is not until the next (re-) exam occasion.

Grading

The exam will be graded according to the Danish 7-point grade scale relative to the course’s
intended learning outcomes (1LOs) as stated in the ITU course base:

* Plan and develop medium sized web applications using the scripting language, PHP;

* Design small MySQL databases;

* Construct PHP scripts that interact with databases using SQL;

* Describe the techniques behind database-driven web applications; and

* Describe the fundamental system architectural considerations behind web applications
so as to be able to communicate and collaborate with programmers and technologists.

Example of factors that influence the grade:

* Functionality: do the solutions execute without errors and meet the requirements
specified in the exam?

* System robustness: do the solutions handle bad user input gracefully and handle a non-
responding MySQL server gracefully?

* Code quality: is the code well structured and commented so that a fellow system
developer (in particular, the teacher and censor) easily can understand your program and
what it does?

* Opverall system design quality: is the overall design well thought-through so that the
redundancy in the MySQL database is minimized and that the functionality of the web
service is logically distributed over a set of HTML and PHP files?

Check for plagiarism

Due to the nature of this exam, extra careful checks for plagiarism will be performed on the
handed-in exam solutions. Students are under no circumstances allowed to collaborate in
solving the exam. Thus, students handing in identical or near-identical solutions will be
reported as part of the normal handling of misconduct and fraud at ITU. For details, see:
- [http://intranet.itu.dk/en/Studiehaandbogen/Eksamen/Regler-og-retningslinjer]

Note: An oral plagiarism check will take place immediately following the hand-in deadline
(in 2A18) on Friday, January 20, 2012 at 13:00 for the 20% of students who are randomly
selected for it by the Exam Office. (You will be informed of this when you hand in.)

2I.e.,[http://intranet.itu.dk/en/Studiehaandbogen/Eksamen/Standardforside].

--- Web Service Specification ---

Design and implement a Pizza Web Shop: “CLa ®Pizzeria’

Introduction

In this exam assignment you will design and implement a Pizza Web Shop: “La Pizzeria”
(a la Just-Eat.dk). A registered customer should be able to log in to the Pizza Web Shop.
Once the customer’s credentials (i.e., username and password) are verzf ed, the customer

should see a list of pizzas that can be ordered via appropriate

clicking. When a pizza is ordered, it should be added to an #% S

order basket the contents of which the customer should also
be able to somehow see as well as appropriately delete pizzas
from. Further, there should be “proceed to checkout” link °
that should take the customer to a page that states what pizzas
have now been ordered, the total price and the address of the '
customer. As a last step in the pizza purchasing process, the

service should then finally collect the customer’s credit card number and expiration
information and validate that the format of this information conforms to appropriate
specifications (see below for details). Finally, there should be two administration pages
(without password protection). First, there should be a page for showing the history of all
purchases. Second, there should be a page for showing a top five list of the best customers.

General requirements for your “La Pizzeria” Web Service:

1.

Logging in: Already registered customers should be able to log in to the service by
entering their username and password. The actual registering of customers is not part of this
assignment (i.e., it is perfectly fine to just manually insert a few customers into some
appropriate MySQL database table of registered customers). If the log in is successful (i.e., the
information entered by the customer matches the contents of the database), the customer should
then be able to order pizzas (see further below). If the log in fails, the customer should get some
appropriate error message. Your service only needs to perform the password validation once
upon first entry (i.e., it does not have to validate users that “jump” into the middle of the service
by “guessing” the name of a subsequent PHP script).

Pizza list: The customer should be presented with a list of pizzas (name, ingredients, and
price) that can be ordered, sorted by price (see the top part of Screen Shot 1 on last page
of the exam). Each pizza should come with a link for adding it to the order basket the
contents of which the customer should also somehow be able to see (see below).

Order basket: The customer should also be presented with the contents of the order
basket (see the bottom part of Screen Shot 1). In the order basket, a pizza should be listed
just with its name and price (i.e., without its ingredients). Each pizza should come with a
link for removing it from the order basket. The basket should be stored as normal
“persistent state” (i.e., in a suitable table in the database) and not as “session state”.

Notes (about requirements 2. and 3.): The “Pizza list” and the “Order basket” do not have
to be on the same page (as is the case on Screen Shot 1); they can just as easily reside on
separate pages connected by appropriate links (e.g., “show my basket” and “order more
pizzas”). This is up to you. There also needs to be a way of taking the customer from these
page(s) to the checkout (e.g., a “Proceed to checkout” link as in Screen Shot 1).

5. Checkout: When the customer is done ordering pizzas and has clicked “proceed to
checkout”, he/she should be presented with an alphabetically ordered list of the pizzas
indeed ordered, the total price, and a delivery address as originally registered in the
customer database table (cf. requirement 1. and Screen Shot 2). You are also very
welcome to present the list of pizzas in a slightly more fancy version (not shown in Screen
Shot 2) by collecting pizzas with the same name (e.g, 3x Margherita: 135 kr,; 2x
Vegetariana: 110 kr.; 5x pizzas in total: 245 kr.). However, this is not a mandatory
requirement (i.e., you can still get a 12 for a “perfect solution” without this feature).

6. Credit card validation: Before a purchase is finalized, the customer needs to enter a
valid credit card number (a 16-digit number where each 4 consecutive digits are separated
by a hyphen; e.g, “1234-5678-9012-3456") and a legal month (two digits, possibly
with a leading zero as in “09”) and two-digit year (e.g, “15”). If the credit card
information is valid according to the above formats, the purchase is considered completed
which means that the pizzas should be removed from the order basket and an entry
should be made in a purchase table (an entry should consist of a customer, the total price
and the date of purchase). If the credit card information does not comply with the
formats, an appropriate error message should be given.

7. Purchase history: There should be an administration page (without password
protection) that will show a list of all the purchases made (name, purchase price, and date
of purchase), ordered by the purchase date.

8. Best customers: There should also be an administration page (without password
protection) that will show the top five best customers (i.e., the five customers who have
spent the most money, in total, over time, buying pizzas), sorted by total amount spent.
It should state the name of the customer, how many purchases he/she has made, the
average amount spent per purchase, and, of course, the total sum spent.

9. index.html: Finally, there should be a simple “index.html” file with links to use the
service. It should contain a link to start the service (i.e., to the customer “log in” page) and
links to each of the two administration pages.

Your “La Pizzeria” Web Service does not have to:

1. Register customers and pizzas: You do not have to make a way of registering a new
customer (you can just create a few customers directly in some appropriate MySQL
database customer table) nor do you need any way of adding new pizza kinds in your
service (again, you can just add some directly in the database beforehand).

2. Administrator password: You don’t have to protect the two administration pages
(“purchase history” and “best customers”) by passwords in any way.

3. Bank transactions and pizza delivery: You, quite obviously, don’t need to perform any
real bank transactions. Once the credit card information is validated, we’ll just assume a
bank transaction is conducted. Also, you obviously don’t need to deliver any pizzas. :-)

Note I: The exam is deliberately loosely defined in order to force you to make use of many of
the design skills acquired during the DSDS course. Use your common sense to resolve any
ambiguities or under-specifications. Whenever you find the requirements specification above
unclear, choose an interpretation and state that interpretation clearly in the file where you
describe your design (description.txt).

Note II: If you run out of time, just simplify or downscale the project yourself and hand in a
“partial solution”. There are many possibilities for simplification (e.g., skip an admin page).

--- The Exam Exercises ---

Not surprisingly, the exercises proceed according to the “Four-step Web Service Design
and Implementation Process” you have seen and worked with throughout the course:

Exercise 1: Design of Data Model (20%)

Exercise 1a): MySQL Database Design (8%):

exam/la table design.png/gif/jpg (destination file)
exam/description.txt (destination file)

Design the tables you need in your service. Remember to do your design so that data
redundancy is kept at a minimum. Draw your tables with a few rows of sample data in them
and show how the tables and columns relate to each other (as in the To-Do-List Web Service:
http://www.itu.dk/people/brabrand/DSDS-12.pdf on slide number 10). Write a

couple of sentences describing your design under the heading “Exercise 1a Table Design” in
description.txt.

Exercise 1b): MySQL Table Definitions (8%):

exam/1lb table definitions.sql (destination file)
exam/description.txt (destination file)

Create the MySQL tables that you designed in Exercise 1a) above. Remember to make use of
features such as; e.g.: ids, primary keys, auto incrementing, and foreign keys (as in the To-Do-
List Web Service: http://www.itu.dk/people/brabrand/DSDS-12.pdf on slide number
10). Write a couple of sentences describing important aspects of your tables under the
heading “Exercise 1b Table Definitions” in description.txt.

Exercise 1c): MySQL Data Insertion (4%):

exam/lc data insertion.sql (destination file) |

Create the table entries in your database using appropriate MySQL INSERT commands to the
extent specified in the requirements specification so that your service can be properly used.

Exercise 2: Design of Database Transactions (20%)

exam/2_database transactions.sql (destination file)
exam/description.txt (destination file)

Construct a set of SQL queries that you believe your PHP scripts will need to make use of in
order for your service to provide the functionalities specified in the requirements
specification earlier. This includes retrieval of selected data from your tables, deletion,
modification, and insertion of new data into them. For each of the MySQL queries you
present, write a sentence or two explaining what it actually does under the heading “Exercise
2 Database Transactions” in description.txt.

Exercise 3: Design of Sitemap and Web Structure (20%)

exam/3_sitemap.png/gif/jpg (destination file)
exam/description.txt (destination file)

Now the time has come to design the overall sitemap of the web service. What web pages and
PHP scripts are needed and what variables need to be sent between them? Draw a diagram of
your suggested structure of your web service that includes information about the name of
each script/page/file and information about the passing of form variables from one
script/page/file to another. Name the files and variables as you see fit as long as it all
conforms to the constraints outlined in the requirement specification. Describe the general
flow of interaction and the role of the different files in your web service in a couple of
sentences under the heading “Exercise 3 Sitemap” in description.txt.

Exercise 4: Construction of HTML and PHP scripts (40%)

exam/*.html (destination file)
exam/* .php (destination file)
exam/description.txt (destination file)

Now you are finally asked to program the Web Service (i.e., construct the PHP and HTML files
defined in Exercise 3 some of which will make use of the database transactions defined in
Exercise 2). Keep in mind the code quality factors listed in the “Grading” section earlier in this
exam. (You don’t have to put include-files in a special directory; they can just be placed as
.php files in the exam directory along with all the other files.) Any comments you might have
about your program you can write in description.txt under “Exercise 4 HTML and PHP”.

Appendix

Checklist

If you have done all four exercises of this exam, you should have the following files in your
online folder (which you may not modify after the exam deadline) and on your CD-ROMs:

exam/la table design.png/gif/jpg (destination file)

exam/1lb table definitions.sql (destination file)

exam/lc_data_ insertion.sql (destination file)

exam/2 database transactions.sql (destination file)

exam/3:sitemap.Eng/gif/jpg (destination file)

exam/*.html (destination file)

exam/*.php (destination file)

exam/description.txt (destination file)

exam/username.html (full URL link to your online Web Service)

Pizzas

Here are a few common pizzas you may cut'n’paste, if you don’t want to add your own:
Name Ingredients Price
Margherita Tomato and Cheese 45

Pepperoni Tomato, Cheese, and Pepperoni 50

Calzone Tomato, Cheese, Ham, Onions, and Oregano 55

Capricciosa Tomato, Cheese, Mushrooms, Artichokes, Ham, and Olives 55

Vegetariana Tomato, Cheese, Mushrooms, Olives, Bell Pepper, and Onions 55

Carnivore Tomato, Cheese, Chicken, Sausage, Bacon, Meatballs, and Pepperoni 65

=l + @ http://www.itu.dk/people/br: & | Q- collate © | ©
List of pizzas:

e [ADD] Margherita (45 kr.)
Tomato and Cheese

e [ADD] Pepperoni (50 kr.)
Tomato, Cheese, and Pepperoni

e [ADD] Calzone (55 kr.)
Tomato, Cheese, Ham, Onions, and Oregano

e [ADD] Capricciosa (55 kr.)
Tomato, Cheese, Mushrooms, Artichokes, Ham, and Olives

e [ADD] Vegetariana (55 kr.)
Tomato, Cheese, Mushrooms, Olives, Bell Pepper, and Onions

e [ADD] Carnivore (65 kr.)
Tomato, Cheese, Chicken, Sausage, Bacon, Meatballs, and Pepperoni

Orders:

e [DEL] Capricciosa (55 kr.)
e [DEL] Margherita (45 kr.)
e [DEL] Pepperoni (50 kr.)
e [DEL] Pepperoni (50 kr.)
e [DEL] Vegetariana (55 kr.)

Proceed to checkout

Screen Shot 1: One possible design of a “La ®Pizzeria” Pizza Web Shop.
(Note that this is just one of many possibilities of how to meet the requirements.)

< + a§http://www.itu.dk/people/br: ¢ - collate @ ©
Checkout

You ordered:

Pizza: Price:

Capricciosa|| 55 kr.
Margherita | 45 kr.
Pepperoni 50 kr.
Pepperoni 50 kr.
Vegetariana| 55 kr.

Total: [255kr))
which will be delivered to:

Rued Langgards Vej 7; DK-2300 Copenhagen S

Credit Card Information
Credit Card #: 1234-5678-9012-3¢ (XXXX-XXXX-XXXX-XXXX)

Expiry: 09 / 15 (mm/fyy)

Purchase!

Screen Shot 2: one possible design of a “La Pizzeria” Pizza Web Shop.
(Note that this is just one of many possibilities of how to meet the requirements.)

