
Programming Education Across Disciplines:

A Nationwide Study of Danish Higher Education

Sebastian Mateos Nicolajsen1*, Sofie Nielsen1,
Louise Meier Carlsen1, Claus Brabrand1

1*Center for Computing Education Research, IT University of
Copenhagen, Rued Langgaards Vej 7, Copenhagen, 2300, Denmark.

*Corresponding author(s). E-mail(s): sebni@itu.dk;
Contributing authors: soni@itu.dk; loca@itu.dk; brabrand@itu.dk;

Abstract

Decades of technological development and innovation have led to an unprece-
dented digitalization of society. Graduates entering the modern workforce now
need better computational competences. Higher education is thus forced to adapt
and consider how to support these demands. To support educators in making
decisions regarding how to integrate computing in their programmes, we set out
to investigate to what extent and how mandatory (computer) programming has
emerged in the tertiary educational system of an entire country: Denmark. We
analyzed all course descriptions from 1,169 tertiary educational programmes at all
higher educational institutions spanning all of Denmark. This provides a “snap-
shot” of where and how programming education has emerged and manifested
itself in higher education across faculties, study programmes, and disciplines for
an entire country.
Our results demonstrate that, as of 2023, 1 in 61⁄2 educational programmes
(175 out of 1,169) include mandatory programming. To support educators in
introducing programming, we quantify and provide an overview of educational
programmes with mandatory programming along several dimensions. We char-
acterize the roles programming has in different programmes, how programming
is delineated, and which families of competences are often taught in connection
with programming. Based on the results of our study, we issue five recommen-
dations directed at policymakers and educators responsible for navigating the
inclusion of programming in their education.

Keywords: Educational programmes, Compentencies, Programming, Computing.

1

1 Introduction

Most occupations today involve computers and require knowledge of the digital realm.
Computing education is, to many, a subject that ought to be part of core curricula to
ensure sufficient digital competences for the next generation (Gal-Ezer and Stephen-
son, 2014; Menekse, 2015). Already in 1985, Haigh (1985) argued for the importance
of education in computing. As put by Jones1 et al. (2013):

Our young people should be educated not only in the application and use of digital tech-
nology, but also in how it works, and its foundational principles. Lacking such knowledge
renders them powerless in the face of complex and opaque technology, disenfranchises them
from making informed decisions about the digital society, and deprives our nations of a
well-qualified stream of students enthusiastic and able to envision and design new digital
systems (Jones et al, 2013).

However, to do so, we must understand the different needs of different disciplines—a
student wanting to pursue a career in biology will likely need computing for different
reasons and to a different degree than a student pursuing a career in archaeology
(Denning and Tedre, 2021; Evrard and Guzdial, 2023). Currently, we have no broad
understanding of these differences on a curricula level, let alone at a national scale.
Consequently, educators are left in the dark with little knowledge of why computing
should be included, what should be included, and how one delineates and implements
it into a higher education programme for a given discipline (Caspersen et al, 2017;
Palumbo, 1990).

The objective of this paper is to examine how computing has organically emerged
across all disciplines in higher education. We address these issues from a prag-
matic, application-oriented perspective. Paraphrasing Evrard and Guzdial (2023), the
answers to these lingering questions lie in the individual disciplines.

We have identified 175 Danish tertiary educational programmes that have at least
one mandatory course introducing (computer) programming. (This comprises 130
distinct courses; less than 175 programmes because some courses are shared across
multiple educational programmes.) We analyse the course description curricula of
these courses to identify and taxonomize how different disciplines go about teaching
and introducing mandatory programming.

Our results indicate that 1 in 61⁄2 programmes include mandatory programming.
The sheer magnitude of this number (15% as of 2023) renders programming relevant
for higher education, in general. The remaining educational programmes are likely
to, sooner rather than later, find themselves in a situation where they need to equip
their students with programming competencies beyond simply using a computer. For
these reasons, it is our intention to help enable policymakers and educators to take
ownership of how programming should be included (or why it should be excluded)
in their educational programmes and make sure they are able to make such decisions
in an informed manner. We address the following research questions to support and
inform educators on these topics:

RQ1 (Programmes): What kind of educational programmes introduce programming?

1Simon Peyton Jones, chair of Computing At School (Association for Computing education in the UK).

2

RQ2 (Role): What role does programming play in non-computing disciplines?

RQ3 (Delineation): How is programming delineated in non-computing disciplines?

RQ4 (Competences):What kind of programming competences appear across disciplines?

We focus on Danish tertiary education for two reasons. First, computing education
is still in its infancy and not yet mandatory in Danish primary nor secondary edu-
cation, leaving it up to tertiary educational institutions to create their own curricula
(Bundsgaard et al, 2019; Caspersen et al, 2017). In Denmark, tertiary educational
curricula are created in collaboration with industry partners through ‘employer pan-
els’ to help guarantee industry-relevant competences (De Raadt et al, 2002). As such,
educational programmes in Denmark can be expected to implement computing com-
petences relevant to their disciplines. Second, Denmark is a relatively small country
with a population of 5.9M and has a sufficiently limited number of tertiary educa-
tional institutions (universities, university colleges, and business academies) which
makes it feasible to conduct a comprehensive national study. Thus, studying the case
of Denmark allows us to explore all disciplines for an entire country and create a
comprehensive national “snapshot” exhibiting the state of the emergence of program-
ming in higher education. Interestingly, this “snapshot” was taken right before the
widespread adoption of generative artificial intelligence (GAI), which will likely disrupt
the educational landscape in the future.

2 Background

During the last decade, computing education has been gaining global momentum;
in particular, in response to Wing’s (re-)introduction of ‘Computational Thinking’
(Wing, 2006). This has spawned many movements; e.g., ‘Computing for All’ and ‘Com-
puting at School’ (Caspersen et al, 2017; Crick and Sentance, 2011). Today, computing
can be argued to be a crucial part of twenty-first-century skills (Gretter and Yadav,
2016). Further, in some countries, e.g., Ireland, higher education is expected to enhance
its contributions regarding the computing competences of graduates (Stephens et al,
2007).

The computing education research discipline has thus provided a wealth of mate-
rial to support relevant education and teaching (Valentine, 2004). The following
sections introduce the role of computing across disciplines, central competences, and
the research on existing courses introducing programming.

2.1 Common Competences of Programming in Education

The inclusion of programming/computing in higher education has been significantly
influenced by three concepts: Computational Literacy (DiSessa, 2000), Computational
Thinking (Wing, 2006), and Digital Competences (Ilomäki et al, 2011). The con-
cepts have been used to promote (political) focus on computational empowerment ;
i.e., enabling individuals to partake in a digital society (Nicolajsen et al, 2021). While
distinct concepts, they promote similar skills and competences. For this reason, we
briefly summarize three topics that cross-cut these concepts, namely: Problem-Solving,
Algorithmic Thinking, and Abstraction.

3

Problem-Solving is concerned with general problem-solving and not how to solve
specific “template problems”; e.g., being able to solve a variety of different problems
(Lu et al, 2022; Robins et al, 2003). Some researchers argue that problem-solving
should be the primary element to teach (Pears et al, 2007). Kalelioglu et al (2016)
describe a five-step generic process for problem-solving (in computational thinking):
(1) identify the problem, (2) represent and analyse data, (3) select and plan solutions,
(4) implement solutions, and (5) assess solutions. Similar definitions of problem-solving
exist specifically for (object-oriented) programming: (1) problem identification and
analysis, (2) design, (3) implementation, and (4) validation (Madsen et al, 1993). Com-
putational problem-solving is today, more often than not, used in collaboration with
so-called domain experts and therefore enhances problem analysis, solution design,
and implementation (Gal-Ezer and Stephenson, 2014).

Algorithmic Thinking (aka, Algorithmic Problems & Solutions) is, by many,
perceived as the core of computing (Gal-Ezer and Stephenson, 2014; Lu et al, 2022).
Algorithms are often centralised based on the idea that algorithms are what computers
execute. However, not only does algorithms allow the automation of actions, they can
also act as a way of perceiving the world and theorize about its behaviour, with or
without a computer (Curzon and McOwan, 2017).

Abstraction concerns itself with the idea of working with different levels of detail,
being able to work with different layers of abstraction (Nicolajsen et al, 2021; Lu et al,
2022). Abstraction is also argued to be a core competence as it is central to developing
computational solutions (Bennedsen and Caspersen, 2006).

2.2 Current Role(s) of Computing

Until recently, computing has been perceived mostly as a medium of expression (aka,
Computing for Expression); earlier, the computing education community has largely
focused on development without consideration of much else (Ko et al, 2020).

Limitations of Computing. Researchers are now arguing that programming
curricula should also consider limitations of computing and programming, including
inherent biases. More specifically, Evrard and Guzdial (2023) propose two additional
perspectives on computing. First, Computing for Discovery is the application of encap-
sulated automation, allowing domain-expert users to explore rich systems of composed
models to expand theories; e.g., simulation (Evrard and Guzdial, 2023; Nicolajsen et al,
2021). Second, Computing for Justice (aka, Critical Computing) is the exploration of
how computing affects culture, society, and politics. The argument by Ko et al. is sup-
ported by the findings of Barendsen and Steenvoorden (2016), who argue that societal
aspects are not equally apparent in all curricula (based on analysis of curricula from
the Computer Science Teachers Association, Computing at School, France, and The
Netherlands). A different, and older, perspective on the role of computing comes from
Denning et al (1989) wherein computing can either be viewed as 1) discipline-oriented
thinking, i.e., the invention of new distinctions in the field, expanding vocabulary and
enabling new modes of actions and the creation of tools for others to use, or for 2)
tool use, i.e., being capable of using these modes of action for different purposes.

Type(s) of Learners. For education in computing, one cannot exclusively focus
on topics and competencies. One should also consider the learners; in particular,

4

the diversity of novice learners in terms of their background and future endeavours
(Robins et al, 2003). Specifically, Shaw (2022) returns to the idea of vernacular devel-
opers2 taken as those who create software in a specific context wherein the software
is a means to an end. Synonymously, such programmers are called conversational pro-
grammers (Evrard and Guzdial, 2023). Such individuals do typically not identify as
“programmers,” yet work with spreadsheets, scripts, and databases that frequently
involve programming (Shaw, 2022). If we are to consider programming in all of higher
computing education, the majority are likely to be such vernacular/conversational pro-
grammers. Thus, one cannot readily extrapolate conventional programming teaching
to the more general context of diverse computing education, as the audience is sel-
dom professional developers (where programming is an end in itself). This is further
supported by research suggesting that tailoring introductory programming teaching
is important to support interest in computing (Chakrabarty and Martin, 2018; Ott
et al, 2018). Specifically, the education should be augmented by engagement in sce-
narios which meet students’ interests, talents, and career goals (Thiry et al, 2011;
Christensen et al, 2021).

2.3 Related Work and Introductory Programming

While current ideas of computing education discuss the widespread applicability of
computing, one should look towards the courses of educational programmes that apply
it in practice.

Several publications report on implementing introductory programming courses
in higher education both inside and outside of computer science. Luxton-Reilly et al
(2018) has created an extensive review of these. They highlight a curriculum focus on
topics such as UML modelling, design patterns, problem-solving, and algorithms. Fur-
ther, they identify courses bridging the gap between introductory programming and
other disciplines, such as biology or law. Finally, they found that such publications pro-
vide little detail about the context of the course and advocate that future publications
embed such contextual information to facilitate the application of findings.

Becker and Fitzpatrick (2019) explore what educators expect of higher education
introductory programming students globally. They highlight terms applied in expected
learning outcomes; e.g., programming, design, data, algorithms, testing, methods, and
functions.

Further, there appears to be a large focus in literature to identify the programming
language used in such courses in different countries and continents (Mason and Cooper,
2014; Aleksić and Ivanović, 2016; Murphy et al, 2016; Mason et al, 2024; Becker and
Fitzpatrick, 2019).

In conclusion, there is plenty of work investigating how to develop courses intro-
ducing programming in higher education. Our present study, however, takes a different
approach by exploring the curricula of courses introducing mandatory programming
at all higher educational institutions for an entire country, namely Denmark.

2Often the term end-user developer is used as an alternative to vernacular developers, which has provided
a wealth of laudable research (e.g., Ardito et al (2012)). However, as argued by Shaw (2022), this term may
be pejorative.

5

8 Universities University of Copenhagen (KU), University of Aarhus (AU), Uni-
versity of Southern Denmark (SDU), University of Roskilde (RUC),
University of Aalborg (AAU), Technical University of Denmark
(DTU), Copenhagen Business School (CBS), IT University of
Copenhagen (ITU)

8 Vocational
Academies

Zealand Academy, Copenhagen Academy, Copenhagen Busniess
Academy, IBA, SydVest Academy, Midtvest Academy, Aarhus
Academy, Dania Academy

7 University
Colleges

Copenhagen University College, Absalon University College, UCL
Vocational Academy and University College, University College of
Southern Denmark, VIA University College, University College of
Nordjylland, The Danish Media and Journalist College

3 Art Schools The Royal Academy, Architecture School of Aarhus, Design School
of Kolding

26 Institutions at the tertiary educational level in Denmark

Fig. 1: Overview of all tertiary educational institutions in all of Denmark.

3 Educational Context

In Denmark, there is (still as of 2024) no mandatory standalone computing subject
in primary school. In secondary school, the one-year computing course ‘informatik’ is
only mandatory in two out of four types of high schools. In the most common type
of high school (STX), attended by more than half of high-school students (Statistik,
2022), the course is only offered as an elective (Caspersen et al, 2017). For this reason,
tertiary educational institutions have to implement basic programming teaching “from
scratch” to students entering their educational programmes.3 There are 26 tertiary
educational institutions in Denmark (listed in Figure 1). These institutions offer a
variety of different educational programmes. We focus on the professional bachelor,
bachelor, and master degree programmes which comprise 31⁄2, 3, and 2 years of full-
time studies, respectively (corresponding to 210, 180, and 120 ECTS points4). We
focus on these since institutions offering such degrees have sole ownership of the so-
called competence profiles of these educational programmes, which are designed in
collaboration with institution-chosen employer panels.

By law, institutions are required to publish an official curriculum, in the form
of a so-called course description, for each course within an educational programme.
Course descriptions follow one of two standards (exemplified in Figure 2). The course
descriptions are required to specify explicit learning goals. The Danish grade scale
defines grades as the degree of fulfilment of explicit learning goals (see Figure 14, in
the appendix). Hence, if a course does not have learning goals, one cannot mean-
ingfully issue grades. The first format specifies explicit learning goals in the form of
Intended Learning Outcomes (ILOs, see Figure 2a); these are most often based on

3According to the official curriculum of the Ministry of Education, teaching in programming is lim-
ited to variables, sequences, loops, if-statements, and functions https://www.uvm.dk/-/media/filer/uvm/
gym-laereplaner-2017/hhx/informatik-c-hhx-htx-stx-august-2017.pdf.

4ECTS is an abbreviation of European Credit Transfer and Accumulation System: 60 ECTS points
corresponds to one full-time academic year of studies.

6

https://www.uvm.dk/-/media/filer/uvm/gym-laereplaner-2017/hhx/informatik-c-hhx-htx-stx-august-2017.pdf
https://www.uvm.dk/-/media/filer/uvm/gym-laereplaner-2017/hhx/informatik-c-hhx-htx-stx-august-2017.pdf

• Describe the concepts behind various mathematical approaches to finding numerical [...]
• Describe mathematical approaches in the form of pseudocode.
• Translate pseudocode into computer code.
• Use pseudocode to construct computer algorithms.
• Apply algorithms to examine the quality of numerical solutions to differential equations.

— [Computer algorithms - Biotechnology, AU]

(a) Intended Learning Outcomes (ILOs).

Knowledge: Explain how a computer works and the process around programming
computer-based information systems.

Skills: Analyze and plan a programming process.

Competences: Use a programming language.
Make decisions about system configuration vs. adaptation.

— [Software development - IT, Communication & Organisation, AU]

(b) European Quality Framework (EQF).

Fig. 2: Examples of the two ways of phrasing explicit learning goals.

the SOLO Taxonomy (Biggs and Collis, 2014). Institutions adhering to this format
generally subscribe to the principles of Constructive Alignment as their teaching phi-
losophy (Biggs et al, 2022; Brabrand and Dahl, 2008, 2009). The second format follows
the European Qualification Framework (EQF, see Figure 2b) and separates explicit
learning goals into three categories: knowledge, skills, and competences (Méhaut and
Winch, 2012). Some institutions (or individual courses) specify both ILOs as well as
knowledge-skills-competences. The existence of explicit learning goals, for all courses,
on all educational programmes, in an entire country, provides us with an opportu-
nity for a study systematically harvesting and analyzing these. In addition to explicit
learning goals, some of the course descriptions also include information about the con-
tent, structure, mandatory activities, exam format, literature, and the format of the
teaching.

Most programmes offer flexibility in terms of electives, conversion courses, and
student-chosen specialization courses. This is especially true for master programmes;
bachelor and professional bachelor degrees are usually a lot more restrictive in
terms of such individualization. Two institutions, however, stand out and are worth
highlighting.

The Technical University of Denmark (DTU) allows students to design their own
programmes, requiring students to have a minimum number of ECTS points in a given
topic (each topic is typically restricted to a set of particular courses). To accommodate
this, they offer the same courses (or very similar courses) during different times of the

7

week. Naturally, this leaves the students with many options to determine which courses
and programming courses, they want to enroll in. In such cases, our study focuses on
the first available mandatory introductory programming course listed. We disregard
any educational programmes where students can avoid an introductory programming
course; e.g., by enrolling in a different technical course.

The University of Roskilde (RUC) allows students to combine multiple types of
degrees; e.g., computer science and psychology. Consequently, students may enroll in
an introductory programming course given many different educational combinations.
Choosing computer science (which is one of multiple technical tracks), allows for 13
different educational programmes.5 We count this as a single educational programme,
but the reader should be aware of the flexibility available at this institution.

Lastly, any educational programme with a single elective allows for students to
enroll in an introductory programming or computing course; e.g., a student enrolled
in a history degree at the University of Copenhagen (KU), can enroll in an intro-
ductory programming course at the computer science or mathematics department.6

We recognize that such choices will greatly affect the individual competence profile
of the student; however, it is not mandatory and does not reflect an institutional
(or employer) perceived need for such competences. More strongly, the inclusion (and
requirement) of a specialization, e.g., a set of connected “electives,” implies a higher
degree of institutional recognition of certain needs within the industry. Yet, as these
are still “avoidable” by students, we have excluded specialization courses from this
study. Some programmes rely on nationally (loosely) defined curricula for their pro-
grammes. We exclude such programmes since they offer no insight into the autonomous
decisions of educational institutions. We thus adopt a conservative approach to consid-
ering courses and programmes. For this reason, our study highlights the competences
deemed most important and essentially provides the raison d’être of programming
in higher education; i.e., what course responsibles, head of study programmes, and
(potentially) employer’s panels find crucial for subsequent courses or for joining the
workforce.

4 Methodology

The first author collected data on the majority of Danish tertiary educational pro-
grammes that introduce (computer) programming. Using the public list of Danish
educational programmes,7 he examined 679 tertiary educational programmes, some
of which were offered by multiple institutions, yielding a total of 1,169 individual
programmes. Programmes were only investigated if the list provided an overview of
where the programme was offered, which excluded 209 programmes (not included
in the number above). The data was gathered during the spring of 2023, and the
courses gathered were either from the previous iteration of the course or, if avail-
able, the following iteration. Therefore, this study constitutes a “snapshot” of the
state of mandatory programming emerging in Danish tertiary education. Educational
programmes were included if, and only if, a course title, description, or curriculum

5Find the right Bachelor Education: https://ruc.dk/bachelor/kombinationer/129
6Bachelor in History: Education & Structure: https://studier.ku.dk/bachelor/historie/#undervisning
7The Education Guide: http://ug.dk

8

https://ruc.dk/bachelor/kombinationer/129
https://studier.ku.dk/bachelor/historie/#undervisning
http://ug.dk

Step % Coding Coder(s)

(1) 20% inductively establish initial codes A1
(2) 20% deductively validate initial codes A1
(3) - refine initial codes against literature A1
(4) 20% collaborative coding for training A1+A2
(5) 20% independent coding for validation A2
(6) 80% code remaining data (based on refined codes and collaborative coding) A1

Fig. 3: Overview of the coding process. The steps above the line are for producing
the codes; the steps below the line are for investigating the reliability of the codes
produced.

contained words related to programming (programming, coding, or scripting) or
mention software allowing programming or a specific programming language (e.g.,
Python or R). Such courses were identified by examining each programme’s compulsory
courses (and their description). Furthermore, only compulsory or conversion courses
were included, as such courses underscore how an institution finds the competences
associated with programming mandatorily indispensable. We have made our data set
publicly available.8

For document analysis, multiple iterations of coding were applied to a subset of
the data to establish codes. Each code represents a category of related elements; e.g.,
algorithms (which includes the topics of proofs, logic, runtime analysis, and opti-
mization). Figure 3 provides an overview of the coding process. The first three steps
(1)–(3) served to produce the codes: First (in step 1), a randomly selected subset of
the data (20%) was coded inductively by the first author (A1) to establish preliminary
codes. Second (step 2), another randomly selected sample of the data (another 20%)
was coded deductively to validate the preliminary codes. Third (step 3), the estab-
lished codes were compared to the models of various literature reviews on the topic
of computational competency models, refining the codes (Weintrop et al, 2016; Tikva
and Tambouris, 2021; Murphy et al, 2016).

Hereafter, to validate (step 4), the first and second authors (A1+A2) collabora-
tively coded yet another random subset (20%). Then (in step 5), the second author
(A2) coded an additional 20% alone. Simultaneously (in step 6), the first author coded
the remaining 80% according to the refined codes and collaborative coding. Matching
the codes individually identified by the first (A1) vs second author (A2), we obtain
an IRR (Inter-Rater Reliability) agreement percentage of 84% and a Kappa of 0.79
which implies substantial agreement between the two coders (Gisev et al, 2013).

Naturally, course descriptions can be ambiguous or not paint the full picture of
a course since a large part of the work (including decision-making) lies in the way
it is taught. Consequently, the assumptions made here regarding courses may not
equate fully to whether or not something is included in a given course. In Denmark,
however, the vast majority of course exams are conducted in collaboration with an
external examiner (aka, censor) from another university. This person is also charged

8Structure and documentation is still a work in progress. While some courses are in English, transla-
tion is still in progress for the remaining courses. The repository can be found here: https://github.com/
sebastiannicolajsen/ipcrd

9

https://github.com/sebastiannicolajsen/ipcrd
https://github.com/sebastiannicolajsen/ipcrd

with ensuring the exam assesses the explicit learning goals stipulated in the course
description. Also, any complaints are settled according to the course descriptions.
Hence, course descriptions accurately account for the (intended) teaching.

5 Programmes with Programming? (RQ1)

Fig. 4: Distribution of educational programmes with mandatory programming (red
squares) vs educational programmes without mandatory programming (gray squares).

We examined a total of 679 different educational programmes. Since educational
programmes are sometimes offered by varying institutions, this number corresponds
to a total of 1,169 instances of educational programmes. Within those, we found that
175 educational programmes introduce mandatory programming through 130 courses,
with some courses shared across multiple programmes. We thus observe that:

Observation 1a (Programmes): Mandatory programming has emerged in 1 out of 61⁄2
educational programmes (175 out of 1,169).

The size of this number, 1 in 61⁄2 programmes (15%), is a testament to the massive
effect of digitalization on the higher educational landscape. Computer programming
is not just for computer science; mandatory programming has been deemed essential
and emerged in many non-computing educational programs, which we explore below.

Figure 4 provides an overview of which educational areas include mandatory pro-
gramming. For this overview, we used the official governmental educational register
of Denmark, which categorises educational programmes according to their so-called
disciplinary domain; e.g., Natural Science or Humanities (Danmarks Statistik, 2016).

10

However, since the register only provides a single category for each educational pro-
gramme, some educational programmes will invariably be inappropriately categorized;
e.g., Health & Informatics (at KU) is unilaterally categorized as Information and
Communication Technology (ICT) and Health & Welfare Technology (at SDU) is
categorized as Engineering, technology, and industrial production, despite both pro-
grammes indicating they are interdisciplinary. This is an unavoidable consequence of
any uni-dimensional categorization. Even though the list is non-exhaustive and the
categorisation does not account for interdisciplinary programmes, the overview does
show that programming is not exclusively introduced within Computer Science (or
the ICT domain). It shows that:

Observation 1b (Areas): Mandatory programming has emerged in all of the major
disciplinary areas (with the exception of Humanities, Teaching & Learning, and Artistic).

Figure 5 shows how educational programmes featuring mandatory programming are
distributed across institutions. We note that:

Observation 1c (Institutions): The vast majority (97%) of tertiary educational pro-
grammes where mandatory programming has emerged are at university (169 in 175).

It is, in fact, not surprising that colleges and other non-university institutions are
less represented since they mostly offer other types of educational programmes; e.g.,
vocational education (or other types which we do not explore).

Fig. 5: Distribution of programmes with mandatory programming across institutions.

Figure 6 shows the educational programmes with mandatory programming accord-
ing to their educational degree type. We see that:

Observation 1d (Degrees): Most educational programmes where mandatory program-
ming has emerged (almost 2/3) are at the BSc level; a fifth (20%) are on professional
bachelor & the BSc of engineering; only the last sixth (16%) are at the MSc level.

11

Fig. 6: Distribution of programmes across educational level.

Again, this pattern is expected since there is a large degree of coordination between
bachelor’s and master’s degrees in Denmark. The master’s degree is indeed often a
continuation of a bachelor’s degree; thus, if a master’s degree expects programming
competences, they will often have been introduced on the bachelor level.

In summary, many educational programmes include mandatory programming and
cover a wide variety of disciplinary areas, institutions, and degree levels.

6 Role of Programming? (RQ2)

While the debate on whether or not to teach programming has been permeating the
field of computing education research, an important question to ask first is why teach
programming. While Ko et al (2020) and Evrard and Guzdial (2023) present a categori-
sation of computing for expression, justice, and discovery, we did not find reflections
of these in isolation nor in relation to programming (Ko et al, 2020; Evrard and Guz-
dial, 2023). Instead, we identified that course curricula mention programming in two
distinct ways: First, programming is described as a language (used to conduct activ-
ities within the domain of computing). Second, programming is described as a tool
(used to conduct activities outside of computing). While this categorisation appears
highly comparable to the perspective introduced by Denning et al (1989) of comput-
ing as discipline-oriented thinking or tool use, we use different terminology as they
discuss computing broadly and we focus on programming. Further, as we will outline
here, it is not two distinct categories but rather a spectrum of perspective. Figure 7
illustrates the number of programmes (as opposed to courses) we have identified which
code to either of the two codes (or both), whereas white squares represent programmes
we identified for which we did not code any of these codes. We will, throughout this
paper, present the number of courses (out of 130 courses) that code to a particular
topic and illustrate the distribution across disciplines using programmes (where 175
programmes share the 130 courses).

From Figure 7 it is apparent that despite the singular categorisation used by the
national educational register, both types of descriptions (as a language & as a tool)
appear across disciplines, except for ICT and ‘Mechanics, Iron, and Metal’ (where
the role of programming is exclusively as a language).

Taught as a language (to conduct activities within computing). 60% of
courses (93 courses) explicit programming as a language, talking explicitly about a

12

Fig. 7: Programmes coding to either language and/or tool.

particular programming language. While these courses intend to teach general-purpose
programming, they might, like the course Introduction to Programming, have adjacent
or complimentary goals, such as enabling communication with professional develop-
ers, educating vernacular/conversational programmers, incorporating ideas such as
computational thinking (Shaw, 2022; Evrard and Guzdial, 2023):

The course provides students with a basic understanding of computational thinking and
programming both for their own future use and for their ability to collaborate with experi-
enced programmers and software developers. The students will learn about the concept of
computational thinking and get a hands-on introduction to programming using the Python
programming language. Programming and computational thinking are basic primitives in
today’s IT world.

— [Digital Design & Interactive Technologies, ITU]

Taught as a tool (used to conduct activities outside of computing). In con-
trast, 22% of courses (29 courses) explicitly describe programming to solve issues
outside of computing or as a tool to achieve something ; e.g., “how to obtain, store,
manipulate, and analyse data using relevant software and foundational machine learn-
ing approaches.” (Economy, AAU). Interestingly, programming languages are not
only categorised as a tool, but as software, often connected to solving issues in a
domain-specific context:

The course equips students with basic skills in data analysis which are required for analyzing
socio-economic issues as well as learning more advanced methods in advanced semesters.
In this regard, the course also teaches the use of a statistical program, R.

— [Economy, AAU]

13

This is not exclusive to certain disciplines but appears in various ones, e.g., Biology
(Biomedicine, SDU) or Mathematics (Mathematics, AAU). As argued in the descrip-
tion of the course ‘Biostatistics in R 1,’ choosing a programming language as the
primary software offers a broad range of specialized tools and individual tailoring:

Among currently available software suits, the R scripting language became very popular to
deal with biostatistics and analysis of large data sets, as it (i) provides a vast number of
statistical tools, (ii) allows adaptation of the analysis to any experimental design, (iii) offers
simple commands to operate on entire data sets, (iv) provides a wide range of methods for
data visualization and (v) has a large and active community of researchers developing new
tools.

— [Biochemistry & Molecular Biology, SDU]

Taught as a language & as a tool. Interestingly, we found that 6% of courses (8
courses) mention programming both as a language and also as a tool. It is consequently
important to think of these categorisations as a spectrum rather than a dichotomy.
While existing research suggests a more strict categorisation of programming, we
argue that the diversity of disciplines requires a “looser definition” of programming’s
purpose, namely that it can be: a language, a tool, or both (a language & a tool):

Observation 2 (Role): In educational programmes where mandatory programming has
emerged, programming has manifested itself on the spectrum between being used as a
language (for computing-specific activities) and as a tool (for activities in other domains)
across disciplines.

7 Delineation of Programming? (RQ3)

The role of programming manifested itself on a spectrum from being used as a language
and as a tool. This may largely relate to whether programming is the sole content of
the course, which, in turn, affects the design and curriculum of a course. This is one
of the reasons why the debate on how to integrate computing is a fundamental choice
(Caspersen et al, 2017; Palumbo, 1990). Based on the curricula analysed, we were able
to ascertain how this was done for 123 of the courses. Some courses are taught in
isolation ; i.e., they introduce programming in a standalone course. Other courses are
taught in combination ; i.e., they combine programming with other topics. Figure
8 illustrates the distribution of courses taught in isolation/in combination across the
identified programmes. Again, we see that no disciplinary area is dominated by either
approach to introducing programming (in isolation or in combination).

Taught in isolation. 60% of courses (79 out of the 130 courses) appear to focus
exclusively on programming. Despite this, the courses vary largely in their focus. Some
courses highlight common language features such as numbers, strings, branching, log-
ical operators, and functions (e.g., Chemistry & Technology, DTU) or object-oriented
programming (e.g., Business Administration & Digital Business, CBS). Others focus
on computer architecture, algorithms, and data structures (e.g., Computer Technol-
ogy, AAU) or compilers, linkers, and pointers (e.g., Electrical Energy Technology, AU).
Some courses mix multiple of these areas (e.g., Software Design, ITU). While no sin-
gle area appears more dominant, they all focus solely on programming. Despite the

14

Fig. 8: Programmes containing courses taught in isolation (standalone programming
courses) vs courses taught in combination (programming combined with other topics).

standalone nature of the course, courses like Programming 1 argue for the importance
of programming in itself:

In today’s healthcare, technology is included to a greater and greater extent. These tech-
nologies are largely based on a combination of electronics and programs. Therefore, it is
necessary for health technology engineers to obtain a certain routine in reading and writing
programs. In this course great emphasis is put on practical exercises to achieve this routine.

— [Health Technologies, AU]

Taught in combination. In contrast, 33% of courses (44 courses) combine the intro-
duction of programming with other disciplines; e.g., the analysis and synthesis of
geodata (Geography and Geoinformatics, KU). In particular, such courses often focus
on applying programming (following Observation 2 regarding programming as a
tool, outside of computing):

The purpose of the course is to give students basic insight into data science [Datavidenskab].
This is done with a special focus on data handling, exploration and visualization. The
objective is to provide a broad overview of data science and introduce the students to the
basic tools and methods for handling the typical work routines encountered in a project [...]

— [Data Science, AU]

While these observations do not solve the question of how to delineate computing in
general education, they highlight that both approaches (in isolation & in combination)
appear to work in the context of tertiary education and, further, that both approaches
are applied across disciplinary areas:

15

Observation 3 (Delineation): Across disciplines, mandatory programming has emerged
as taught both in isolation as well as in combination (with other topics).

8 Kind of Programming Competences? (RQ4)

Given that programming is taught both in isolation and in combination (with
other topics), it is important to consider what kind of competences a course aims to
establish. For RQ4 (“What kind of competences appear across disciplines?”), we found
three different “families of (related) competences”:

• (1) Problems & Problem-solving ;
• (2) Collaboration (incl. Communication); and
• (3) Abstraction & Algorithms.

We now consider each of these competence families, in turn.

8.1 Problems & Problem-solving

Problems. The literature suggests that solving problems (aka, problem-solving) is a
primary function of computing (Gries, 1974; Kalelioglu et al, 2016). When introducing
problem-solving outside of computing for, say, biologists, it would be highly relevant
to situate these problems in the context of the domain: biology. This essentially means
integrating computing into the domain and combining it with the topics of the domain.

Figure 9 illustrates how domain problems appear across disciplines. According to
our study, 19% of courses (25 out of the 130 courses) have explicit domain problems
in their curricula. We see domain problems appearing in all domains, except in the
context of ICT, where problem-solving is presumably independent of any particular
domain:

Observation 4a (Domain Problems): Mandatory programming has emerged with a
focus on domain problems across all disciplines (except for the ICT disciplinary area).

Problem-solving. Like existing literature, some courses highlight the central function
of problem-solving; for instance:

Programming is about solving problems: Programs that can be executed on a computer are
developed to solve a problem. Assuming that we understand the problem to be solved, we
face two challenges. The first is how to instruct the computer and the second is how to
judge whether the problem has been adequately solved [...].

— [Computer Technology, AU]

The constituents of problem-solving, specifically for (object-oriented) programming,
typically include: (1) problem identification and analysis, (2) design, (3) implementa-
tion, and (4) validation (Madsen et al, 1993).

We did not find equally clear explications of the entire problem-solving process
in the course descriptions. Rather, curricula focused on design, implementation (or
both), and validation. Figure 10 illustrates the distribution of these processes onto
programmes across disciplines. 40% of courses (52 courses) mention both design and
implementation; 33% of courses (43 courses) exclusively mention implementation; and
3% of courses (4 courses) exclusively mention design (omitted from the Figure due low

16

Fig. 9: Programmes with mandatory programming courses that explicitly mention
domain problems.

numbers). Further, 40% of courses (52 courses) mention the teaching of validation; e.g.,
testing and/or debugging. Again, Figure 10 shows that these steps of problem-solving
are widely recognized in curricula across disciplines, but also that implementation
(in isolation, without design) is widely practised. It should be noted that validation
was only registered to be present when either both design and implementation were
described or implementation exclusively.

While all these courses focus on design and/or implementation, they vary in terms
of what this implies; e.g., “understanding methods for program design and be able to
distinguish between good and bad praxis” (Digitalization & Application Development,
AAU), “conduct analysis of a specification to identify phenomena” (Software Engi-
neering, SDU), and “identify requirements of a program, prepare a technical design,
implement and test it” (IT, Communication, & Organisation, AU). Similarly, courses
vary in terms of what validation implies, e.g., planning and executing tests (Mathe-
matics & Economy, SDU), reason informally about programs and relating it to test
cases (Electro Technology, AU), and understanding the role of debugging (Software
Engineering, SDU). From this, we observe the following:

Observation 4b (Problem-solving): A subset of problem-solving activities are widely
emphasized across disciplines; i.e., design+implementation, or implementation in isolation,
and validation.

In relation to problem-solving, and most often in combination with validation, we
identified that 22% of courses (29 courses) also highlight the ability to read/write
documentation of programs. While documentation is not explicitly part of the iden-
tified problem-solving steps, it appears across disciplines, as shown in Figure 11.

17

Fig. 10: Programmes describing design+implementation, implementation in isolation,
and validation

Although documentation is not as widespread as the existing steps of problem-solving,
we observe the following:

Observation 4c (Documentation): A subset of courses introducing steps of problem-
solving, particularly validation, also highlight the ability to read/write documentation.

8.2 Collaboration (incl. Communication)

Previous research highlights the need for conversational or vernacular programmers
to be able to discuss, work, communicate and collaborate with professional developers
(Shaw, 2022; Evrard and Guzdial, 2023). Courses largely focus on collaborative com-
petences, i.e., some kind of collaboration is mentioned in 34% of courses (44 of the
130 courses). These competences span the various programmes as seen in Figure 12.
Some courses, for instance, focus on “working in groups” (Software Technology,
DTU), “handle development-oriented situations” (Computational Medicine, SDU), or
“reviewing others’ solutions” (Electronics, AU) while others argue for “readable code”
(Chemistry & Technology, DTU) and the “ability to express decisions made” (Electro
Technology, DTU).

Further, 11% of courses (15 courses) focus specifically on the ability to communi-
cate with various stakeholders, e.g.:

18

Fig. 11: Programmes introducing the ability to read/write documentation.

Communicate the conclusions of statistical analysis clearly and effectively; i.e., identify
connections between basic statistics and the real world.

— [Market & Culture Analysis, CBS]

In conclusion, we make the following observation:

Observation 5 (Collaboration): Collaboration (including communication) competences
appear across disciplines.

8.3 Abstraction & Algorithms

Abstraction. While literature highlights abstraction as a core competence within
computational thinking (Kalelioglu et al, 2016; Haseski et al, 2018), it only appears
in 9% of courses (12 courses of the 130 courses). This is despite extending our coding
to include related concepts, such as decomposition. Therefore, we do not visualize the
distribution across educational programmes, but merely observe the following:

Observation 6a (Abstraction): Abstraction is almost not apparent in course curricula
(despite being hailed, in the literature, as ‘crucial for programming’).

Algorithms (or algorithmic thinking) is another often mentioned competence of com-
putational thinking (Haseski et al, 2018; Knuth, 1985); it appears in 29% of courses (38
courses). Figure 13 illustrates the disciplines wherein algorithms appear. Now, algo-
rithms are much less apparent in natural sciences and ICT than one may expect. This
may be caused by the fact that algorithms are usually not taught on introductory pro-
gramming courses but only later in the programme for technical (and programming)
specific educational programmes.

19

Fig. 12: Programmes describing collaborative skills.

These courses vary largely on what is implied in relation to algorithms, whether this be
the introduction of algorithms and algorithmic techniques (e.g., Data Science, ITU),
optimization (e.g., Bioinformatics & Systems Biology, DTU), or understanding of run-
time complexity and their uses (e.g., Bio Informatics, AU). While the majority of these
courses discuss algorithms, a few argue for the use of algorithms in their respective
disciplines:

The participants will after the course have detailed knowledge of the concept of computa-
tional thinking and programming in a bioinformatics context, and have acquired practical
experience in analyzing and solving computational problems using algorithmic and machine
learning techniques in a bioinformatics context.

— [Bioinformatics, AU]

This is further supported by other courses, e.g., Programming & Data Processing
(Digital Innovation & Management, ITU) where the argument is the importance to
future employers. In conclusion, we make the following observation:

Observation 6b (Algorithms): Algorithms are apparent across disciplines, however, not
to the same extent as other competences.

9 Limitations

We now consider the limitations of our study.
Curriculum as the subject of analysis? Similar to Becker and Fitzpatrick

(2019), we recognize that our analysis is more about concepts than the depth to which
they are covered during teaching/learning activities within courses. However, we do

20

Fig. 13: Programmes including algorithms.

retain our position that these yield arguments of courses’ existence and bring forth
concepts which are central to the course (Winsløw, 2006). Further, Becker & Fitz-
patrick argue that learning outcomes are a direct mechanism to gauge expectations
of students, however, we decided to include everything accessible in course descrip-
tions to paint the most detailed picture possible. Naturally, elements thereof will not
be direct reflections of what we expect of students, yet due to the nature of some
institutions following EQF, this would have yielded less representative results.

Incomplete data collection? The data was harvested and aggregated by a single
researcher using the public education guide.9 Due to the structure of the guide and the
use of a single researcher, there is a risk of inadvertently excluding courses, thereby
educational programmes introducing programming. However, we argue that the variety
of programmes (according to their disciplinary area) we have identified suggests we
have covered a significant portion of different educational programmes.

Inappropriate categorisation of programmes? As previously stated, the cat-
egorisation provided by the governmental educational register is rather limited in its
recognition of interdisciplinary programmes (Danmarks Statistik, 2016). This limits
our ability to provide a factual diagrammatic overview of programming course distri-
bution across disciplines. Despite this, our observations appear to manifest across all
the disciplines in which we identified programming courses. We argue that these ten-
dencies exist across disciplines, even when applying a strict, unilateral categorisation
of disciplines.

Analysis process? While we took an inductive approach to establishing codes,
we also compared our findings to several frameworks of computational thinking. It
is important to state that this does not entail adopting all content from existing

9The Education Guide: https://ug.dk

21

https://ug.dk

frameworks or eliminating elements which do not correspond to those frameworks.
We, therefore, found elements (such as collaboration) which is not explicit in such
frameworks. However, comparing to such frameworks still poses a threat of biasing
our findings.

Generalization of context? Naturally, our findings are tied to the context
of Denmark. However, given that Denmark adheres to European guidelines and
frameworks, one may expect the findings to generalize to other European coun-
tries. Presumably, our case parallels countries where programming emerges organically
through a bottom-up process at autonomous universities with the freedom to design
their own educational programmes.

What about generative artificial intelligence? Generative AI is already
impacting the global educational landscape, and educational institutions are already
trying to figure out how to harness its benefits and mitigate its drawbacks. The jury
is still out on predicting the impact on education, in general, and on programming,
in particular. In any case, our study provides a “snapshot” of the state of teaching
programming in higher education before it is likely disrupted by the era of generative
AI.

10 Conclusion

In conclusion, we have explored 1,169 higher educational programmes and their course
descriptions (from 2023). We found that 175 of the educational programmes (sharing
130 courses) include mandatory courses introducing programming. These are pro-
grammes which themselves manage their curricula, and, therefore, are expressions of
individual needs for their disciplinary area. Using these course descriptions, we have
explored the inclusion of programming (and computing) in a wide range of disciplinary
areas. Based on our findings, we here provide a series of recommendations for educa-
tors. We recognize that these recommendations deserve further investigation to ensure
consideration of the lived realities of operating in diverse universities. Thus, we present
these recommendations for individual educators and policymakers to reflect upon, but
also to encourage further exploration of them individually. First, we recommend that:

Recommendation 1a: Any educator or policymaker should consider the inclusion of
programming/computing given its widespread inclusion in higher education already.

Specifically, through Observation 1(a–d) used in addressing what kind of educa-
tional programmes introduce programming (RQ1), we found that mandatory
programming has emerged in 1 out of 61⁄2 educational programmes. Further, manda-
tory programming appears within the majority of the (large) disciplinary areas
according to the categorisation of the governmental educational register, with some
exceptions (e.g., Humanities and Teaching & Learning), potentially due to the uni-
lateral categorisation applied (Danmarks Statistik, 2016). Thus, it is apparent that
programming is mandated for a large, diverse group of educational programmes. A
decision made by the institutions and programmes themselves. Given this widespread
inclusion in a rather conservative analysis of courses/programmes, we argue, like
Haigh (1985), that educators and policymakers should consider the inclusion of
programming/computing. In extension hereof, we recommend that:

22

Recommendation 1b: Educators need to take ownership of what introducing program-
ming entails and how it should be presented.

Based on the widespread inclusion seen throughObservation 1a–d, it should be clear
that programming is not a possession of computer science but something that belongs
to all disciplines. Historically, this has always been the case. Already in the 1950s,
computing was rooted in electrical engineering, natural sciences, and mathematics; its
pioneers sought to design, construct, and utilize large-scale (physical) machine com-
puting (Tedre et al, 2018). As the community grew in the 1960s, so did the need for
a unique identity, spawning ideas such as ‘Algorithmic Thinking’ (Tedre and Den-
ning, 2016). However, programming long haunted the image of computing, regarded
as an esoteric craft that raised questions about whether users could be educated in
their use (Tedre et al, 2018). To this end, many tried to elevate programming into
an esteemed academic discipline, which led to the introduction of computer science
(Tedre et al, 2018). However, at the same time, the increased use of computers led
to various other computational disciplines (Denning and Tedre, 2021). Consequently,
an ACM task force developed their report “Computing as a Discipline,” changing the
narrative from the field of ‘Computer Science’ to the field of ‘Computing,’ acknowl-
edging the widespread use of computing (Tedre et al, 2018). Therefore, we do not
believe programming or computing to be a possession of computer science; rather, this
is a remnant of the past—it has been and always will be a significant part of other
disciplines. As such, programming is something relevant to all of higher education.

We recognise including computing/programming is a daunting task, further com-
plicated by the fact that the majority of research on introductory programming
exists within the domain of computer science (e.g., Becker and Fitzpatrick (2019) and
Luxton-Reilly et al (2018)). We thus recommend that:

Recommendation 2: Educators should consider what programming can do for their
discipline.

To support educators in doing so, following Observation 2, we propose educators
view the role of programming (RQ2) as a spectrum from being as a language (to
solve computing problems) or as a tool (to solve problems outside of the domain of
computing). While existing research suggests a more stringent categorisation of com-
puting’s potential purposes, we believe this only limits the opportunities to be found in
individual disciplines (Ko et al, 2020; Evrard and Guzdial, 2023). Further, we found no
explicit examples of the identified categories in the explored programmes. By instead
recognising it as a spectrum and focusing on how programming can support a given
domain (by existing somewhere on this spectrum), tailoring and motivating its use
becomes simpler compared to appropriating a certain category. This is further rein-
forced by research arguing computing education should; be tailored to its audience to
increase interest (Chakrabarty and Martin, 2018; Ott et al, 2018); introduce experi-
ences which meet students’ career goals (Thiry et al, 2011), and; support diversity in
types of programmers (vernacular and professional) (Shaw, 2022; Evrard and Guzdial,
2023).

When educators have identified what programming can do for their discipline, they
are left with challenges such as how to include programming into their programme

23

(i.e., in isolation or in combination with another area) and which competences to
teach. These challenges are largely intertwined, and we recommend that:

Recommendation 3: The purpose and competences required should determine the
delineation of introductory programming.

In regards to the question of how to delineate programming (RQ3), through
Observation 3, we found that mandatory programming is being introduced both
through standalone courses (in isolation) and by integration with other areas (in com-
bination). This difference will obviously affect the contents of such courses. Standalone
introductory programming courses (in isolation) likely introduce different elements;
e.g., language features, object-oriented programming, and/or algorithms and data
structures. Courses introducing programming in combination with other areas, on the
other hand, may involve analysis and synthesis of data or solving problems. We there-
fore conclude that both approaches appear feasible in all disciplines. While the question
of how to delineate programming is still being debated, we believe it to be more cru-
cial to consider the purpose and contents of the course in relation to the purpose
and contents of the programme (Caspersen et al, 2017; Palumbo, 1990). By focusing
on these constituents, the question of delineation will become apparent based on the
choices made. For example, if the purpose of programming is to solve problems com-
putationally within a domain, then the choice will likely be to integrate programming
into a course. If the purpose is instead to provide a strong fundamental understanding
of programming as a language, then an isolated course may be preferred. Thus, the
choice of delineation should be determined by the necessary competences, for which
we recommend that:

Recommendation 4: Educators should include problem-solving and collaboration com-
petences in their introductory programming course no matter the discipline.

ThroughObservations 4–6 we see that the most important kinds of programming
competences (RQ4) across disciplines appear to be problem-solving ; in particu-
lar, design, implementation, and validation. Interestingly, this diverges from existing
research, which also suggests high importance of both abstraction and algorithms
(Lu et al, 2022; Becker and Fitzpatrick, 2019). While these competences did appear,
they were far less apparent across disciplines than, e.g., problem-solving. The impor-
tance of abstraction and algorithms may result from existing research focusing on
programming in a computer science context. However, we argue that educators intro-
ducing programming in diverse disciplines should, in practice, not focus on these.
Instead, any discipline aiming to allow graduates to solve problems computationally,
problem-solving ought to be a central competence. Moreover, educators should con-
sider what problem-solving implies in their field. For example, Becker (2023) validly
criticises computer science for not critically examining the plurality and subjectivity
of problems, i.e., that computer science views problems as singular objective truths.

Further, educators should consider collaboration competences, which also appear
across disciplines. With the continuously rising application of computing, collabora-
tion ought to be crucial to support the construction of software supporting various
domains. This is also supported by vernacular programmers’ synonymous name, ‘con-
versational ’ programmers (Evrard and Guzdial, 2023). In addition, one can also argue

24

that problem-solving and collaborative competence are closely connected in student
work and professional endeavours (Raj et al, 2021).

While we here consider these three competences in relation to programming, educa-
tors may find that they are better taught without programming. Here, we simply shed
light on the diverse inclusion of these competences in programming courses. After all,
as stated by Evrard and Guzdial (2023), programming is a means to learn computing.

While laudable research explores programming in the context of computer science,
we believe this study to be the first explicit step towards exploring computing/pro-
gramming curricula in a broad context. By conducting future research and building
on this, we may identify and improve the application of computing in individual
disciplines, supporting educators and policymakers in following the above recommen-
dations. Concretely, this should entail both exploration of different curricula in diverse
contexts and assessment of different pedagogical approaches, as is already being con-
ducted in the domain of computer science. Further, we hope to inspire similar work
outside of Denmark to understand international similarities and differences. Last,
while the profiliation of generative AI is still underway, we believe it may support
educators in strengthening competences associated with programming, in particular,
problem-solving.

Acknowledgement

The authors would like to thank Samantha Breslin and Marisa Cohn for their impec-
cable attention to detail and feedback during the study’s design and the development
of our analysis.

References

Aleksić V, Ivanović M (2016) Introductory programming subject in european higher
education. Informatics in Education 15(2):163–182

Ardito C, Buono P, Costabile MF, et al (2012) End users as co-designers of their own
tools and products. Journal of Visual Languages & Computing 23(2):78–90

Barendsen E, Steenvoorden T (2016) Analyzing conceptual content of international
informatics curricula for secondary education. In: Informatics in Schools: Improve-
ment of Informatics Knowledge and Perception: 9th International Conference
on Informatics in Schools: Situation, Evolution, and Perspectives, ISSEP 2016,
Münster, Germany, October 13-15, 2016, Proceedings 9, Springer, pp 14–27

Becker BA, Fitzpatrick T (2019) What do cs1 syllabi reveal about our expectations
of introductory programming students? In: Proceedings of the 50th ACM technical
symposium on computer science education, pp 1011–1017

Becker C (2023) Insolvent: How to reorient computing for just sustainability. MIT
Press

25

Bennedsen J, Caspersen ME (2006) Abstraction ability as an indicator of success for
learning object-oriented programming? ACM Sigcse Bulletin 38(2):39–43

Biggs J, Tang C, Kennedy G (2022) Teaching for quality learning at university 5e.
McGraw-hill education (UK)

Biggs JB, Collis KF (2014) Evaluating the quality of learning: The SOLO taxonomy
(Structure of the Observed Learning Outcome). Academic Press

Brabrand C, Dahl B (2008) Constructive alignment and the solo taxonomy: a com-
parative study of university competences in computer science vs. mathematics.
In: Conferences in Research and Practice in Information Technology, Australian
Computer Society, pp 3–17

Brabrand C, Dahl B (2009) Using the solo taxonomy to analyze competence
progression of university science curricula. Higher Education 58:531–549

Bundsgaard J, Bindslev S, Caeli EN, et al (2019) Danske elevers teknologiforst̊aelse:
resultater fra ICILS-undersøgelsen 2018. Aarhus Universitetsforlag

Caspersen ME, Iversen OS, Nielsen M, et al (2017) Computational thinking. Dolin,
G Holten Ingerslev & Hanne Sparholt Jørgensen (Red), Gymnasiepædagogik En
grundbog København: Hans Reitzels pp 470–478

Chakrabarty S, Martin F (2018) Role of prior experience on student performance in the
introductory undergraduate cs course. In: Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pp 1075–1075

Christensen IM, Marcher MH, Grabarczyk P, et al (2021) Computing educational
activities involving people rather than things appeal more to women (recruit-
ment perspective). In: Proceedings of the 17th ACM Conference on International
Computing Education Research, pp 127–144

Crick T, Sentance S (2011) Computing at school: stimulating computing education
in the uk. In: Proceedings of the 11th Koli Calling International Conference on
Computing Education Research, pp 122–123

Curzon P, McOwan PW (2017) The power of computational thinking: Games, magic
and puzzles to help you become a computational thinker. World Scientific

Danmarks Statistik (2016) Uddannelsesregister. URL https://www.dst.dk/Site/Dst/
SingleFiles/GetArchiveFile.aspx?fi=uddannelse&fo=vejluddreg--pdf&ext=%7B2%
7D, accessed on 21 05, 2024

De Raadt M, Watson R, Toleman M (2002) Language trends in introductory
programming courses. Working paper

26

https://www.dst.dk/Site/Dst/SingleFiles/GetArchiveFile.aspx?fi=uddannelse&fo=vejluddreg--pdf&ext=%7B2%7D
https://www.dst.dk/Site/Dst/SingleFiles/GetArchiveFile.aspx?fi=uddannelse&fo=vejluddreg--pdf&ext=%7B2%7D
https://www.dst.dk/Site/Dst/SingleFiles/GetArchiveFile.aspx?fi=uddannelse&fo=vejluddreg--pdf&ext=%7B2%7D

Denning PJ, Tedre M (2021) Computational thinking: A disciplinary perspective.
Informatics in Education 20(3):361

Denning PJ, Comer DE, Gries D, et al (1989) Computing as a discipline. Computer
22(2):63–70

DiSessa AA (2000) Changing minds: Computers, learning, and literacy. Mit Press

Evrard G, Guzdial M (2023) Identifying the computing education needs of liberal
arts & sciences students. In: Proceedings of the 23rd Koli Calling International
Conference on Computing Education Research (Koli Calling ’23)

Gal-Ezer J, Stephenson C (2014) A tale of two countries: Successes and challenges in
k-12 computer science education in israel and the united states. ACM Transactions
on Computing Education (TOCE) 14(2):1–18

Gisev N, Bell JS, Chen TF (2013) Interrater agreement and interrater reliability:
key concepts, approaches, and applications. Research in Social and Administrative
Pharmacy 9(3):330–338

Gretter S, Yadav A (2016) Computational thinking and media & information literacy:
An integrated approach to teaching twenty-first century skills. TechTrends 60:510–
516

Gries D (1974) What should we teach in an introductory programming course? In: Pro-
ceedings of the fourth SIGCSE technical symposium on Computer science education,
pp 81–89

Haigh RW (1985) Planning for computer literacy. The Journal of Higher Education
56(2):161–171

Haseski Hİ, İlic U, Tuğtekin U (2018) Defining a new 21st century skill-computational
thinking: Concepts and trends. International Education Studies

Ilomäki L, Kantosalo A, Lakkala M (2011) What is digital competence? Linked portal

Jones SP, Mitchell B, Humphreys S (2013) Computing at school in the uk. CACM
Report

Kalelioglu F, Gulbahar Y, Kukul V (2016) A framework for computational thinking
based on a systematic research review. Baltic Journal of Modern Computing

Knuth DE (1985) Algorithmic thinking and mathematical thinking. The American
Mathematical Monthly 92(3):170–181

Ko AJ, Oleson A, Ryan N, et al (2020) It is time for more critical cs education.
Communications of the ACM 63(11):31–33

27

Lu C, Macdonald R, Odell B, et al (2022) A scoping review of computational think-
ing assessments in higher education. Journal of Computing in Higher Education
34(2):416–461

Luxton-Reilly A, Simon, Albluwi I, et al (2018) Introductory programming: a sys-
tematic literature review. In: Proceedings companion of the 23rd annual ACM
conference on innovation and technology in computer science education, pp 55–106

Madsen OL, Møller-Pedersen B, Nygaard K (1993) Object-oriented programming in
the BETA programming language. Addison-Wesley

Mason R, Cooper G (2014) Introductory programming courses in australia and new
zealand in 2013-trends and reasons. In: Proceedings of the Sixteenth Australasian
Computing Education Conference-Volume 148, pp 139–147

Mason R, Simon, Becker BA, et al (2024) A global survey of introductory program-
ming courses. In: Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1, pp 799–805

Méhaut P, Winch C (2012) The european qualification framework: skills, competences
or knowledge? European educational research journal 11(3):369–381

Menekse M (2015) Computer science teacher professional development in the united
states: a review of studies published between 2004 and 2014. Computer Science
Education 25(4):325–350

Murphy E, Crick T, Davenport JH (2016) An analysis of introductory programming
courses at uk universities. arXiv preprint arXiv:160906622

Nicolajsen SM, Pischetola M, Grabarczyk P, et al (2021) Three+ 1 perspectives
on computational thinking. In: Proceedings of the 21st Koli Calling International
Conference on Computing Education Research, pp 1–11

Ott L, Bettin B, Ureel L (2018) The impact of placement in introductory computer
science courses on student persistence in a computing major. In: Proceedings of the
23rd Annual ACM Conference on Innovation and Technology in Computer Science
Education, pp 296–301

Palumbo DB (1990) Programming language/problem-solving research: A review of
relevant issues. Review of educational research 60(1):65–89

Pears A, Seidman S, Malmi L, et al (2007) A survey of literature on the teaching of
introductory programming. Working group reports on ITiCSE on Innovation and
technology in computer science education pp 204–223

Raj R, Sabin M, Impagliazzo J, et al (2021) Professional competencies in computing
education: pedagogies and assessment. In: Proceedings of the 2021 Working Group

28

Reports on Innovation and Technology in Computer Science Education. p 133–161

Robins A, Rountree J, Rountree N (2003) Learning and teaching programming: A
review and discussion. Computer science education 13(2):137–172

Shaw M (2022) Myths and mythconceptions: What does it mean to be a program-
ming language, anyhow? Proceedings of the ACM on Programming Languages
4(HOPL):1–44

Statistik D (2022) Ungdomsuddannelser - uddannelsesaktiviteter p̊a gym-
nasiale uddannelser. URL https://www.dst.dk/da/Statistik/emner/
uddannelse-og-forskning/fuldtidsuddannelser/ungdomsuddannelser

Stephens S, O’Donnell D, McCusker P (2007) Computing careers and irish higher
education: A labour market anomaly. Industry and Higher Education 21(2):159–168

Tedre M, Denning PJ (2016) The long quest for computational thinking. In: Pro-
ceedings of the 16th Koli Calling international conference on computing education
research, pp 120–129

Tedre M, Simon, Malmi L (2018) Changing aims of computing education: A historical
survey. Computer Science Education 28(2):158–186

Thiry H, Laursen SL, Hunter AB (2011) What experiences help students become scien-
tists? a comparative study of research and other sources of personal and professional
gains for stem undergraduates. The Journal of Higher Education 82(4):357–388

Tikva C, Tambouris E (2021) Mapping computational thinking through programming
in k-12 education: A conceptual model based on a systematic literature review.
Computers & Education 162:104083

Valentine DW (2004) Cs educational research: a meta-analysis of sigcse technical
symposium proceedings. ACM SIGCSE Bulletin 36(1):255–259

Weintrop D, Beheshti E, Horn M, et al (2016) Defining computational thinking for
mathematics and science classrooms. Journal of science education and technology
25:127–147

Wing JM (2006) Computational thinking. Communications of the ACM 49(3):33–35

Winsløw C (2006) Didaktiske elementer. En indføring i matematikkens og naturfagenes
didaktik 1:229–242

Appendix

29

https://www.dst.dk/ da/Statistik/emner/uddannelse-og-forskning/fuldtidsuddannelser/ ungdomsuddannelser
https://www.dst.dk/ da/Statistik/emner/uddannelse-og-forskning/fuldtidsuddannelser/ ungdomsuddannelser

Grade definition ECTS

12 For an excellent performance that completely meets the course objectives,
with no or only a few insignificant weaknesses.

A

10 For a very good performance that meets the course objectives, with only
minor weaknesses.

B

7 For a good performance that meets the course objectives but also displays
some weaknesses.

C

4 For a fair performance that adequately meets the course objectives but
also displays several major weaknesses.

D

02 For a sufficient performance that barely meets the course objectives. E

00 For an insufficient performance that doesn’t meet the course objectives. Fx
-3 For a performance that is unacceptable in all respects. F

Fig. 14: The Danish grade scale for which individual grades are defined as the degree of
fulfilment of explicit learning goals (aka, course objectives). The five grades above the
single line are pass grades; the two grades below the line are both fail grades. (The last
column, to the far right, gives the ECTS-equivalent conversion grades for comparison
within the European Union.) Translated from Danish (Brabrand and Dahl, 2009).

30

	Introduction
	Background
	Common Competences of Programming in Education
	Current Role(s) of Computing
	Related Work and Introductory Programming

	Educational Context
	Methodology
	Programmes with Programming? (RQ1)
	Role of Programming? (RQ2)
	Delineation of Programming? (RQ3)
	Kind of Programming Competences? (RQ4)
	Problems & Problem-solving
	Collaboration (incl. Communication)
	Abstraction & Algorithms

	Limitations
	Conclusion

