On the Impact of Feature Dependencies when Maintaining
Preprocessor-based Software Product Lines

Marcio Ribeiro
Informatics Center
Federal University of
Pernambuco
Recife, Brazil
mmr3@cin.ufpe.br

Tarsis Tolédo
Informatics Center
Federal University of
Pernambuco
Recife, Brazil
twt@cin.ufpe.br

ABSTRACT

During Software Product Line (SPL) maintenance tasks,
Virtual Separation of Concerns (VSoC) allows the program-
mer to focus on one feature and hide the others. However,
since features depend on each other through variables and
control-flow, feature modularization is compromised since
the maintenance of one feature may break another. In this
context, emergent interfaces can capture dependencies be-
tween the feature we are maintaining and the others, mak-
ing developers aware of dependencies. To better understand
the impact of feature dependencies during SPL maintenance,
we have investigated the following two questions: how often
methods with preprocessor directives contain feature depen-
dencies? How feature dependencies impact maintenance ef-
fort when using VSoC and emergent interfaces? Answering
the former is important for assessing how often we may face
feature dependency problems. Answering the latter is im-
portant to better understand to what extent emergent in-
terfaces complement VSoC during maintenance tasks. To
answer them, we analyze 43 SPLs of different domains, size,
and languages. The data we collect from them complement
previous work on preprocessor usage.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complezity
; D.3.3 [Programming Languages]: Language Con-
structs and Features—patterns

General Terms

Measurement, Design, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GPCE 11 Portland, USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Felipe Queiroz
Informatics Center
Federal University of
Pernambuco
Recife, Brazil

fbg@cin.ufpe.br

Claus Brabrand
IT University of Copenhagen

Copenhagen, Denmark

brabrand @itu.dk

Paulo Borba
Informatics Center
Federal University of
Pernambuco
Recife, Brazil

phmb@cin.ufpe.br

Sérgio Soares
Informatics Center
Federal University of
Pernambuco
Recife, Brazil
scbs@cin.ufpe.br

1. INTRODUCTION

A Software Product Line (SPL) is a family of software sys-
tems developed from reusable assets. These systems share
a common set of features that satisfy the needs of a par-
ticular market segment [3]. By reusing assets, it is possible
to construct products through features defined according to
customers’ requirements [16]. In this context, features are
the semantic units by which we can differentiate programs
in a SPL [19].

To implement features, developers often use preproces-
sors [7, 11, 2] and associate conditional compilation direc-
tives like #ifdef and #endif to encompass feature code. De-
spite their widespread use, preprocessors have several draw-
backs, including no support for separation of concerns [18].
To overcome this, researchers have proposed Virtual Separa-
tion of Concerns (VSoC) [7] as a way of allowing developers
to hide feature code not relevant to the current task, reduc-
ing some of the preprocessor drawbacks. The main idea is
to provide developers with a way of focusing on one feature
implementation without being distracted by others [6]. How-
ever, VSoC is not enough to provide feature modularization,
which aims at achieving independent feature comprehensi-
bility, changeability, and development [15].

In particular, these modularity problems arise because of
shared elements among features such as variables and meth-
ods. In general this leads to subtle dependencies like when
a feature assigns a value to a variable which is subsequently
used by another feature. These feature dependencies might
cause behavioral problems during SPL maintenance since
the programmer may not be aware of them, as illustrated
by two scenarios we cover in this paper: (i) maintenance of
one feature only works for some products; and (ii) mainte-
nance of one feature makes another not work.

To minimize these problems, we proposed the idea of emer-
gent interfaces [17]. The idea is to capture dependencies
between the feature a programmer is maintaining and the
others. These interfaces emerge and give information about
other features we might impact with our current mainte-
nance task. Developers then become aware of the depen-
dencies and, consequently, might avoid the maintainability
problems described in the aforementioned scenarios. No-

tice that developers still have the VSoC benefits. Emergent
interfaces complement VSoC in that in addition to hiding
feature code, they provide dependency information.

Given the problem caused by feature dependencies and
two approaches that provide benefits on feature modularity,
we focus on the following research questions:

e Question 1: how often methods with preprocessor
directives contain feature dependencies?

e Question 2: how feature dependencies impact main-
tenance effort when using VSoC and emergent inter-
faces?

Answering Question 1 is important to assess to what
extent dependencies is a problem in practice. In other words,
how important this problem is. Answering Question 2 is
important to better understand to what extent emergent
interfaces may complement VSoC during maintenance tasks.

Inspired by recent work [13, 14], we answer Question 1
by analyzing 43 software product lines taken from different
domains, size, and languages (C and Java). In particular, we
built a tool —based on [13]— to compute data with respect
to preprocessor usage and feature dependencies.

To answer Question 2, we use the same 43 product lines
to investigate and compare maintenance effort when using
VSoC and our emergent interface approach. For example,
when the programmer changes the value of a variable, he
needs to analyze whether or not the new value impacts other
features. Thus, he should check each feature and determine
possible dependencies. To perform this evaluation, we ran-
domly select methods and variables from those SPLs. From
one particular variable, we estimate the developer effort re-
quired to search for dependencies of the variable being main-
tained.

In Section 2, we present motivating examples to illustrate
behavioral problems caused by feature dependencies. Then,
in Section 3, we briefly introduce emergent interfaces. After
that, we discuss the study settings in Section 4 and present
the main contributions of this paper:

e data on preprocessor usage that reveals to what extent
feature dependencies occur in practice (complementing
previous work [13, 14]); and

e acomparison of VSoC and emergent interfaces in terms
of maintenance effort.

2. MOTIVATING EXAMPLES

Virtual Separation of Concerns (VSoC) reduces some of
the preprocessor drawbacks by allowing us to hide feature
code not relevant to the current maintenance task [7]. Using
this approach, developers can maintain a feature without be-
ing distracted by other features [6]. However, we show here
that VSoC is not enough to provide feature modularization,
which aims at achieving independent feature comprehensi-
bility, changeability, and development [15].

To illustrate the maintenance problems we mentioned in
the introduction, we now discuss two scenarios likely to oc-
cur when using VSoC. Although we focus on VSoC, these
scenarios can happen with simple preprocessor directives®
like #ifdef.

n fact, such preprocessors problems are reported in bug
tracking systems.

Please note that the maintenance tasks we focus on here
cause behavioral problems to the product line.

2.1 Scenario 1: Maintenance of one feature
only works for some products

The first example comes from the best lap?® product line.
Best lap is a casual race game where the player tries to
achieve the best time in one lap and qualify for the pole
position. It is highly variant due to portability constraints:
it needs to run on numerous platforms. In fact, the game is
deployed on 65 devices [1].

In this game, there is a method responsible for comput-
ing the game score, as illustrated in Figure 1. The method
contains a small rectangle at the end, representing a hidden
feature that the developer is not concerned with and thus not
seeing. Notice that there are no #ifdef statements. Instead,
the VSoC approach relies on tools that use background col-
ors to represent features, which helps on not polluting the
code with preprocessors directives [7].

The hidden feature—in our example named arena—is an
optional feature responsible for publishing the scores ob-
tained by the player on the network. This way, players
around the world are able to compare their results. The
method also contains a variable responsible for storing the
player’s total score (totalScore).

public void computeLevel() {
int totalScore perfectCurvesCounter * PERFECT CURVE_BONUS
perfectStraightCounter * PERFECT_ STRAIGHT_BONUS
gc_levelManager.getCurrentCountryId()
totalLapTime * SRC_TIME MULTIPLIER;

T+ o+

"x_ NetworkFacade.setScore(totalScore) ;

public class NetworkFacade {

public static void setScore(int s) {
score = (s < 0) 2 0 : s;

}

Figure 1: Maintenance only works for some prod-
ucts.

Now, suppose the developer were to implement the fol-
lowing new requirement in the (mandatory) score feature:
let the game score be not only positive, but also negative.
Also, suppose that the developer is using VSoC, so that there
are hidden features throughout the code, including arena.
The developer might well judge that they are not impor-
tant for the current task. To accomplish the task, he lo-
calizes the maintenance point (the totalScore assignment)
and changes its value (see the bold line in Figure 1). Build-
ing a product with the arena feature enabled and running it
may make the developer incorrectly assume that everything
is correct, since the negative total score correctly appears
after the race. However, when publishing the score on the
network, he notices that the negative score is in fact stored
as zero (see the expanded arena code). Consequently, the

2Best lap is a commercial product developed by Meantime
Mobile Creations.

maintenance was only correctly accomplished for products
without arena.

Because there are hidden features, the developer might be
unaware of another feature he is not maintaining uses to-
talScore and thus also needs to be changed accordingly to
correctly complete the maintenance task. In fact, the im-
pact on other features leads to two kinds of problems. The
first one is late error detection [6], since we can only de-
tect errors when we eventually happen to build and execute
a product with the problematic feature combination (here,
any product with arena). Second, developers face difficult
navigation throughout the code. Searching for uses of to-
talScore might increase developer effort. Depending on the
number of hidden features, the developer needs to consider
many locations to make sure the modification did not impact
other features. However, it is possible that some—or even
all—features might not need to be considered if they did not
use the variables that were modified. Besides, some features
are mutually exclusive in that, for instance, the presence of
feature A prohibits the presence of feature B. In our partic-
ular case, if we are maintaining feature A, then there is no
need for the developer to also consider feature B. Neverthe-
less, because this information might not be explicit in code,
the developer is susceptible to consider code unnecessarily,
increasing maintenance effort.

2.2 Scenario 2: Maintenance of one feature
makes another not work

Our second scenario presents an example based on the
TaRGeT? product line. By using TaRGeT, we can auto-
matically generate test cases from use cases. So, we have
a form in which users can edit use cases. Here, developers
reported a bug at the editing use case screen: the system
shows unconditionally an error message due to wrongly ful-
fillment of use case information (see the left side of Figure 2).
In this context, a developer responsible for fixing the prob-
lem needs to implement the following new requirement: the
system should point out which field of the use case screen
the user need to fill in again due to validation errors. The
idea is to paint the field (in red, for instance) so as to alert
the user so that he can correct it.

To fix the bug, an if statement is enough. To implement
the new requirement, he changed String to Stringl[], as
illustrated at the right side of Figure 2. This way, he can
use the array to store both the error message and the prob-
lematic field.

In the same method he is changing, however, there is an
optional feature responsible for generating PDF files from
the use case, in case no errors were found. From the GUI
perspective, this feature consists of a small button at the
top of the edit use case screen. The developer is unaware
of this feature, so he did not realize that the maintenance
introduced a problem in it. Since error is now an array,
it will never be equal to the empty string, which means
that the PDF button will never be enabled (see the PDF
feature code expanded in Figure 2). This now means that
PDF documents will no longer be generated. Again, we have
the late error detection problem. Besides, the difficult
navigation problem occurs since the method contains three
features. Navigating throughout them in search of depen-

#We do not use TaRGeT in our evaluation because very few
features use preprocessors. The majority of the features are
implemented with components and aspects.

public void validateUseCase() {
String error = getUseCaseError();

showMessage("Error: " + error);

I public void validateUseCase() {
String[] error = getUseCaseError();
|:| if (error != null) {
showMessage("Error: " + error[0]);
= 83 paintField(error[1]);
O }

error

’
LI NP
i
y o

if (error.equals("")) {
. // Enable PDF button
3

Figure 2: PDF feature does not work anymore.

dencies may be time consuming. Further, developers are
likely to analyze unnecessary features. For example, error
is not used in the black feature.

3. EMERGENT INTERFACES

The problems discussed so far occur when features share
elements such as variables and methods. In this paper,
whenever we have such sharing, we say that there is a feature
dependency between the involved features. For instance,
a mandatory feature might declare a variable subsequently
used by an optional feature (see totalScore and error in
Figures 1 and 2, respectively). We thus have a mandato-
ry/optional feature dependency. We can also have feature
dependencies like optional /optional and optional /mandatory.

Previously, we presented an approach named Emergent
Interfaces [17] intended to help developers avoid the prob-
lems related to feature dependencies. The idea consists of
determining, on demand, and according to a given main-
tenance task, interfaces for feature implementations. Such
interfaces are neither predefined nor have a rigid structure.
Instead, they emerge to provide information to the devel-
oper on feature dependencies, so he can avoid introducing
problems to other features. Our idea complements VSoC
in the sense that we still have the hiding benefits (which is
important for comprehensibility), but at the same time we
show the dependencies between features.

To do so, emergent interfaces capture dependencies be-
tween the feature we are maintaining and the remaining
ones. In other words, when maintaining a feature, interfaces
emerge to give information about other features we might
impact with our maintenance. To consider features, emer-
gent interfaces rely on feature code already annotated. We
can, for example, use Colored IDE (CIDE) [7], a tool that
enables feature annotations by using colors and implements
the VSoC approach. To capture dependencies, emergent in-
terfaces rely on feature-sensitive data-flow analysis [17]. In
particular, we keep data-flow information for each possible
product configuration. This means that our analyses take
feature combinations into consideration.

To better illustrate how emergent interfaces work, con-
sider Scenario 1 of Section 2.1, where the developer is

supposed to change the totalScore value. The first step
when using our emergent approach consists of selecting the
maintenance point. The developer is responsible for such
a selection (see the dashed rectangle in Figure 3) which in
this case is the totalScore assignment. Then, we perform
code analysis based on data-flow analysis to capture the de-
pendencies between the feature we are maintaining and the
other ones. Finally, the interface emerges.

Provides totalScore to
[Configuration: Arena]

Figure 3: Emergent interface for Scenario 1.

The interface in Figure 3 states that maintenance may im-
pact products containing the arena feature. In other words,
we provide the actual totalScore value to the arena feature.
The developer is now aware of the dependency. Reading the
interface is important for Scenario 1, since the emerged
information alerts the developer that he should also analyze
the hidden arena feature. When investigating, he is likely to
discover that he also needs to modify arena, and thus avoid
the late error detection problem.

Note that the code might have many other hidden features
with their own intricate dependencies, making code naviga-
tion difficult. In this context, consider Scenario 2 presented
in Section 2.2. In this scenario there are three features. So,
we have the difficult navigation problem: searching for
dependencies is time consuming. Emergent interfaces assist
with this problem since they indicate precisely the product
configurations the developer needs to analyze. Thus, our in-
terfaces focus on the configurations we indeed might impact,
avoiding developers from the task of analyzing unnecessary
features, which is important to minimize the difficult nav-
igation problem. As Figure 4 depicts, the interface focuses
on the white and gray (PDF') features, since they use error.
Now, the developer is aware of the error variable usage in
both optional features. Again, the developer would proba-
bly discover he also needs to modify the gray (PDF) feature,
thereby minimizing the late error detection problem.

public void validateUseCase() {_ ___
» :String error = getUseCaseError() ;:
o . St

showMessage("Error: " + error);

|:| Provides error to
} [Configuration 1: White]
[Configuration 2: Gray]
[Configuration 3: White and Gray]

Figure 4: Emergent interface for Scenario 2.

4. STUDY SETTINGS

After showing emergent interfaces and how they can deal
with feature dependencies, we now present the details on

how we performed our study to answer the two research
questions we focus on this paper.

The study is based on 43 software product lines from dif-
ferent domains, sizes, and languages (C and Java). They
range from simple product lines to complex ones such as
linux. The majority is written in C and all of them contain
several features implemented using conditional compilation
directives.

We present the selected product lines in Table 1 (at the
end of the paper). To compute feature dependencies, we
built a tool based on a recent work [13]. We use this tool
to compute metrics such as the number of methods with pre-
processor directives (MDi) and the number of methods with
feature dependencies (MDe). Using these metrics, we are
able to assess how often feature dependencies occur in the
product lines investigated in this paper.

Given the feature dependencies we have in all of these
product lines, we evaluate how they impact on maintenance
effort when using VSoC and emergent interfaces. Our aim
consists of understanding to what extent the latter may help
complement the former.

Figure 5 shows how we perform our evaluation. The code
presented in this figure is based on the zterm product line
and we are using VSoC to hide features. In this particular
case, we have four hidden code fragments?, which consist of
three features (black, gray, and white). The developer is sup-
posed to maintain the screen variable (changing TScreen,
changing the parameter xw etc). Notice that there is a frag-
ment outside the screen scope. Thus, when maintaining
such a variable, the developer does not need to analyze that
fragment.

if (1 < len && i >= 0) {

screen

=" X gcreen
D Feature | LOC
) T [] 13
.] 48
b O 21
—

Figure 5: Maintaining the screen variable.

In this context, when using VSoC, the developer does not
know anything about the hidden features. Hence, he might
need to analyze each hidden fragment to be sure that the
maintenance he performed does not impact them. For this
particular example, he would analyze three fragments and
three features that together correspond to 82 (13 + 48 + 21)
source lines of code. On the other hand, emergent interfaces
do not hide everything. They still use VSoC but at the
same time provide information about dependencies among
features, which might be valuable to decrease maintenance
effort. For this example, the interface would point out that
only two features (black and gray) use the screen variable.

“We denote by fragment, any preprocessor directive such as
#ifdef, #else, #elif, and so forth.

This information is important since the developer would
then analyze only two fragments (instead of three) and two
features (instead of three). This means that 21 source lines
of code (white feature) can be discarded from this analy-
sis. This way, our study covers the following three metrics:
source lines of code (SLoC), number of fragments (NoFa),
and number of features (NoFe). We detail the results of our
toy example in Table 2.

[Approach [SLoC | NoFa | NoFe |
| VSoC [82 [3 [3 |
[Emergent Interfaces [61 [2 [2]

Table 2: VSoC versus Emergent Interfaces.

In this paper, we estimate maintenance effort by means of
the number of source lines of code, fragments, and features
we should analyze during a maintenance task. Therefore, the
higher these metrics, the greater the maintenance effort. So,
we use SLoC, NoFa, and NoFe to compare maintenance ef-
fort when using VSoC and emergent interfaces. Notice that
the same effort can be observed regardless of the approach
we choose. This happens when emergent interfaces point
out feature dependencies in all fragments we indeed have to
analyze. Emergent interfaces either reduce the maintenance
effort or it remains the same as using VSoC. They decrease
the effort when at least one fragment does not have depen-
dencies with the feature we are maintaining.

To perform the effort study we propose, we randomly se-
lect methods with feature dependencies and then compute
the aforementioned metrics for each approach. We select the
methods from the 43 product lines presented in Table 1.

To have a representative study, we now need to tackle
the problem of which methods we should select to perform
the evaluation. On the one hand, we believe that if we se-
lect only methods with many fragments, we are favoring
emergent interfaces, since the probability of finding at least
one fragment with no feature dependency increases. On the
other hand, if we select only methods with few fragments
(one for instance), we cannot show differences between both
approaches since the effort would often be the same. In this
way, we need to select the methods carefully. To guarantee
the selection of methods with both characteristics, we divide
them in two groups:

e Group 1: methods with 1 or 2 fragments; and
e Group 2: methods with more than 2 fragments.

We chose 2 as our threshold (to divide our groups) be-
cause the differences between both approaches appear from
this value. In methods with feature dependencies, both ap-
proaches always have the same effort when we have only one
fragment (same SLoC, NoFa =1, and NoFe =1).

Now that we have the groups defined, we randomly se-
lect methods accordingly. Firstly, we decided to pick three
methods per product line. Since methods of Group 1 are
more common, we would have two methods of Group 1 and
only one of Group 2. However, depending on the product
line, the quantity of methods of both groups varies signifi-
cantly. For example, when considering the libzml2, we have
953 methods in Group 1 and 125 methods in Group 2.
So, we rather select the methods proportionally according
to each product line (instead of three methods for all prod-
uct lines). In this way, for libzmi2, we select eight method
of Group 1 and one of Group 2.

So, the basic idea consists of selecting methods with fea-
ture dependencies to fit both groups proportionally accord-
ing to each product line. Because a method may have more
than one variable with dependency, we also randomly select
one variable per method. Then, we start our effort evalua-
tion from that variable taking its scope into consideration.

Last but not least, we also consider the Monte Carlo ap-
proach with three replications. The idea consists of repeat-
ing the whole evaluation three times so that we can take the
average of three independent observations.

We summarize how we perform our evaluation as an algo-
rithm (see Algorithm 1).

Algorithm 1 General algorithm of our effort estimation.

while we do not reach 3 replications do
for each product line do
- Randomly select methods with feature dependencies
proportionally to fit the groups;
for each method do
- Randomly select a variable;
- From this variable, compute the effort (SLoC,
NoFa, and NoFe) of both approaches.
end for
end for
end while

S. RESULTS AND DISCUSSION

After discussing the study settings, in this section we an-
swer the two research questions (Sections 5.1 and 5.2) based
on the results obtained from our empirical study. Last but
not least, we present in Section 5.3 the threats to validity.

5.1 Question 1

The first question we address in this paper is: how often
methods with preprocessor directives contain fea-
ture dependencies?

To answer this question, we use the number of methods
with preprocessor directives (MDi) and the number of meth-
ods with feature dependencies (MDe). According to the re-
sults presented in Table 1, these metrics vary significantly
across the product lines. Some product lines have few di-
rectives in their methods. For instance, only 2% of irss:
methods have directives. On the other hand, this number is
much bigger in other ones, like python (27.59%) and mobile-
rss (27.05%). Following the convention “average + standard
deviation”, our data reveal that 11.26% +7.13% of the meth-
ods use preprocessors.

Notice that the MDe metric is low in many product lines.
However, we compute this metric with respect to all meth-
ods. Rather, if we take only methods with directives into
consideration, we conclude that, when maintaining features—
in other words, when maintaining code with preprocessor
directives—the probability of finding dependencies increases
a lot. Taking the gnumeric product line as an example, only
4.91% of its methods have directives and 2.24% have fea-
ture dependencies. Therefore, almost half of methods with
directives (45.56%) have feature dependencies (see column
MDe/MDi in Table 1, which stands for MDe divided by
MDz). Our data reveals that 65.92% + 18.54% of the meth-
ods with directives have dependencies. Therefore, feature
dependencies are indeed common in the product lines we
analyze.

5.2 Question 2

The second question is the following: how feature de-
pendencies impact on maintenance effort when using
VSoC and emergent interfaces?

To answer this question, we performed an evaluation with
three replications. For each replication, we randomly se-
lect 122 methods from all product lines. As mentioned, we
select all methods proportionally according to each partic-
ular product line to fit the two groups. Table 3 illustrates
the number of product lines with their respective methods
proportions according to each group. For example, in 13
product lines we select two methods of Group 1 and one
of Group 2. Only one product line (sendmail) has more
methods of Group 2. This is consistent with our previous
claim that methods of Group 1 are more common.

| Number of SPLs | Group 1 | Group 2 |

23 1 1

13 2 1

3 (gimp, gnumeric, lampiro) 3 1
2 (parrot, linux) 4 1

1 (libxml2) 8 1

1 (sendmail) 1 5

Table 3: Number of SPLs with their respective
methods proportions.

As mentioned, to estimate maintenance effort, we consider
three metrics: SLoC, NoFa, and NoFe. We illustrate the re-
sults for each replication and each metric in Figure 6. Each
bar summarizes one particular metric for all 122 methods.
The idea is to summarize the effort of both approaches and
then compare them. As can be seen, emergent interfaces re-
duced the effort in all replications and metrics. Taking the
average of the three replications, when using emergent in-
terfaces, developers would analyze 35% less fragments; 25%
less features; and 35% less source lines of code.

We already expected that the effort reduction for features
would be smaller when compared to the fragments reduction.
Obviously, when developers, based on the interfaces infor-
mation, discard fragments from their analyses to achieve a
particular maintenance task, they also discard lines of code.
However, this is not true for features, since we might have
two fragments of the same feature, which means that dis-
carding one fragment does not necessarily mean discarding
the whole feature from the analysis.

When considering the number of methods, developers have
less effort in 33% of methods for replication 1, in 34% for
replication 2 and in 39% of methods for replication 3. How-
ever, this result is not interesting when analyzed in isolation.
But when we cross these numbers with the number of prod-
uct lines we achieve maintenance effort gains; we can see
that these methods are scattered throughout the majority
of the product lines we analyze. This indicates that emer-
gent interfaces might indeed reduce maintenance effort in
different situations such as product line domains, code sizes,
languages, and so forth. Table 4 illustrates, for each replica-
tion, the number of product lines where emergent interfaces
reduce the effort in at least one method.

Table 4 illustrates the total of methods in which emer-
gent interfaces reduce the effort. Table 5 distributes these
methods into the respective groups they belong to. As can
be seen, the majority of the methods where emergent inter-
faces reduce effort are concentrated in Group 2 (the one

[Rep. | Methods(Less effort) | SPLs(Less effort) |

1 40 (33%) 34 (79%)
2 41 (34%) 36 (84%)
3 47 (39%) 36 (84%)

Table 4: Total of Methods and SPLs where emergent
interfaces reduced effort.

where methods have more than 2 fragments).

[Methods(Less effort) | Group 1 | Group 2 |

20 (33%) 7 33
11 (34%) 7 31
17 (39%) 1 33

Table 5: Distribution of methods into their groups.

Previously, we mentioned we could favor emergent inter-
faces in case of selecting only methods with many fragments
(in our case, only methods of Group 2). We believe this is
true because when the number of fragments increases, the
probability of finding at least one fragment with no feature
dependency increases as well. In this case, the maintenance
effort is smaller when compared to VSoC. The results pre-
sented in Table 5 suggest that our claim might be true.

Nevertheless, in order to further support this claim, we
analyzed the methods of Group 2 more deeply. Such a
group has 47 methods for all replications and they have
more than 2 fragments. According to Table 5, emergent
interfaces reduce effort in 33, 34, and 33 methods for each
replication. So, we achieve maintenance effort reduction in
70%, 72%, and 70% of the methods of this group. By analyz-
ing our data, we can see that, in general, when the number
of fragments increases, the percentage of methods in which
we achieve maintenance effort reduction also increases (see
Figure 7). For example, if we take only methods with more
than 4 fragments into consideration, we have effort reduction
in 83%, 82% and 84% of those methods.

100% 4
95%
90%
85% = Replication 1
/ -+ Replication 2
80% Replication 3
75%
70% ha
65%
>2 >3 >4 >5 >6

Figure 7: Estimating maintenance effort reduction
when increasing the number of fragments.

Emergent interfaces achieve maintenance effort reduction
in 35.25%+3.6% of the randomly selected methods. The re-
duction happens in 82%+2.7% of the SPLs we studied. Thus,
our results suggest that the interfaces can reduce mainte-
nance effort in SPLs with different characteristics.

Now, we answer the Question 2 for each approach.

How feature dependencies impact on maintenance
effort when using VSoC? Because VSoC does not provide

fragments features
400 300
300 200
200
100 100
0 ep. ep. ep. 0 ep. ep.
(a) Fragments (b) Features

lines

2000
1500
1000 M vsoC
500 0 El
ep- 0-—Rep1 Rep2 Rep3

(c) SLoC

Figure 6: Fragments, features and SLoC that developers should analyze in the selected methods when using

VSoC and emergent interfaces.

any information about the existence or absence of feature
dependencies, developers need to check this in the existing
fragments and features. If we have many of them, the effort
increases. However, notice that in 64.75% of the methods
we analyze, the effort estimation is the same when compared
to emergent interfaces. So, the negative impact on mainte-
nance effort when using VSoC is not so common.

How feature dependencies impact on maintenance
effort when using emergent interfaces? Based on our
study, we can conclude that the more significative gains
achieved by emergent interfaces can be observed specially
in methods with many fragments. However, only 38% of
the methods belongs to Group 2, so methods with many
fragments occur occasionally. Nevertheless, although we nei-
ther evaluated nor focused on methods without dependen-
cies, emergent interfaces also provide benefits in such cases.
Figure 8 illustrates a method from berkeley db. The devel-
oper is supposed to change the value of the pBt variable and
no feature uses it. Notice that when there is no dependency,
the emergent interface is empty, so there is no need to check
any fragment or feature. In contrast, VSoC does not pro-
vide this information, which may lead developers to analyze
unnecessary code (features black, white, and gray).

static int btreeCheckEnvOpen(...) {

% = |BtShared *pBt = p->pBt; |

Empty

Figure 8: Variable with no dependency.

5.3 Threats to validity

Metrics and effort estimation. The metrics we use
in this paper are not sufficient to measure how much the
maintenance effort reduces. Instead, they can estimate it.
However, they are able to show differences between emer-
gent interfaces and VSoC. Although not sufficient, the met-
rics are still useful to understand the benefits provided by
emergent interfaces. Actually, we are aware of metrics that
better measure effort (e.g., time). However, our effort esti-
mation seems plausible since the time would be proportional
to the number of artifacts (fragments, features, SLoC) that
the developer needs to analyze.

Unavailable feature models. We do not have access
to the feature model of all SPLs, so the results of our three

metrics (SLoC, NoFa, and NoFe) can change due to feature
model constraints we are not aware of. Nevertheless, we
believe that this fact changes our effort results only slightly,
because the majority of methods we use in our evaluation
belongs to Group 1 (methods with 1 or 2 fragments). Since
the number of fragments is small in Group 1, it is difficult
to find constraints between two features within a method.

Highlighting tools. When using preprocessors without
the VSoC support, highlighting tools are helpful to identify
variable usage. Hence, it is possible to find dependencies as
well. However, besides losing the VSoC benefits (all features
would be shown), highlighting tools are purely syntactical so
it does not take flow and feature information into consider-
ation. For example, we might select a variable in feature
A and the tool highlights variable usage in feature B. Since
they can be mutually exclusive due to a feature model con-
straint, the tool points out a false positive, which means that
the dependency does not exist.

Dependencies. Our tool computes only simple depen-
dencies, as showed in Figure 9(a). However, there are more
dependencies neglected by our tool, such as chain of assign-
ments (Figure 9(b)) and interprocedural (Figure 9(c)). In
the first, we have a chain because if we change the aper_size
value, its new value contributes to define the iommu_size
value which, in turn, defines the value of iommu_pages. And
we use this variable in another feature. Moreover, our tool
does not consider interprocedural dependencies, as illustrated
in Figure 9(c). Note we pass a variable as a method param-
eter and we use it in another feature in the target method.
Since both kinds of dependencies are not present in our
statistics, we believe that the real number of dependencies
we present to answer Question 1 is even higher.

6. RELATED WORK

Analyses on preprocessor-based SPLs. There is re-
search on assessing the way developers use preprocessors
in SPLs. Recently, researchers [13] created and computed
many metrics to analyze the feature code scattering and tan-
gling when using conditional compilation directives. To do
so, they analyzed 40 software product lines implemented in
C. They formulated research questions and answered them
with the aid of a tool. We complement this work by taking
feature dependencies into consideration. Also, we provide
data in different product lines (the ones written in Java).

Researchers [14] examined the use of preprocessor-based
code in systems written in C. Directives like #ifdefs are
indeed powerful, so that programmers can make all kinds
of annotations using them. Hence, developers can introduce
subtle errors like annotating a closing bracket but not the
opening one. This is an “undisciplined” annotation. Disci-
plined annotations hold properties useful for preprocessor-

public void computeLevel() {

totalScore = ...

#ifdef A

NetworkFacade.setScore(totalScore);

#endif

aper_size = info.aper_size * 1024 * 1024;
iommu_size = check(info.aper_base, aper_size);
iommu_pages = iommu_size >> PAGE_SHIFT;
#ifdef CONFIG_IOMMU_LEAK

. get_order(iommu_pages * sizeof(void *));

#endif

public void play() {
int soundIndex = ...;

loadSounds (soundIndex) ;

}

private void loadSounds(int soundIndex) {
#ifdef sound_ api_nokia
sounds[soundIndex] = ...;
#endif

(a) Simple dependency.

(b) Chain of Assignments.

(¢) Interprocedural.

Figure 9: Dependencies from Best Lap, Kernel, and Juggling, respectively.

aware parsing tools so we can represent annotations as nodes
in the AST. They found that the majority of the preproces-
sor usage are disciplined. Specifically, they found that the
case studies have 84.4% of their annotations disciplined. We
also analyzed several systems, but we focus on dependencies
among features implemented with preprocessors.

Another study concerning preprocessor usage in C sys-
tems [4] points out that, despite their evident shortcomings,
the controlled use of preprocessors can improve portability,
performance, or even readability. They found that most
systems analyzed make heavy use of preprocessor directives.
Like our work, they compute the occurrence of conditional
compilation directives as well. We did not find a lot of pre-
processor usage. However, we focus only on methods. In
contrast, they focus on the entire code (not only methods)
and analyze many other kinds of preprocessors (like macros).

We complement these studies providing more data with
respect to preprocessors usage. Besides, we estimate main-
tenance effort when using VSoC and emergent interfaces.

Safe composition. The scenarios we focus on this paper
show behavioral problems that can arise when maintaining
features in preprocessor-based SPLs. Among other possible
scenarios, maintenance in a feature can also break compila-
tion of another. Existing works detect such type errors; the
safe composition problem. Safe composition relates to safe
generation and verification of properties for SPL assets: i.e.,
providing guarantees that the derivation process generates
products with properties that are obeyed [9, 8].

Safe composition is proposed for the Color Featherweight
Java (CFJ) calculus [5]. This calculus establishes type rules
to ensure that CFJ code only generates well-typed programs.
TypeChef [9] is another type checker that aims at identify-
ing errors in SPLs implemented with the C preprocessor.
By using TypeChef, we do not need to generate all variants
of the SPL. It relies on the concept of partial preprocess-
ing where macros and file inclusions are processed while the
directives that control the actual variability are not. The
remaining code is then parsed. The generated AST contains
information about the #ifdefs, in which reference analysis
can be performed to then solve whether all variants are well
typed or not.

Emergent interfaces can help in the sense of preventing
type errors, since the interface would show the dependencies
between the feature we are maintaining and the remaining
ones. Nonetheless, safe composition approaches are comple-
mentary, since if the developer ignores the feature depen-
dency showed by the interfaces and introduces a type error,
these approaches catch them after the maintenance task.

Data-flow analysis for maintenance. Recent work [12]
observed developers facing problems of understanding code
during maintenance tasks. They found that a significant
amount of a developer’s work involves answering “reachabil-
ity questions”. This question is a search across the code for
statements that match the search criteria. They observed
that developers often inserted defects because they did not
answer the reachability question successfully. Bringing to
our context, we could search for dependencies. If we cannot
answer where they are or which features they belong to, we
can introduce errors in the SPL. Notice that this is simi-
lar to our scenarios and to the late error detection and
difficult navigation problems.

During testing activities, there are features whose pres-
ence or absence do not influence some of the test outcomes,
which makes many feature combinations unnecessary for a
particular test, reducing the effort when testing SPL. This
idea of selecting only relevant features for a given test case
was proposed in a recent work [10]. The work uses data-flow
analysis to recover a list of features we reach from a given
test. Since the analysis yields only reachable features, we
discard the other ones. Then, we use the reachable features
as well as the feature model to discover the combinations we
should test, reducing the number of combinations to test.
In some sense, the data-flow analysis considers features (the
reachable ones). But it is not completely feature-sensitive,
since feature model information is not used during the data-
flow analysis. In contrast, the data-flow analyses of our
emergent approach are feature sensitive. They take feature
and feature model information into consideration during the
analyses. We detail these ideas elsewhere [17].

7. CONCLUDING REMARKS

In this paper, we presented an analysis on the impact of
feature dependencies during maintenance of preprocessor-
based SPLs. Firstly, we presented two scenarios that can
introduce behavioral errors in product lines due to such de-
pendencies. Then, we focused on two research questions. To
answer them, we built a tool to collect data from 43 prod-
uct lines of different domains, sizes, and languages. The
data correspond to preprocessor usage and to what extent
feature dependencies occur in practice. They reveal that
65.92% + 18.54% of the methods with directives have depen-
dencies. So, feature dependencies are reasonably common
in the product lines studied.

Besides, we performed an empirical study to assess the im-
pact that feature dependencies may cause on maintenance
effort when using two approaches: VSoC and emergent in-

terfaces. We estimated effort by using three metrics that
essentially counts the number of artifacts that the devel-
oper needs to analyze during a maintenance task. We ob-
served that emergent interfaces achieved effort reduction in
35.25% + 3.6% of the methods we studied. Also, we found
that the more significative reductions can be observed spe-
cially on the presence of methods with many fragments and
features. However, it is important to note that these meth-
ods occur occasionally. So, in the majority of the analyzed
methods (64.75%), the effort estimation is the same for both
approaches. This way, the negative impact on maintenance
effort when using VSoC is not so common.

Our data complement previous work on preprocessor us-
age. In addition, we present an evaluation that is helpful to
understand to what extent emergent interfaces complement
VSoC in the maintenance effort context.

8. ACKNOWLEDGMENTS

We would like to thank CNPq, a Brazilian research fund-
ing agency, and National Institute of Science and Technol-
ogy for Software Engineering (INES), funded by CNPq and
FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08, for
partially supporting this work. Also, we thank SPG® mem-
bers for feedback and fruitful discussions about this paper.

9. REFERENCES

[1] V. Alves. Implementing Software Product Line
Adoption Strategies. PhD thesis, Federal University of
Pernambuco, Recife, Brazil, March 2007.

[2] V. Alves, P. M. Jr., L. Cole, P. Borba, and
G. Ramalho. Extracting and Evolving Mobile Games
Product Lines. In Proceedings of the 9th International
Software Product Line Conference (SPLC’05), volume
3714 of LNCS, pages 70-81. Springer-Verlag,
September 2005.

[3] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[4] M. D. Ernst, G. J. Badros, and D. Notkin. An
empirical analysis of ¢ preprocessor use. I[EEE
Transactions on Software Engineering, 28:1146-1170,
December 2002.

[5] C. Késtner and S. Apel. Type-checking software
product lines - a formal approach. In Proceedings of
the 23rd International Conference on Automated
Software Engineering (ASE’08), pages 258-267. IEEE
Computer Society, September 2008.

[6] C. Késtner and S. Apel. Virtual separation of concerns
- a second chance for preprocessors. Journal of Object
Technology, 8(6):59-78, 2009.

[7] C. Kistner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proceedings of the 30th
International Conference on Software Engineering
(ICSE’08), pages 311-320, New York, NY, USA, 2008.
ACM.

[8] C. Kistner, S. Apel, T. Thiim, and G. Saake. Type
checking annotation-based product lines. ACM
Transactions on Software Engineering and
Methodology (TOSEM’11), 2011.

[9] A. Kenner, C. Késtner, S. Haase, and T. Leich.
Typechef: toward type checking #ifdef variability in c.

"http://www.cin.ufpe.br/spg

In Proceedings of the 2nd International Workshop on
Feature-Oriented Software Development (FOSD’10),
pages 25-32, New York, NY, USA, 2010. ACM.

[10] C. H. Kim, D. Batory, and S. Khurshid. Reducing
combinatorics in testing product lines. In Proceeding
of the 10th International Conference on Aspect
Oriented Software Development (AOSD’11), New
York, NY, USA, 2011. ACM. To appear.

[11] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. A
Case Study in Refactoring a Legacy Component for
Reuse in a Product Line. In Proceedings of the 21st
International Conference on Software Maintenance
(ICSM’05), pages 369-378, Washington, DC, USA,
2005. IEEE Computer Society.

[12] T. D. LaToza and B. A. Myers. Developers ask
reachability questions. In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering (ICSE ’10), pages 185-194, New York,
NY, USA, 2010. ACM.

[13] J. Liebig, S. Apel, C. Lengauer, C. Késtner, and
M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering (ICSE’10), pages
105-114, New York, NY, USA, 2010. ACM.

[14] J. Liebig, C. Késtner, and S. Apel. Analyzing the
discipline of preprocessor annotations in 30 million
lines of ¢ code. In Proceeding of the 10th International
Conference on Aspect Oriented Software Development
(AOSD’11), pages 191-202, New York, NY, USA,
March 2011. ACM.

[15] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. CACM,
15(12):1053-1058, 1972.

[16] K. Pohl, G. Bockle, and F. J. van der Linden.
Software Product Line Engineering. Springer, 2005.

[17] M. Ribeiro, H. Pacheco, L. Teixeira, and P. Borba.
Emergent Feature Modularization. In Onward! 2010,
affiliated with ACM SIGPLAN International
Conference on Systems, Programming, Languages and
Applications: Software for Humanity (SPLASH’10),
pages 11-18, New York, NY, USA, 2010. ACM.

[18] H. Spencer and G. Collyer. #ifdef considered harmful,
or portability experience with C news. In Proceedings
of the Useniz Summer 1992 Technical Conference,
pages 185-198, Berkeley, CA, USA, June 1992. Usenix
Association.

[19] S. Trujillo, D. Batory, and O. Diaz. Feature
refactoring a multi-representation program into a
product line. In Proceedings of the 5th International
Conference on Generative Programming and
Component Engineering (GPCE’06), pages 191-200,
New York, NY, USA, 2006. ACM.

A. Online Appendix

We invite researchers to replicate our study. All results are

available at: http://www.cin.ufpe.br/ " mmr3/gpce2011. Best
lap and juggling product lines are commercial products. Hence,

we cannot distribute their source code.

| System | Version | Domain | Language | MDe | MDi | MDe/MDi | NoM

berkeley db 5.1.19 | database system C 7.66% | 9.07% 84.46% 10636
cherokee 1.0.8 webserver C 6.37% | 8.91% 71.52% 1773
clamav 0.96.4 | antivirus program C 7% 9.35% 74.92% 3284
dia 0.97.1 | diagramming software C 1.94% | 3.04% 63.75% 5262
emacs 23.2 text editor C 2.45% | 5.59% 43.8% 4333
freebsd 8.1.0 operating system C 6.57% | 8.98% 73.2% 130307
gee 4.5.1 compiler framework C 4.55% | 5.95% 76.4% 50777
ghostscript 9.0 postscript interpreter C 5.76% 7.25% 79.44% 17648
gimp 2.6.11 graphics editor C 1.85% 2.87% 64.48% 16992
glibc 2.12.1 | programming library C 5.38% | 10.03% 53.67% 7748
gnumeric 1.10.11 | spreadsheet application C 2.24% | 4.91% 45.56% 8711
gnuplot 4.4.2 plotting tool C 10.14% | 15.41% 65.83% 1804
httpd (apache) | 2.2.17 | webserver C 9.34% | 12.19% 76.59% 4379
irssi 0.8.15 IRC client C 1.44% 2% 71.93% 2843
linux (kernel) 2.6.36 | operating system C 3.68% | 4.9% 75.09% 208047
libxml2 2.7.7 XML library C 22.9% | 26.92% 85.07% 5324
lighttpd 1.4.28 | webserver C 11.79% | 16.73% 70.5% 831
lynx 2.8.7 web browser C 15.03% | 21.41% 70.18% 2349
minix 3.1.1 operating system C 2.99% | 4.53% 65.96% 3114
mplayer 1.0rc2 media player C 8.82% 12% 73.51% 11730
openldap 2.4.23 | LDAP directory service C 9.91% | 12.82% 77.33% 4026
openvpn 2.1.3 security application C 14.7% | 17.95% 81.91% 1694
parrot 2.9.1 virtual machine C 1.38% | 6.12% 22.52% 1813
php 5.3.3 program interpreter C 8.89% | 11.78% 75.51% 10436
pidgin 2.7.5 instant messenger C 3.38% | 5.26% 64.3% 10965
postgresql 8.4.5 database system C 4.5% 6.33% 71.14% 13199
privoxy 3.0.16 | proxy server C 17.84% | 20.95% 85.15% 482
python 2.7 program interpreter C 5% 27.59% 18.14% 12590
sendmail 8.14.4 | mail transfer agent C 0.84% | 4.52% 18.52% 1195
sqlite 3.7.3 database system C 9.06% | 10.64% 85.19% 3807
subversion 1.6.13 | revision control system C 2.66% | 4.03% 65.99% 4894
sylpheed 3.0.3 e-mail client C 5.15% | 7.57% 68% 3634
tel 8.5.9 program interpreter C 8.4% | 10.65% 78.91% 2761
vim 7.3 text editor C 5.76% | 11.05% 52.14% 6354
xfig 3.2.5b | vector graphics editor C 2.37% | 3.93% 60.24% 2112
xinelib 1.1.19 | media library C 6.91% | 9.88% 70.01% 10501
xorgserver 1.7.1 X server C 7.39% | 10.15% 72.76% 11425
xterm 2.6.1 terminal emulator C 20.46% | 24.63% 83.08% 1080
bestlapcc 1.0 mobile game Java 11.95% | 20.7% 57.75% 343
juggling 1.0 mobile game Java 11.14% | 16.71% 66.67% 413
lampiro 10.4.1 | mobile instant messenger Java 0.33% 2.6% 12.5% 1538
mobilemedia 0.9 mobile XXX application Java 5.8% 7.97% 72.73% 276
mobile-rss 1.11.1 mobile feed application Java 23.84% | 27.05% 88.11% 902

Table 1: MDi: Methods with Directives; MDe: Methods with Dependencies; NoM: Number of Methods.

