
A8: a Web Service for Organizing Parties
[DSDS E2012 - Hand-in deadline: Friday, November 16, 2012 at 08:59]

Goal
In this assignment you will construct three PHP script files that 1) use a pair of MySQL tables to
maintain a database of available parties, and 2) give the user the possibility to sign up for
specific parties through an HTML form.
The tables to be created are parties and guests, designed to contain data about, yes,
parties and guests. The php scripts to be designed are:
● list_parties.php (shows info about all upcoming parties to the user, including the

number of people that have signed up for each);
● list_attending.php (shows detailed info about a specific party and provides a form

which the user can use to sign up her/himself); and
● save_attending.php (validates the user input and inserts the data into a new record in

the guest SQL table).

Preparation: copy files which you will include later
To speed up the process of solving this assignment, we recommend you to make use of some
functions defined in PHP files located here:
• [http://www.itu.dk/people/brabrand/DSDS/includes/]
As you might recall, we cannot inspect the content of PHP files by simply opening them in a
browser (because PHP scripts get executed on the server). That is, you cannot see what such
files contain by simply clicking on them in the browser. You can however use the show.php
script (available in the same place) to see the PHP source code of the files, passing the
filename of the file you want to inspect as an argument in the URL. If you for instance want to
see the content of the fn_mydb_connect.php file, paste this into your browser:
• [http://www.itu.dk/people/brabrand/DSDS/includes/show.php?file=fn_mydb_connect.php]

You could in theory include the files (using include statements in your PHP scripts) directly
from where they are right now but since you will probably have to edit at least one of them
(fn_mydb_connect.php), it is better if you copy the files to your own local directory so that
you can modify them whenever you need to. Create an includes/ directory in the root of your
local student directory, i.e. e2012/DSDS/username/includes/ and copy the files to that
location using whatever method you like. One way is to use the show.php method mentioned
above to display the PHP contents of each of the files (fn_headerfooter.php,
fn_input_validation.php, and fn_mydb_connect.php) in your browser and then copy
and paste the code into your text editor, giving the resulting files the same name as the
originals.

Once you have the files (fn_headerfooter.php, fn_input_validation.php, and
fn_mydb_connect.php) in your includes/ directory, you are all set to start working on this
assignment.

Exercise 8.1:Create the parties and guests SQL
tables and insert some data
• Destination file: A8/create_tables.sql
The database part of the party web site consists of two MySQL tables, each of them consisting
of four fields (columns), as illustrated in a so-called “ER diagram” below:

Figure 1: ER –Diagram of “parties” and “guests" (illustrating fields and relationship).

Here is a more detailed description of the tables and the datatypes of their fields:

parties:
● partyid (integer, primary key, auto_increment, not null), a unique id
● header (varchar, not null) party name/short description
● body (text), longer description of the party
● partydate (date), the date for the party (so we can show upcoming parties, avoid showing

those who have already passed, sort them, etc.)

guests:
● guestid (integer, primary key, auto_increment, not null), a unique id
● partyid (integer, not null) foreign key pointing to parties.partyid
● name (varchar, not null) the name of the party participant
● email (varchar, not null) the email of the party participant

Create the two tables according to the specification above using the MySQL text client and
CREATE TABLE commands. (You will need to connect to your personal database on the
mysql.itu.dk server first. If you don't remember how, take a look in assignment 6 or 7 where you
can find step-by-step instructions how to do this.)

Insert 4 parties and 2-3 guests into the database using the INSERT INTO command. Make sure
that all of the parties are in the future.

Check that your tables look fine by performing the following queries:
• SELECT * FROM parties;
• SELECT * FROM guests;

Save your SQL commands (CREATE TABLE, INSERT INTO, and SELECT * FROM) in the file:
• A8/create_tables.sql.

Exercise 8.2: list_parties.php
• Destination file: A8/list_parties.php
In this exercise you will create the first out of a total of three PHP scripts. The three PHP scripts
relate to each other as illustrated in the sitemap/flowchart below:

The specific purpose of the list_parties.php script is to show a list of all upcoming parties
to the user, including the number of people that have signed up for each (see the diagram
above for an example of how the resulting web page could look). For each of the listed parties,
there should be a clickable link that links to the list_attending.php script. (That script,
which you will create in the next exercise, will give the user more detailed info about the specific
party including the names of all current participants as well as providing a form where the user
can enroll her/himself.)

Requirements for list_parties.php
The script should show:
● All upcoming parties that are stored in the parties table. [Hint: use a SELECT query WHERE

partydate >= NOW().] Remember to add a suitable ORDER BY construct to your SQL query
so that the list starts with the parties closer in time and show those occuring later at the end
of the list.

● The total number of enrolled persons for each party. [Hint: use COUNT and LEFT JOIN.]
● The short description of the party (header).
The short description of the party (the header field) should be a link to the
list_attending.php script where the partyid of the specific party is transferred directly in
the URL, something like Party name (2
attending)
You will need to use the mysql_query() and mysql_fetch_array() functions discussed at the
lecture today, resulting in code looking something like $result=mysql_query("SELECT...")
followed by $row=mysql_fetch_array($result).

Connect to your database using the mydb_connect() function
defined in includes/fn_mydb_connect.php
However, before the PHP server can execute mysql_query() and mysql_fetch_array()
statements, your script needs to have established a connection to your database using
mysql_connect() and mysql_select_db(). Instead of letting all the scripts use these
commands for establishing the database connection, and all of these scripts reveal the
password of your database, you can use the mydb_connect() function to take care of this. All
you need to do in order to be able to use this function is to make sure to include the file that
defines it: fn_mydb_connect.php. If you have done the "preparative action" described in the
beginning of this document, you should have this file in your includes/ directory.
Now, if you open that file, you will see that the name of the username, the password, and the
name of the database all have dummy values. You need to change those values so that the
mydb_connect() function connects to your database. Done? Then, use the following short
and simple line in your list_parties.php script to connect to your database:
mydb_connect();

The neat thing is that now a) your sensitive data (in particular the database password) is stored
in only one file instead of several, b) the code in each of your scripts becomes shorter and
easier to read.

Among the three files you copied to your includes/ directory, you also have the
fn_headerfooter.php file which contain simple but useful functions for generating an XHTML 1.0
Strict header (show_header()) and closing the HTML part of the file (show_footer())

If you have followed the instructions so far, your list_parties.php will probably look something
like this:

<?php
 include("../includes/fn_headerfooter.php");
 include("../includes/fn_mydb_connect.php");
 //...
 show_header("let's party");
 //...
 mydb_connect();
 //...
 $result = mysql_query("SELECT ... FROM ...");
 while ... mysql_fetch_array($result) ... {
 echo " <a href=... ";
 }
 //...
 show_footer();
?>

Once you think you have everything you need in your list_parties.php, try it out by
navigating your browser to the page generated by the PHP script (A8/list_parties.php)
and start the debugging. When everything works, you should see something similar to the
list_parties.php box pictured in the sitemap earlier in this document, only that it is going to
be the data inserted by you in exercise 8.1 that will be listed. Congratulations – you have
created your first PHP script that fetches data from a MySQL database!

Don't forget to check that the HTML code generated by your script is reasonable.

Exercise 8.3: list_attending.php
• Destination file: A8/list_attending.php
In this exercise you will create the list_attending.php script. The script receives a
partyid from list_parties.php. This partyid signifies what party that should be shown
in detail. Based on the partyid, we retrieve the relevant fields from the parties table and
print them out in a way similar to what is shown in the sitemap. After that, all the names of the
guest that have enrolled to the party is printed out. Finally, a form is presented, allowing the
user to add her/himself (or a friend) to the party. All in all, this script, just like the previous one
and the next one in this assignment, have the same basic structure of PHP scripts accessing
MySQL databases illustrated in the appendix of this document.

Start with storing the value of $_REQUEST['partyid'] into a variable.
Using a SELECT FROM query, retrieve the record corresponding to the partyid from the
parties table and print out the relevant information (header, body, partydate).
Retrieve all guests enrolled in the party with the specific partyid and print them out, one at a
time (you will need a while loop for this). For each of the guests, the guest name should be a
"mailto:" link of the kind name. so that if the user clicks on
the name, the user's email client will invoke an empty email addressed

Finally, there should be a form:
● The action of the form should be save_attending.php
● method should be post
● The form contains 4 fields:

○ name (input type='text'), the name of the guest
○ email (input type='text'), the email of the guest
○ partyid (input type='hidden'), the id of the party, which we also need to send, or the

receiving script will not know to what party the person wants to enroll in
○ and the submit button

Save your solution in A8/list_attending.php.

Exercise 8.4: save_attending.php
• Destination file: A8/save_attending.php
In this exercise you will create the last of the three PHP scripts you need to make this party web
service complete: save_attending.php.
The script receives partyid, name, and email from list_attending.php. The script should
use regular expressions to validate the values of these variables (make sure partyid is a
number, make sure the name is a name, and that email is indeed an email address). This is to
ensure that the data makes sense and also to prevent the database from being hacked. If you

do not want to construct the regular expressions yourself, you can make use of the functions
defined in fn_input_validation.php in order to do the job.

Start by storing the content of the $_REQUEST[] array received from the
list_attending.php script into suitable variables, i.e. something like $name =
$_REQUEST['name'];

After that, your script should validate the content of the variables. If the data in any of the
variables do not conform to what is expected, e.g. if the name is not a string with characters [A-
Za-z] with space(s) in between, or if a variable is plain empty, we pull the handbrake, show an
error message and stop the script (for instance using the function error() defined in the
fn_input_validation.php file.

If everything looks fine, a new record is inserted in the table guests and we send the user back
to the list_attending.php including the current partyid in the URL. The directing of the
user's web browser to the specific list_attending.php URL is done using the header()
command as shown on the lecture earlier today, i.e. something like this:
...
header("Location: list_attending.php?partyid=$partyid");
exit();

Now, eventually, after some debugging, you should have a fully functioning web site that allow
people to sign up for parties! :-) Save your solution in A8/save_attending.php.

(We skip adding the functionality of adding parties themselves or allowing people to sign off
from parties they previously signed up for. If you have managed to get this far with this
assignment, you are in fact fully capable to extend the web site with these functionalities if you
would like to in the future. You have all the knowledge needed to do this.)

Checklist
If you have done all the exercises of this assignment, you should have the following four files in
your A8/ directory:
• create_tables.sql

• list_attending.php

• list_parties.php

• save_attending.php
And the following three files in your includes/ directory:
• includes/fn_headerfooter.php

• includes/fn_input_validation.php

• includes/fn_mydb_connect.php

Remember to validate all your PHP files, making sure they generate valid HTML code.

Appendix: A general template for PHP scripts
accessing a MySQL database
Both in this assignment and in future ones, you will construct PHP scripts that in one way or the
other accesses your MySQL database. These scripts will all more or less have the following
basic structure:

// - Preliminary html

/* --- If there are any form variables to be collected:
- Collect form variables
- Validate form variables
*/

/* If form variables are ok (or none collected):
- Connect to database
*/

/* Do something with database (SELECT, INSERT, DELETE, UPDATE etc.)
SELECT: Use while loop + link to another file OR
INSERT/ DELETE / UPDATE: Just one row + header("Location: " .. ");
*/

// etc.

// - Closing html
