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Abstract1

In 2007, all Danish university syllabi were reformulated 
to explicitly state course objectives to comply with a new 
Danish national grading scale, which stipulated that 
grades were to be given based on how well students met 
explicit course objectives. This paper analyzes 550 syllabi 
from the science faculties at University of Aarhus, 
Denmark (AU) and the University of Southern Denmark 
(SDU) that had been rewritten to explicitly incorporate 
course objectives, interpreted as intended learning 
outcomes (ILOs), using the principles of Constructive 
Alignment and the SOLO Taxonomy. In this paper we 
explain and discuss these principles, give examples of 
how the new syllabi were constructed, and describe the 
process by which they were formed. We also explain and 
discuss the results of a comparative study comparing the 
competences of Computer Science with those of 
Mathematics (and classical Natural Sciences for a point of 
reference). In this study, we focus on what specific 
competences the respective departments primarily use. 

Keywords:  Constructive Alignment; SOLO Taxonomy; 
Competences; Intended Learning Outcomes (ILOs); 
Computer Science; Mathematics; Natural Science. 

1 Introduction. 
This paper is an analysis of a data set consisting of 632 
course syllabi from the science faculties at University of 
Aarhus, Denmark (AU) and the University of Southern 
Denmark (SDU). Both faculties have been through a 
process of formulating intended learning outcomes 
(ILOs) to existing course syllabi. The reason for this 
process was the adoption of a new nationwide Danish 
grading scale, which stipulates that grades are to be given 
based on how well students meet explicit course 
objectives. ILOs were thus formulated for all courses in 
the two faculties for one academic year. However, this 
paper will comparatively investigate only those of 
Computer Science, Mathematics, and classical Natural 
Sciences (here restricted to Physics, Chemistry, Biology, 
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and Molecular Biology), using the SOLO Taxonomy as a 
tool for analyzing ILO competences. In total, this gives us 
a data set of 550 courses. All ILOs have been formulated 
according to the principles of Constructive Alignment 
and using the SOLO Taxonomy. The academic staff at 
AU received a course on these principles by a group of 
five people, appointed by the dean, of which both authors 
were members and which was chaired by Brabrand. SDU 
had a very similar process for which Brabrand was a 
consultant. The paper is both a summary of the keynote 
talk given by Brabrand at Koli Calling 2007 and a further 
study of the data. The first part of the paper introduces the 
Theory of Constructive Alignment and the SOLO 
Taxonomy. The second part explains our comparative 
study of competences. 

2 Constructive Alignment and the SOLO 
Taxonomy 

2.1 The Theory of Constructive Alignment 
The Theory of Constructive Alignment (Biggs 2003) is a 
theory of teaching and learning developed by John Biggs. 
It is a systemic theory in the sense that the entire teaching 
context is perceived as a ‘system’ for which we need to 
understand the individual parts and how they interact in 
order to understand and make predictions about the entire 
system. The theory is also based on the principles of 
constructivism, that knowledge is personal and that 
meaning is actively constructed by the learners 
themselves through active engagement with the subject 
matter. This perspective is in sharp contrast to the (once 
commonly held) idea that knowledge is ‘transmitted’ 
from an active teacher to a passive student. Finally, it is a 
constructive theory in the sense that it embodies 
constructive advice for what teachers ought to do in order 
to make sure their students learn what they intend. The 
‘solution’ to this important challenge of teaching is for 
the teacher to constructively align courses ‘ahead of time’ 
(see Figure 1). 

Before we can understand and appreciate why this is an 

Definition: A course is said to be [constructively] aligned when: 

- intended learning outcomes (ILOs) are explicitly 
formulated as operational competences; 

- the ILO competences are explicitly communicated to the 
students (early in the course); 

- the exams measure precisely the ILO competences;  
and 

- the teaching/learning activities (TLAs) match the ILO 
competences. 

Figure 1: Definition of ‘constructively aligned course’



interesting thing to do, we first (in the spirit of systemic 
theories) need to address three dependent factors: 
teacher’s intention, student’s activity, and exam’s 
assessment. Please note that throughout the paper we will 
use the word ‘exam’ in a broad sense for any assessment 
activity during and/or after the course that counts towards 
a student’s final grade; i.e. not just one ‘all-or-nothing 
test’ at the end of a course. 

Teacher’s intention 
The ultimate goal of any teaching situation is that the 
students learn whatever it is they are supposed to learn. 
However, ‘learn’ is an inherently vague concept and may 
ambiguously refer to both ‘learn (about)’ and ‘learn (to 
do)’. To ‘learn about programming’ is clearly very 
different from to ‘learn to do programming’ (i.e., ‘to learn 
to program’). Traditionally, many teachers have created 
course descriptions formulated and communicated to 
students in terms of ‘content’ to be learned (about). 
Figure 2 is an example of such a course description for 
the undergraduate Computer Science course ‘Algorithms 
& Datastructures II’ from the University of Aarhus before 
the faculty-wide rewriting of all syllabi to include ILOs 
using the principles of constructive alignment and the 
SOLO taxonomy. 

Teachers and examiners, being part of the same research-
based teaching traditions, will most likely know 
immediately from the description in Figure 2 what it is 
the students are expected to be able to do when they are 
assessing. They will interpret (and most likely agree) that 
what is really meant by ‘algorithmic paradigms’ is that a 
student is expected to (be able to), for example, 
‘construct algorithms’ and ‘analyze algorithms’ using 
standard algorithmic paradigms. However, this is tacit 

knowledge, usually not known by the students. Students, 
not part of the same research-based educational tradition, 
might interpret ‘algorithmic paradigms’ in an altogether 
different sense; for instance, that they should be able to 
name standard algorithmic paradigms and recite running-
times of textbook algorithms from each of the algorithmic 
paradigms, on command. Clearly, to ‘construct and 
analyze’ is qualitatively different from, and somehow at 
an entirely different level from, to ‘name and recite’. The 
nature of this difference is precisely what is accounted for 
by the SOLO Taxonomy, which we will explain in some 
detail below. 

The goal of the course is to: Goal: 

Furthermore, without quantum leap advances in brain 
scanning technology, we simply cannot measure 
‘understanding’; how much ‘knowledge’ a student has, 
how well a student has been ‘introduced’ to, or how 
‘familiar’ a student is with, a given concept such as 
‘algorithmic paradigms’. These are internal cognitive 
structures inside the brain, biochemical high-level 
structuring of which we know very little and on which we 
can currently only speculate. What we can do, however, 
is to have a student do something, and then measure the 
product and/or process. The keyword here is 
‘operationality’ which is the other aspect captured by the 
SOLO Taxonomy in that the competences it taxonomizes 
are operational and measurable. ‘Understanding’, 
‘knowledge’, and ‘familiarity’ are inherently non-
operational and non-measurable goals. Before we turn to 
how the above course description would have been 
authored if adhering to the principles of constructive 
alignment, we need to consider the students; in particular, 
a student’s activity (before, during, and after teaching). 

Student’s activity 
The Susan and Robert dichotomy, conceived by John 
Biggs (Biggs 2003), fits students to models (also known 
as personas) according to their motivation for studying at 
university. The personas should be thought of as 
prototypical student strategies rather than actual 
individuals. Figure 3 depicts Susan and Robert as 
personified in the 19-minute award-winning short film 
about constructive alignment, entitled ‘Teaching 
Teaching & Understanding Understanding’ (Brabrand & 
Andersen 2006). 

Susan (Figure 3a) is intrinsically motivated and at 
university to learn: “Susan likes to get to the bottom of 
things; to reach understanding. She often reflects on 

- introduce students to general design 
techniques for the construction of effective 
algorithmic solutions to combinatoric problems; 
and 

- familiarize the student with effective solutions 
to important graph and string problems. 

Content: - algorithmic paradigms: ‘divide and conquer’, 
‘dynamic programming’, ‘greedy algorithms’; 

- graph algorithms: ‘traversal strategies’, 
‘connectivity’, ‘topological sorting’, ‘spanning 
trees’, ‘shortest path’, ‘transitive closure’; and 

- text processing: ‘pattern recognition’. 

Figure 2: Content description for ‘Algorithms & 
Datastructures II’ (Computer Science, AU)

 
a) Susan 

(intrinsically motivated to learn). 

 
b) Robert 

(extrinsically motivated to learn). 

Figure 3: The Susan and Robert dichotomy introduced by John Biggs

http://www.daimi.au.dk/~brabrand/short-film/imgs/film/1-2.png
http://www.daimi.au.dk/~brabrand/short-film/imgs/film/1-8c.png


possibilities, implications, applications, and consequences 
of what she is learning. Susan is characterized by a 
preference for deep learning. She spontaneously uses 
higher cognitive processes. Faced with a curriculum, she 
basically teaches herself. In fact, we almost cannot 
prevent her from learning” (Brabrand & Andersen 2006). 

Robert (Figure 3b) is extrinsically motivated and not at 
university to learn: “In fact, Robert doesn't really care 
about the learning in itself. His goal at university is 
different; his goal is […] to pass exams, get a degree, and 
get a (decent) job. Robert is characterized by a preference 
for surface learning. He will only use higher cognitive 
processes if he really really really has to. He will cut any 
corner in achieving his goal with minimum effort” 
(Brabrand & Andersen 2006). Robert will stick with 
lower-level activities such as identification and 
memorization as long as they suffice. 

As teachers, we do not need to worry about Susan; she 
will do fine. But what about Robert; what can we do to 
have him start acting more like Susan? Before we show 
how constructive alignment can be used to do just that, 
we need to look at the exam’s assessment. 

Exam’s assessment 
For many teachers and students, exams are a ‘necessary 
evil’. However, the exam is perhaps the single most 
powerful pedagogical motivational tool available to 
teachers (and students) in that the exam has a 
constitutional effect on learning; the so-called ‘backwash 
effect’. The exam has ramifications on how the students 
approach learning; in particular, on how willing they are 
to engage in learning activities. This includes any 
learning activity, whether in formally situated learning 
contexts planed by a teacher or autonomous informal 
learning spontaneously initiated by the student. “To the 

teacher, assessment is at the end of the teaching-learning 
sequence of events, but to the student it is at the 
beginning” (Biggs 2003, p. 141). As an illustration of 
this, let us consider the (hypothetical) algorithmic 
multiple-choice question shown in Figure 4, which seems 
perfectly innocent. 

When featured on an exam, however, the question will in 
essence reward students for using ‘content memorization’ 
strategies. The Roberts will do what is appropriately 
known as ‘dealing with the test’; i.e., they will disregard 
the teacher’s intentions of deep learning, and instead 
direct their learning towards strategic memorization of 
running times of textbook algorithms. They will thus 
stick with their low-level surface learning techniques 
(e.g., identification and memorization). In essence, we 
have what is known as an unaligned course. 

Figure 5 illustrates the essential difference between an 
unaligned and an aligned course. (The figure abstracts 
away the issues pertaining to the teaching/learning 
activities, which we will address later.) In an unaligned 
course, we have a mismatch between the teacher’s 
intention and the exam’s assessment. The teacher intends 
for students to learn to ‘construct and analyze’, but the 
exam measures the competences to ‘name and recite’. As 
outlined above, Robert will focus only on the skills 
required for the test, and disregard the teacher’s 
intentions. In such courses the Roberts will seem 
disinclined to participate and engage in higher-level 
learning activities. 

The solution to this problem proposed by John Biggs with 
his Theory of Constructive Alignment is to constructively 
align courses. The teacher is to formulate ILOs as 
operational competences from the SOLO Taxonomy 
(which we will explain shortly), communicate these 

What is the asymptotic complexity of ‘topological sorting’ on a directed graph G = (V,E)? 

        a)    Θ(log(|V|+|E|)) i.e., “logarithmic time” in the size of the input 

        b)    Θ(|V|+|E|) i.e., “linear time” in the size of the input 

        c)    Θ((|V|+|E|)*log(|V|+|E|)) i.e., “n-log-n time” in the size of the input 

        d)    Θ((|V|+|E|)2) i.e., “quadratic time” in the size of the input 

Figure 4: Hypothetical algorithmic MCQ leading to ‘content memorization’

 

 

 

 

a) An unaligned course b) An aligned course 

Figure 5: An unaligned vs. aligned course (reproduced from Brabrand, 2007)



explicitly to the students early in the course, and 
meticulously design the exam such that it measures 
precisely those ILOs (and convince the students that this 
is indeed the case). The result is a ‘commuting diagram’ 
(Figure 5b) and teaching system where Robert’s desire to 
pass the course invariably leads him through learning the 
ILO chosen by the teacher. 

Teaching/Learning Activities (TLAs) 
Now Robert has the necessary incentive to learn, but we 
also need to provide appropriate support for him to learn 
effectively. This is where the teaching/learning activities 
(TLAs) fit in constructive alignment. The challenge is to 
choose TLAs that are likely to bring about acquisition of 
the ILO competences. Framing teaching activities as 
‘training towards the exam’ will help engage and 
motivate Robert to participate actively. 

2.2 The SOLO Taxonomy 
The SOLO Taxonomy (short for Structure of the 
Observed Learning Outcome) originates from the study 
of student learning outcomes in university teaching 
carried out by John Biggs and Kevin F. Collis in the early 
1980s. The taxonomy distinguishes five different levels 
according to the cognitive processes required by students 
in order to obtain them. “SOLO describes a hierarchy 
where each partial construction [level] becomes a 
foundation on which further learning is built” (Biggs 
2003, p. 41). As described above, the taxonomy can be 
appropriately used to define ILOs in implementing 
Constructive Alignment. It is constructed particularly for 
research-based university teaching and converges on 
production of new knowledge (at its fifth and highest 
level) which is also the purpose and product of research 
itself. The five levels are visualized in Figure 6 and 
explained in the following, in increasing order of 
structural complexity (Biggs & Collis 1982, pp. 17-31; 
Biggs 2003, pp. 34-53). The figure depicts which 
elements are involved when a student at a given SOLO-
level, given a problem/question/cue “Q”, produces an 
outcome/response “R” using the kinds of data either 
provided or not. The symbol “x” stands for irrelevant 
data; “●” stands for known related data that has been 
given to the student; and “○” stands for hypothetical 
related data that has not been given to the student. 

SOLO 1: The Pre-Structural Level 
Figure 6a depicts the outcome formation at SOLO level 
1; a student is given a question or cue “Q” and uses 
irrelevant data “x” in producing a response, “R”. At this 
level, a student does not have any kind of understanding 
but uses irrelevant information and/or misses the point 
altogether. Scattered pieces of information (i.e., “x”) may 
have been acquired, but at this level they will be 

unorganized, unstructured, and essentially void of actual 
content or relation to a relevant issue or problem, “Q”. Of 
course, students such as Robert may attempt to 
camouflage their lack of knowledge, by using 
‘tautological responses’ i.e., reusing and rearranging cues 
of a question to produce an answer with essentially the 
same information that was embedded in the question, 
giving the illusion of understanding. 

SOLO 2: The Uni-Structural Level 
Level two is depicted in Figure 6b; a student is now 
capable of dealing with one relevant known aspect or 
issue “●” and use it in producing a valid but simple 
response “R”. Thus, from level one to two, we see 
improvements as the student becomes able to discern 
relevant issues and deal with one of these in relation to a 
problem “Q”. At this level, a student is capable of making 
obvious relevant connections and can, for instance, use 
correct terminology, remember things, recite, carry out 
simple instructions, identify, name, count, paraphrase on 
a sentence level, etc. 

SOLO 3: The Multi-Structural Level 
From level two to three we see quantitative 
improvements as the student becomes able to deal with a 
multiplicity of relevant known issues “●”. As illustrated 
in Figure 6c, a student is now capable of dealing with 
several aspects, but these are considered independently 
and not in connection to one another; e.g., how they may 
interrelate to form a whole. Metaphorically speaking, the 
student sees the many trees, but not the wood. He is able 
to enumerate, describe, classify, combine, apply methods, 
structure, execute procedures, etc. 

SOLO 4: The Relational Level 
At level four (Figure 6d), we begin to see qualitative 
improvements as the details integrate to form a structure. 
A student may now perceive relations between several 
aspects and how they might fit together to form a whole 
and structured response “R”. The student now sees how 
the many trees together form a wood. A student may thus 
have the competence to compare, relate, analyze, apply 
theory, explain in terms of cause and effect, etc. 

SOLO 5: The Extended Abstract Level 
From level four to five, we see further qualitative 
improvements as the structure is generalized and the 
student becomes capable of dealing with hypothetical 
information that was not given, “○” (Figure 6e). At this 
fifth and highest level, a student may now perceive the 
knowledge structure from many different perspectives 
and produce multiple responses (“R” and “R’”), 
depending on the perspective and hypothetical 
information included. Here, a student may have the 
competence to generalize, hypothesize, criticize, theorize, 
or transfer a theory to a new domain, etc. 

  

a) SOLO 1 b) SOLO 2 c) SOLO 3 d) SOLO 4 e) SOLO 5 

Figure 6: Visualization of the SOLO-levels 1-5. (Based on Biggs and Collis (1982, pp. 24-25).)



- Quantitative -  

The terms ‘surface understanding’ and ‘deep 
understanding’ (also known as ‘surface learning’ and 
‘deep learning’) are often used and, in fact, easy to define 
in conjunction with the SOLO Taxonomy. Surface 
learning implies that the student is confined to action at 
the lower SOLO levels (2-3); whereas deep learning 
implies that the student can act at any SOLO level (2-5), 
including the higher levels (4-5). Hence a student 
producing a high-level response (at SOLO 4-5) is thus 
often deemed to have a deep understanding of the matter. 
On the other hand, a student producing a lower level 
response (at SOLO 2-3) does not necessarily have a 
surface understanding. Finally, levels 2 and 3 are 
sometimes referred to as quantitative levels, and levels 4 
and 5 as qualitative. Figure 7 lists prototypical 
competences from the SOLO Taxonomy, many of which 
were mentioned above. 

2.3 Alignment implementation process 
Figure 8 below shows the alignment implementation 
process as it was recommended to the teachers at the 
faculty courses at AU and SDU. It is explained in the 
following. 

1. Determine overall goals 
The first step in designing an aligned course is to consider 
what are the overall things that the students are to get out 
of attending the course. Here, it is important to think in 
terms of competences in addition to content (the latter 
being what teachers are used to); i.e., what is it the 
students are supposed to learn to be able to do with the 

content once the course is over? 

2. Operationalize goals as intended learning outcomes 
(ILOs) 

The next step is to operationalize these goals and express 
them as ILOs in terms of the SOLO Taxonomy. This step 
can initially be a challenge for teachers. 

3. Choose forms of assessment (relative to ILOs) 
Once the ILOs are chosen, the teacher needs to provide 
adequate incentive in order for students to learn the 
relevant competences (ILOs). Here, the teacher chooses / 
designs one or more forms of exams to cover all ILOs so 
that the competences are measured as precisely as 
possible. Certain combinations of ILOs and forms of 
exam are obvious mismatches (e.g., have an MCQ test to 
assess the competence ‘to explain’), but is in most cases 
the teacher needs to carefully judge what exam form best 
fits the ILOs. This can also sometimes be a challenge due 
to practical issues and external constraints at the 
university, e.g., space, time, and/or economic issues. 

4. Choose forms of teaching (relative to ILOs) 
With the ILOs in place, the teacher needs to provide 
adequate support for students to learn the relevant 
competences (ILOs). Here, the teacher may choose 
several teaching activities to cover all ILOs. Again, 
certain combinations of ILOs and teaching activities 
obviously do not go together; e.g., ‘lecture on (about) 
programming’ vs. ILOs stating ‘learning to program’ (as 
in ‘learning to do programming’). Again, this calls for 
careful judgements on behalf of the teacher. Steps 3 and 4 
could be carried out in either order, or in parallel, but 

- Qualitative - 
SOLO 2 
uni-structural: 

SOLO 3 
multi-structural: 

SOLO 4 
relational: 

SOLO 5 
extended abstract: 
 

- paraphrase 
- define 
- identify 
- count 
- name 
- recite 
- follow (simple) 
  instructions 
- … 

- combine 
- classify 
- structure 
- describe 
- enumerate 
- list 
- do algorithm 
- apply method 
- … 

- analyze 
- compare 
- contrast 
- integrate 
- relate 
- explain causes 
- apply theory 
  (to its domain) 
- … 

- theorize 
- generalize 
- hypothesize 
- predict 
- judge 
- reflect 
- transfer theory 
  (to new domain) 
- … 

a) SOLO 2 competences b) SOLO 3 competences c) SOLO 4 competences d) SOLO 5 competences 

Figure 7: Prototypical verbs according to the SOLO Taxonomy; based on Biggs (2003, p. 48)

 
Figure 8: Alignment implementation process



aligning the teaching/learning activities towards the 
exam, ‘training towards the exam’, is likely to make the 
courses seem relevant to all students, including Robert; 
hence, it is often instructive to settle the form of exam 
prior to designing relevant TLAs. Alignment is then a 
product of how well steps 2, 3, and 4 correspond to one 
another. For more information on how to carry out this 
process and implement alignment for a specific science 
course, we refer to Brabrand (2007).  

3 A Comparative Study of Competences in 
Computer Science vs. Mathematics 

We now turn to a presentation and discussion of the 
specific competences used in Computer Science and 
Mathematics. Our data material for comparing these two 
subjects in depth according to their competences consists 
of 550 course syllabi. For an analysis of i) competence 
progression, ii) overall differences between science 
subjects, and iii) differences between similar departments 
at different universities, using the full 632 course data set, 
we refer to Brabrand & Dahl (2008).  

Each of the 550 courses has a number of goals, each with 
a number of ILO competences. Figure 9 illustrates the 
competence description for the undergraduate Computer 
Science course ‘Algorithms & Datastructures II’ at AU. 

The syllabi were created using the alignment 
implementation process (Figure 8). We have chosen to 
focus on the formulated ILOs because these have a strong 
impact on the grading since grades are to be given based 
on how well students meet the ILOs. The formulated 
outcomes are not necessarily always the same as the 
formal, realized (operationalized), or learnt outcomes 
(Bauersfeld 1979; Goodlad 1986) but owing to the 
constitutional effect of examination on learning 
(‘teaching to the test’), the ILOs have an impact on the 
learning and in the event of students complaining about 

grades, it is legally the formulated outcomes that matter. 
Thus, teachers are forced to take the formulated outcomes 
very seriously. 

There are three ways in which we analyzed the data: 

1. SOLO average  
We calculated a ‘SOLO average’ using a ‘double-weight 
averaging scheme’ in which each of the ILOs weigh the 
same and each of the verb competences within an ILO 
also weigh the same: 

[ (4+4)/2 + (2+3)/2 + (2+4)/2 + 4.0 ] 
/ 4 = 3.38

 One might question whether in practice these ILOs do 
weigh the same. However, under the guidance of the 
group appointed by the dean that included the two 
authors, each department has formulated ILOs from a 
number of ‘standard good examples’ provided in 
advance. Hence if there is a variation, it is consistent 
throughout the syllabi. The idea of a SOLO average also 
rests on the assumptions that the ‘competence distance’ 
from, say, SOLO 2 to 3, is the same as between SOLO 3 
and 4 etc. Such an approach of quantifying qualitative 
data is in fact often seen in educational research, for 
instance in the use of Likert scales that quantify degrees 
of agreement or disagreement using numbers, usually 1-5 
(Oppenheim 1992; Robson 2002). Oliver et al. (2004) 
have carried out an analysis similar to ours using the six 
levels of the Bloom Taxonomy, but for only a handful of 
courses. 
2. SOLO distribution The SOLO average will be 
complemented with comparisons of the relative 
distributions of SOLO levels for both individual and 
collective courses. One such example is seen in Figure 
10, which shows the SOLO distribution of the above-
mentioned course. 
 

At the end of the course, the student is expected to be able 
to…: 
- construct (SOLO 4) and analyze (SOLO 4) algorithms 
   using standard algorithm paradigms; 
- identify (SOLO 2) and formulate (SOLO 3) algorithmic 
   problems as graph and string problems; 
-  identify (SOLO 2) and compare (SOLO 4) graph and string 
   algorithms for solving algorithmic problems; 
- construct (SOLO 4) algorithms for simple graph and string 
   problems.                                                           

Figure 9: Example ILOs from ‘Algorithms & 
Datastructures II’ (undergrad Computer Science)

Competence Level Frequency 

- identify SOLO 2 (2x) 

- formulate SOLO 3 (1x) 

- construct SOLO 4 (2x) 

- analyze SOLO 4 (1x) 

- compare SOLO 4 (1x) 

Figure 11: Frequency counts for 
‘Algorithms & Datastructures II’

25% 13% 63%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Solo 2
Solo 3
Solo 4
Solo 5

 
Figure 10: Relative distribution of SOLO levels for ‘Algorithms & Datastructures II’



- Quantitative -  - Qualitative - 

SOLO 2 
uni-structural: 

SOLO 3 
multi-structural: 

3. SOLO frequencies 
A third way is to see the frequencies, either in raw 
numbers or in percentages of how often various 
competences within each SOLO level occur. Figure 11 
shows the list for the same example course. 

Looking at the whole dataset, the list becomes as shown 
in Figure 12, which lists the verbs / SOLO competences 
occurring at least 20 times in the syllabi of all 632 
courses. We chose to cut at 20 to give an overview of the 
main competences used more than just a few times. 

The validity of our analysis depends first on SOLO being 
an appropriate description of competences and second on 
our SOLO classification being appropriate. In relation to 
the former, we built our work on the SOLO model, which 
is the result of extensive research done by Biggs and 
Collis (1982, 2003); with regard to the latter, through an 
iterative process of three stages we consulted several 
other educational researchers (including Biggs) to get 
feedback on the classification, which resulted in Figure 
12. The three approaches to data analysis complement 
each other and are mixed to illustrate key, but different, 
characteristics of the data. 

3.1 Differences in SOLO competences between 
Computer Science and Mathematics 

We compare the departments of Computer Science, 
Natural Science, and Mathematics. Our data in Natural 
Science consist of a compilation of the data of the 
departments of Physics, Biology, Chemistry, and 
Molecular Biology. We excluded Geology since it is a 
department only at AU. These four departments seem to 
be quite similar with respect to their average SOLO levels 

(Brabrand & Dahl, 2008). Even though we basically want 
to compare Mathematics and Computer Science, we felt 
we needed a third partner in the comparison to shed light 
on some issues related to the two subjects, hence the 
choice of Natural Science as a comparison partner. In the 
following we use the terminology of calling the combined 
data set of the four natural science departments ‘the 
Natural Science department’ even though it is in fact 
several departments.  

Looking at the SOLO averages at the two universities 
(Figure 13) we see that although there are some 
differences between the departments, they appear in the 
same order of SOLO hierarchy at each institution, and so 
does the average across both institutions. Furthermore the 
difference between ‘sister-departments’ at different 
universities (from 0.1 to 0.3) is generally smaller than the 
intra-university difference between departments (from 0.1 
to 0.6). This indicates that it does make sense to pool the 
data from, for example, the two mathematics 
departments, and expect some meaningful data and 
conclusions. 

Subject AU SDU avg. diff. 

Computer Science 3.7 3.4 3.6 0.3 

Natural Sciences 3.4 3.3 3.4 0.1 

Mathematics 3.1 2.8 3.0 0.2 

Intra-university diff. 0.3-0.6 0.1-0.6 0.2-0.6  

Figure 13: SOLO averages by department and 
university

Turning to the relative distribution of SOLO competences 
(Figure 14), we get a more detailed view of the 

SOLO 4 
relational: 

SOLO 5 
extended abstract: 
 

- identify  
- calculate  
- reproduce 
- arrange 
- decide 
- define 
- recognize 
 

(168x) 
(80x) 
(64x) 
(56x) 
(32x) 
(25x) 
(20x) 

  

- describe  
- account for 
- apply method 
- execute proc. 
- formulate 
- use method 
- solve 
- conduct 
- prove 
- classify 
- complete 
- combine 

(677x) 
(593x) 
(485x) 
(154x) 

(85x) 
(75x) 
(68x) 
(61x) 
(57x) 
(36x) 
(34x) 
(25x) 

- explain 
- analyze 
- compare 
- argue 
- relate 
- implement 
- plan 

(382x) 

- summarize 
- construct 
- design 
 

(281x) 
(103x) 

(75x) 
(70x) 
(55x) 
(44x) 
(35x) 
(31x) 
(21x) 

- discuss 
- assess 
- evaluate 
- interpret 
- reflect 
- perspectivate 
- predict 
 

(212x) 
(125x) 

(58x) 
(51x) 
(39x) 
(37x) 
(28x) 

Figure 12: Examples of verbs at SOLO levels  
(verbs occurring at least 20 times in course descriptions at AU & SDU)
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Figure 14: Distribution of competences by SOLO levels for the different departments at AU



distribution of SOLO competences and what is behind the 
differences between the SOLO averages of the three 
departments. We see that the relative number of SOLO 2 
and 3 competences increases and that the number of 
SOLO 4 and 5 competences decreases as we move down 
the departments. In other words, Computer Science uses 
more higher-level competences than Natural Science, 
which in turn uses more than Mathematics. Also, the 
majority of Computer Science competencies are 
qualitative competences (60% are at SOLO levels 4 and 
5), while Mathematics and Natural Science both seem to 
use mainly quantitative competences (at SOLO levels 2 
and 3). 

To go even deeper into the differences between the 
departments, we investigated whether or not there is also 
a difference in the specific competences employed at the 
different departments. Figure 15 lists the 10 most-used 
competences for each of the three departments, an 
indication of the SOLO level to which they belong, and 
their frequency. 

In Figure 15, we see that for Mathematics, the top 10 
competences account for 75% of the competences 
employed, while the figure is substantially lower for 
Natural Science (67%) and Computer Science (62%). 
Mathematics therefore appears to be different from the 
other two departments since it seems that it uses a 
slimmer span of competences. Furthermore, SOLO 5 
level competences are not part of the top 10 at the 

Mathematics department whereas two of the competences 
in the two other departments are at SOLO level 5. Hence 
Mathematics seems generally to be more careful with 
using SOLO 5 competences. 

Taking the top six of each department we get a list of 12 
competences: ‘describe’, ‘explain’, ‘apply method’, 
‘implement’, ‘analyze’, ‘discuss’, ‘account for’, 
‘reproduce’, ‘solve’, ‘formulate’, ‘prove’, and ‘argue’. If 
we compare their frequencies (in percent), we get the 
picture seen in Figure 16. 

We see here that Mathematics again seems to separate out 
from the two other departments, which seem more alike 
than different. Particularly regarding the competences 
‘reproduce’, ‘formulate’, ‘prove’, ‘solve’, ‘apply 
method’, and ‘argue’, Mathematics has at least twice as 
high a frequency as the two other departments. In relation 
to the competences ‘describe’, ‘explain’, ‘analyze’, and 
‘discuss’, Mathematics has a frequency less than half that 
of the other departments. Only in the competences 
‘account for’ and ‘implement’ does Mathematics seem 
less distinct from, and indeed to lie between the other two 
departments. It is only in ‘implement’ that Computer 
Science seems to be clearly separated from the other two 
departments. It seems that certain competences are much 
more common in some departments than others. We 
therefore grouped clusters of the competences that had 
separated out to see how much of the total amount of 
competences within a department they jointly accounted 

TOP 10 COMPETENCES 
Computer Science Natural Sciences Mathematics  

Competence SOLO Freq. Competence SOLO Freq. Competence SOLO Freq.
1. describe 3 13 % describe 3 15 % apply method 3 20 %
2. explain 4 10 % account for 3 13 % reproduce 2 13 %
3. apply method 3 9 % apply method 3 9 % solve 3 8 %
4. implement 4 7 % explain 4 8 % formulate 3 8 %
5. analyze 4 6 % analyze 4 5 % prove 3 7 %
6. discuss 5 5 % discuss 5 4 % argue 4 5 %
7. design 4 4 % execute proc. 3 3 % compare 4 5 %
8. compare 4 3 % identify 2 3 % account for 3 5 %
9. evaluate 5 3 % assess 5 3 % illustrate 3 3 %

10. identify 2 3 % formulate 3 2 % combine 4 3 %
“Σ”    62 %   67 %   75 %

Figure 15: Top 10 competences for Computer Science vs. Mathematics vs. Natural Sciences
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Figure 16: Freq. of common Computer Science competences compared to that of Mathematics and Natural Sciences.



for. This was to determine if some competences, 
regardless of SOLO level, were department-specific. 

Grouping sets of competences related according to certain 
criteria provides interesting information, as shown in 
Figure 17. 

Computer Science 
Many people equate Computer Science with 
‘programming computers’, but programming-related 
competences (e.g., ‘program’ ‘implement’, ‘design’, 
‘construct’, and ‘structure’) occupy only 15% of the 
Computer Science curriculum (Figure 17). The same set 
of competences are negligible on the Natural Science 
curriculum, at 1.0%, and virtually non-existent on the 
Mathematics curriculum, at 0.3%. As expected, we thus 
see Computer Science standing out in this respect: we see 
that although programming is definitely an essential part 
of Computer Science – hence its reputation – it is by no 
means the main part. 

Mathematics 
Combining the competences where Mathematics 
distinctively separated itself out (i.e., ‘reproduce’, 
‘formulate’, ‘prove’, ‘solve’, ‘apply (method)’, and 
‘argue’) we see that together they account for 60% of all 
competences on the Mathematics curriculum; yet the 
same competences are remarkably less dominant in the 
other departments, with 14% for both Computer Science 
and Natural Science. In this respect, Mathematics seems 
to be distinctively different and one might argue that 
mathematics (at least the teaching of university 
mathematics) is to a large extent about reproducing, 
formulating, proving, solving, applying methods, and 
arguing. It so happens that according to the SOLO 
Terminology, these competences are ‘lower’ level, which 
is not to indicate that they are easy, nor that mathematics 
is in some sense ‘lower’ than the other subjects. If we 
remove ‘apply’, which often occurs in the other 
departments without directly involving mathematics, the 
difference ratio increases from about 1:4 (i.e., 60:14%) 
to about 1:9. 

Natural Science 
For Natural Science we tried to identify ‘laboratory 
skills’, but were unable at present to clearly isolate them 
based on competences alone. The competences ‘execute 

(procedure)’ and ‘carry out (instructions)’, which may be 
somewhat related to laboratory work, come to 4.2% for 
Natural Science, 2.5% for Computer Science, and 1.7% 
for Mathematics. We were not able to come up with a 
logically related set of competences that strictly isolated 
Natural Science from Mathematics and Computer 
Science. 

4 Conclusion 
Different departments 
All three methods of analyzing the data suggest the same 
conclusion, namely that the three departments are 
different in their use of SOLO competences. The overall 
SOLO averages seem quite different for Mathematics and 
Computer Science, with Natural Science as a comparison 
partner also being different from the other two. Most of 
the time, Mathematics stands distinct from Computer 
Science and Natural Science, which, although different, 
seem to be closer to each other than to Mathematics. One 
might wonder what the reason is for the difference 
between Mathematics and the other Natural Science 
subjects, including Computer Science. One reason might 
be that Mathematics is usually considered to be a vertical 
discipline, with a hierarchy of theories and methods 
building upon each other, whereas many other disciplines 
are horizontal, with theories and methods living side by 
side (Madsen & Winsløw 2007). Furthermore, one can 
argue that we are researching the SOLO competences and 
the SOLO model might not be as appropriate a tool for 
describing mathematical competences as for other 
subjects. The SOLO Taxonomy was created using all 
higher education subjects, not only mathematics. In fact 
extensive work has been done within mathematics 
education to describe what distinguishes mathematical 
competences; for instance, problem-solving, reasoning 
and proving, communicating, connecting, representing 
etc. (NCTM 2000; Niss 2002; PISA 1999).  

Different competences (and SOLO distributions): 
The three disciplines show differences not only at the 
level of averages but also in the usage and distribution of 
verbs. Mathematics seems to use lower SOLO levels, 
Computer Science more higher-level verbs, and Natural 
Science in the middle. Also, in terms of the distribution of 
the specific verbs, Mathematics seems quite different 

 
Competence group: 

 

Programming-related 
competences: 

Competences where 
Mathematics is at 2x 
frequency (or more): 

 
...and without ‘apply’: 

Competences: - implement 
- program  
- design 
- construct 
- structure 

SOLO 4
SOLO 4
SOLO 4
SOLO 4
SOLO 4 

- reproduce
- formulate 
- prove 
- solve 
- apply 
- argue 

SOLO 2
SOLO 3
SOLO 3
SOLO 3
SOLO 3
SOLO 4 

- reproduce 
- formulate 
- prove 
- solve 
- argue 

SOLO 2
SOLO 3
SOLO 3
SOLO 3
SOLO 4 

Computer Science: 15% 14% 4.5% 

Natural Sciences: 1.0% 14% 4.4% 

Mathematics: 0.3% 60% 40% 

Figure 17: Competence clusters (‘programming’  and ‘math-manipulation’) by departments



from the two other departments. Computer Science stands 
out with its inclusion of programming-related 
competences and the fact that the majority of the 
competences are qualitative, while the majority of the 
Mathematics and Natural Science competences are 
quantitative. All this suggests that Mathematics and 
Computer Science are in fact the most ‘different’ 
departments of the three. This might seem remarkable 
given the mathematical nature and basis of Computer 
Science and that Computer Science ‘grew out of’ and is 
part of the Mathematics department at many universities. 
What might the reason be? It needs further study to 
answer, but as stated above, the characteristic 
competences at each of the three departments are placed 
by the SOLO model at different levels. Does this then 
finally and ultimately explain the core of the subjects? 
No, it is to some extent also a reflection of the different 
teaching (and cultural) traditions in the three departments. 
Furthermore, as stated above, one could also argue that 
the SOLO taxonomy might not fit each department 
equally well. 

SOLO and Constructive Alignment 
Although the SOLO taxonomy might not fit each 
department equally well, it is good tool to help create a 
discussion about the purposes of a course and the 
formulation of ILOs. It is also a helpful tool to point to 
areas of interest when analysing various syllabi and 
departments. Also, the process at the two university 
faculties of implementing ILOs based on the principles of 
constructive alignment and the SOLO Taxonomy have 
given us a big standardized dataset and the opportunity to 
investigate the syllabi. Something that was not possible 
before, partly due to the ‘private’ manner in which syllabi 
were written – usually each teacher with his own personal 
style. A note of caution is needed, however. Sometimes 
there are practical reasons, such as time or fiscal 
constraint, room availability etc., that constrain a teacher 
to hold exams in less than ideal circumstances. Taking the 
example from above, it could be that the teacher is forced 
to use the cheaper MCQ test instead of an oral exam, 
which he would have preferred owing to his ideal ILOs 
that mention competences such as ‘construct’ and 
‘formulate’. In that case, aligning his course to the actual 
MCQ test would force him to rewrite his ILOs to a much 
lower SOLO level, i.e. less ambitious and relevant. 
Should he actually do that – in the name of alignment? 
The question is difficult, but in these circumstances it 
might be better if he keeps his higher SOLO level ILOs, 
align his teaching to these ILOs even though Susan’s 
behaviour is then not fully rewarded at the exam. She will 
get her reward later. 

‘Creating’ a language for competences (over time) 
One of the purposes in implementing the same model at 
both faculties is that it can help create a common 
language to be used among university teachers, since 
often any “speech community is likely to be composed of 
different groups, groups which may operate with differing 
versions of the same language or even with discrete and 
separate language” (Montgomery 1992, p. 101). Also, the 
syllabi prior to adopting the SOLO Taxonomy were for 
the most part not formulated using measurable 
operational competences. Finally, all these things might 

ultimately synergize to improve learning since students 
would also, over time, be used to reading the operational 
syllabi, hence be more aware of what is expected, and 
hence be more inclined to act like Susan rather than 
Robert. 
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Appendix A: The data material 
 

The data for the entire analysis is available online (in browsable XML format) here, in Danish: 

Online location (URL): Data Description 
 

www.itu.dk/people/brabrand/solo.xml 
 

SOLO data SOLO attribution of all competences occurring in both 
data sets (cf. below). 

 

www.itu.dk/people/brabrand/data-au.xml 
 

AU data All competences for all ILOs for all courses at all 
NAT/AU departments. 

 

www.itu.dk/people/brabrand/data-sdu.xml 
 

SDU data All competences for all ILOs for all courses at all 
NAT/SDU departments. 

 

The data is represented in the following XML format: 
 
<!ELEMENT xml (institute*)> 
<!ELEMENT institute (group*)> 
<!ELEMENT group (course*)> 
<!ELEMENT course (goal*)> 
<!ELEMENT goal (competence*)> 
 
<!ATTLIST institute name CDATA #REQUIRED> 
<!ATTLIST group name CDATA #REQUIRED 
                season CDATA #REQUIRED 
                year CDATA #REQUIRED> 
<!ATTLIST course name CDATA #REQUIRED 
                 ects CDATA #REQUIRED 
                 id CDATA #REQUIRED> 
<!ATTLIST goal value CDATA #REQUIRED> 
<!ATTLIST competence value CDATA #REQUIRED> 

<xml> 
<institute name="Computer Science"> 
<group level="Undergrad" season="Fall" year="2007"> 
  <course name="Algorithms and Datastructures II"  
          ects="5" id="7819"> 
    <goal value="construct and analyze algorithms 
                 using standard algorithm paradigms"> 
      <competence value="construct" />  
      <competence value="analyze" />  
    </goal> 
    <goal value="identify and formulate algorithmic     
                 problems as graph and string  
                 problems"> 
      <competence value="identify" />  
      <competence value="formulate" /> 
    </goal>  
... 

Data representation (in DTD format) Sample data fragment (translated from Danish) 

 

The data can then be queried by, for instance, XQuery (Boag et al. 2003) programs such as the following which 
calculates the frequencies of all SOLO level 4 competences from Computer Science courses at AU and outputs them in 
descending order of their frequency counts: 
<result> 
{ 
let $competences := fn:doc("data-au.xml")//institute[@name eq "Computer Science"]//competence 
  let $verbs := $competences/@value 
  for $verb in fn:distinct-values($verbs) 
  let $solo := fn:doc("solo.xml")//competence[@value = $verb]/@solo 
  let $frequency := fn:count($all_competences[@value = $verb]) 
  where $solo eq 4 
  order by $frequency descending 
  return <competence value="{$verb}" solo="{$solo}" freq="{$frequency}"/> } 
</result> 

 



Appendix B: Sticky yellow notes 
At the beginning of his keynote presentation, Claus Brabrand posed the question, “What is good teaching?". The 
audience members wrote the following answers …  
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Claus Brabrand gives his own answer to the question in his 19-minute award-winning short film (DVD) 
about Constructive Alignment, “Teaching Teaching and Understanding Understanding”. You can watch and 
order the film at: 

http://www.daimi.au.dk/~brabrand/short-film/ 
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