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ABSTRACT
We show how to achieve typed and unambiguous declara-
tive pattern matching on strings using regular expressions
extended with a simple recording operator.

We give a characterization of ambiguity of regular expres-
sions that leads to a sound and complete static analysis. The
analysis is capable of pinpointing all ambiguities in terms of
the structure of the regular expression and report shortest
ambiguous strings. We also show how pattern matching can
be integrated into statically typed programming languages
for deconstructing strings and reproducing typed and struc-
tured values.

We validate our approach by giving a full implementation
of the approach presented in this paper. The resulting tool,
reg-exp-rec, adds typed and unambiguous pattern match-
ing to Java in a stand-alone and non-intrusive manner. We
evaluate the approach using several realistic examples.
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1. INTRODUCTION
Syntactic analysis is an important and indispensable part
of many applications that deal with dynamic data. Often,
applications need to process data which is supplied at run-
time according to rigorously structured data formats, but
encoded as flat strings. The structure is only implicitly
specified through various conventions and implicitly disam-
biguated through subtle combinations of spaces, delimiter
characters, and sometimes, when we are lucky, balanced
parentheses. Examples range from official standards such
as URLs all the way to “home made” log files.

URLs, for instance, which have to be analyzed by Browsers
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and other Web-sensitive tools, pack lots of information into
a string; e.g., information about a protocol (e.g., http or
https), a symbolic server name or a numeric ip address, an
optional port address, an optional username-and-password
combination, and a query string whose arguments are, in
turn, further structured as key-value pairs.

The process of analyzing such data is often referred to as
pattern matching (on strings). It is essentially all about de-
constructing implicitly structured strings into logical units
of information based on conventions and/or specifications.
It is important not to confuse this with pattern matching of
(already) structured values for which there are lots of ap-
proaches, tools, and languages (e.g., TOM [1] and ML [32]).

There are many choices for specifying and/or programming
such pattern matching; and many tools are available. Here,
it is instructive to introduce the Chomsky Hierachy [8] dat-
ing back to 1956:

Chomsky
Type-3 Type-2 Type-1 Type-0

Hierarchy

Language Regular
Context- Context- Recursively

Classes Languages
Free Sensitive Enumerable

Languages Languages Languages

Regular
Context- Context- Turing-

Formalisms
Expressions

Free Sensitive Complete

Grammars Grammars Programming

In this paper we will look at the issue of pattern matching
for regular expressions and contrast this to other formalisms
and approaches. We will also look at a popular category
which does not fit into the Chomsky Hierarchy; namely that
of regular expressions with capturing groups with so-called
back-references. This is the pattern matching mechanism
found in java.util.regex, Perl, PHP, Python, Ruby, etc.
We will use java.util.regex as a representative example
from that category, and the Java programming language as
representative example of Type-0 formalisms. (We will not
look closely at Type-1 as it restricts expressivity, without
contributing much in terms of safety.)

As we will show, programming pattern matching operationally
in a Type-0 formalism is an error-prone and not always sim-
ple task. We will argue that for pattern matching, Type-0
Turing-Complete or Type-2 Context-Free expressivity is of-
ten not required; and, that it is possible to trade this excess
expressivity for declarativity, simplicity, and static safety.
Type-3 regular expressions are often enough and have nice



closure and decidability properties.

1.1 Contributions
In this paper, we make the following contributions:

• a syntax-directed characterization of the ambiguity prob-
lem for regular expressions that leads to:

– a sound-and-complete analysis of ambiguity ca-
pable of pinpointing ambiguities in terms of the
structure of the regular expression and report short-
est ambiguous strings; and

– a concept of local disambiguators in the form of
six locally disambiguated regular expression op-
erators);

• we show how pattern matching can be integrated into
a statically typed programming language (Java) for de-
constructing strings and reproducing typed and struc-
tured values in a stand-alone and non-intrusive way;

• a validation and evaluation of the effectiveness of pat-
tern matching on strings using regular expressions on
realistic examples via a full implementation of every-
thing presented (in the form of the tool, reg-exp-rec).

1.2 Outline
In Section 2, we introduce regular expressions along with a
simple declarative recording construction for pattern match-
ing. In Section 3, we show how to statically analyze ambi-
guity of regular expressions and how this analysis leads to
disambiguation directives. (Note that ambiguity is a struc-
tural problem of how a language is defined, not a linguistic
problem of what language is defined; i.e., along the lower
row in the above table.) In Section 4, we show how to per-
form type inference on regular expressions with recordings
to determine statically the type of all recordings (i.e., which
strings they can match at runtime). Furthermore, we show
how this type information can be reconciled with the static
type systems of modern programming languages (e.g., Java).
All this has been implemented as a stand-alone tool, reg-
exp-rec, which essentially adds statically typed and unam-
biguous pattern matching to Java in a non-intrusive manner.
Section 5 shows several realistic usage examples. Section 6
discusses parsing. Section 7 and 8 contain the evaluation
and related work, respectively. Finally, Section 9 concludes.

2. REGULAR EXPRESSIONS
Given a finite alphabet of symbols, Σ, we define the syntax
of regular expressions by:

R : ∅ | ε | c | R|R | R · R | R*

where ∅ denotes the empty language, ε is the language con-
taining only the empty string {ǫ}, c ∈ Σ is the single char-
acter language {c}, R|R is the union of the two languages
involved (aka., choice), R · R is the concatenation of the
two languages involved, and R* denotes zero or more self
concatenations (aka., iteration) of the language R. (Syntac-
tically, the infix concatenation operator, “·”, is often omitted
when writing a regular expression.) We denote by R the set
of all regular expressions.

The semantics of regular expressions can then be captured
by L : R → 2Σ

∗

which defines the language of a regular
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Figure 1: The six different kinds of ASTs

expression, inductively:

L(∅) = ∅
L(ε) = { ǫ }
L(c) = { c }

L(R1|R2) = L(R1) ∪ L(R2)
L(R1 · R2) = L(R1) · L(R2)

L(R*) = L(R)∗

where · is language concatenation as in L1·L2 = { ω1ω2 | ω1 ∈
L1, ω2 ∈ L2}; and where L∗ is the Kleene star operator on
languages (reflexive transitive closure of self-concatenation)
as in L∗ =

S

i≥0
Li where L0 = {ǫ} and Li = L · Li−1, for

i > 0.

We denote by RegΣ = {L(R) |R ∈ R} the set of all reg-
ular languages. (Note that this set is closed under; e.g.,
union, concatenation, and iteration, intersection, comple-
ment, restriction, homomorphisms, reversal, prefixing, and
suffixing [25].)

With these basic operators it is easy to construct the usual
extensions: any character, ‘.’ (aka., Σ, as c1|c2|· · · |c|Σ|);
character ranges, [a-z] (as a|b|c|· · · |z); one-or-more iter-
ations, R+ (as R · R*); optional regular expression, R? (as
ε|R); various iterations such as R{n}, R{n,}, and R{n,m}

(where, for instance, R{2,3} corresponds to R ·R ·R?); and
so on.

2.1 Abstract Syntax Trees
Abstract Syntax Trees (ASTs) play a key role in our work,
because regular expressions are used for structural substring
matching and recording, not just for yes/no-recognition (aka.,
string membership). The regular expression operators give
rise to six different kinds of ASTs (visualized in Figure 1):

T : epsilon | char(c) | left(T ) | right(T )
| concat(T1, T2) | star(T1, T2, . . . , Tn)

Figure 2 inductively defines the set of legal ASTs for a
regular expression; we write T � R, whenever T is a legal
AST for a regular expression R. We denote by ASTR the
set of all ASTs for R (i.e., ASTR = { T | T � R }).

We will also need a flattening operator, ‖ · ‖ : ASTR → Σ∗,



[Epsilon]
epsilon � ε

[Char]
char(c) � c

[Left]
T1 � R1

left(T1) � R1|R2

[Right]
T2 � R2

right(T2) � R1|R2

[Concat]
T1 � R1 T2 � R2

concat(T1, T2) � R1 · R2

[Star]
T1 � R T2 � R . . . Tn � R

star(T1, T2, . . . , Tn) � R*
n ≥ 0

Figure 2: Legal ASTs for regular expressions

which given an AST (for R), T , provides its corresponding
string, ‖T‖ = ω:

‖ epsilon ‖ = ǫ
‖ char(c) ‖ = c
‖ left(T ) ‖ = ‖T ‖

‖ right(T )‖ = ‖T ‖
‖ concat(T1, T2) ‖ = ‖T1 ‖ ‖T2 ‖

‖ star(T1, T2, . . . , Tn) ‖ = ‖T1 ‖ ‖T2 ‖ . . . ‖Tn ‖

Not surprisingly, we have that L(R) = { ‖T‖ | T ∈ ASTR }.

2.2 The Recording Construction
We now extend the syntax of regular expressions with a
recording construction for structural substring matching (aka.,
capture variables, cf. Section 8):

<x=R>

Here, x is an identifier taken from some finite alphabet of
recording symbols. Semantically, the recording construction
does not affect the language recognized; i.e.:

L(<x =R>) = L(R)

However, at runtime, matching produces a side-effect in that
a substring matched by the regular expression R is recorded,
the result of which can subsequently be dereferenced via the
identifier x. (We will consider what happens if x is used
in more than one recording shortly.) This is reflected in
the syntax trees in that they will record the fact that x is
associated with the AST for R:

[Record]
T � R

record(x, T ) � <x=R>

Flattening an AST recording node will give the string recorded
for x:

‖ record(x, T ) ‖ = ‖T ‖

The recording construction is similar to the capturing groups,
“(R)”, known from Perl or java.util.regex. However, as
we shall see later, our recording construction is much safer
and much more flexible. For instance, a capturing group un-
der a Kleene star will only record the last match. In contrast
and as explained later, our construction will match multiple
times and record all matches which will then be available as
a list-structure.

As an example, consider the following recording-augmented
regular expression of deliberately simplified email addresses
(where we have underlined the recording identifiers):

<user = [a-z]+ > "@" <domain = [a-z]+ ("." [a-z]+)* >

Matching the above regular expression against the string
“obama@whitehouse.gov” will result in the following record-
ings: user = “obama” and domain = “whitehouse.gov”.

Recordings can also be nested which gives rise to structured
recordings as the following example shows:

<date =
<day = [0-9]{2} > "/"

<month = [0-9]{2} > "/"
<year = [0-9]{4} >

>

Matching against the string “26/06/1992” will result in the
recordings: date.day = 26, date.month = 06, date.year =
1992, but also date = 26/06/1992. We elaborate on struc-
tural matching in Section 4.

Finally, a recording can also give rise to muliple values which
will be available as lists. This either happens if a regular ex-
pression contains multiple occurrences of the same record-
ing, x, and/or if a recording is used under a star. The fol-
lowing example actually illustrates both cases; the recording,
name, is used twice (one of which is under star). The regu-
lar expression will conveniently collect names (separated by
ampersands) as a list:

<name = [a-z]+ > (" & " <name = [a-z]+ > )*

When matched against the string “anna & bill & carl”, it
will result in the list [anna,bill,carl] being recorded under
the name, name . We elaborate on list matching in Section 4.

3. AMBIGUITY
We now define ambiguity of a regular expression:

Definition 1 (Regular Expression Ambiguity).
A regular expression R is ambiguous iff ∃T, T ′ ∈ ASTR such
that T 6= T ′ and ‖T‖ = ‖T ′‖.

For example, the regular expression, a|a, is ambiguous be-
cause it has two different ASTs for the same string, a:

left(char(a)) 6= right(char(a))
‖ left(char(a)) ‖ = ‖ right(char(a)) ‖

Also, the regular expression a*a* is ambiguous, because it
has two different ASTs for the same string, a (cf. Figure 3).
The regular expressions, a|aa and a*ba*, on the other hand,
are unambiguous.

Ambiguity is not a problem for recognition. That is, deciding
the membership problem of whether or not a string, ω, is in
the language defined by the regular expression, R (i.e., ω ∈
L(R)). However, it presents a real problem in the presence of
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Figure 3: Two ASTs for string a ∈ L(a*a*)

recordings, when used for matching substrings. For example,
when matching the regular expression <x=a>|a against the
string a, gives rise to either no match for x or x=a. Similarly,
matching <x=a*>a* against the string aa, x can ambigiously
record either ǫ, a, or aa.

The ambiguity problem is undecidable for Context-Free Gram-
mars [25], but decidable for Regular Expressions [3]. There
exists a decision procedure for ambiguity of regular expres-
sions [3] via an ambiguity-preserving translation of regular
expressions to Non-deterministic Finite Automata (NFAs).
However, since ambiguities are reported in terms of NFAs,
it is not easy to relate ambiguities back to the source of the
problem in terms of the structure of an ambiguous regular
expression.

3.1 Analysis of Ambiguity

[Empty]
‖= ∅

[Epsilon]
‖= ε

[Char]
‖= c

[Choice]
‖= R1 ‖= R2

‖= R1|R2

L(R1) ∩ L(R2) = ∅

[Concat]
‖= R1 ‖= R2

‖= R1 · R2

L(R1) ∩
W

L(R2) = ∅

[Star]
‖= R

‖= R*
ε 6∈ L(R) ∧ L(R) ∩

W

L(R*) = ∅

Figure 4: Analysis of Ambiguity

Figure 4 presents our syntax-directed analysis of ambiguity
(inspired by previous work on context-free grammar ambi-
guity [4]) as a unary relation on regular expressions, ‖= ⊆ R,
which inductively defines unambiguous regular expressions.
The operator, ∩

W

, is the so-called language overlap opera-
tor, ∩

W

: 2Σ
∗

× 2Σ
∗

→ 2Σ
∗

, defined by the following (and
illustrated in Figure 5) where a is a non-empty word:

X ∩
W

Y = {xay |x, y ∈ Σ∗∧a ∈ Σ+∧x, xa ∈ X∧y, ay ∈ Y }

The three base cases, ∅, ε, and c, are always unambiguous;
in fact, the latter two only have one valid AST (empty �

ε and char(c) � c, respectively). The regular expression
for choice, R1|R2, is unambiguous iff the two languages are
disjoint (i.e., L(R1)∩L(R2) = ∅). A concatenation, R1 ·R2,
is unambiguous iff the two languages do not overlap (i.e.,

a y

YX

X Y

x

Figure 5: Illustration of string xay ∈ X ∩
W

Y .

L(R1) ∩
W

L(R2) = ∅). For Kleene star, R*, the unambiguity
condition follows from the unfolding equivalence:

R* ≡ (R · R*) | ε

It turns out that the analysis is both sound and complete and
thus fully characterizes the ambiguity for regular expressions
(which is captured by the following theorem):

Theorem 1 (Characterization of Ambiguity).
A regular expression, R, is unambiguous iff ‖= R.

Proof. We refer to [5] (which proves soundness and com-
pleteness of our analysis).

Note that ambiguity is inherently a structural problem de-
pending on how a regular expression is defined, not on the
language it defines. However, the above characterization
permits a change of perspective in that it allows us to analyse
ambiguity as a finite number of linguistic equations (of non-
empty intersections and overlaps of languages and epsilon-
containment). The total number of linguistic equations is
linear in the size of the regular expression; there is exactly
one equation for each of the composite constituents of the
regular expression (i.e., one per choice, concatenation, and
star construction).

The equations can easily be decided using automata, by
inductively constructing the automata L(R), for all sub-
expressions, R, in a bottom-up fashion. Further, since reg-
ular languages and automata are closed under intersection
and overlap, we can get ambiguity violations (non-empty
intersections and overlaps) in the form of automata, repre-
senting the possibly infinite set of ambiguous strings. From
those, it is easy to extract the uniquely shortest (and lexi-
cally least) ambiguous string and report it as along with the
ambiguity warning/error. Here are three examples of such
an ambiguity error being reported for the regular expres-
sions, (a|ab)·(a|ba), a?b+|(ab)*, and (aa|aaa)*, respec-
tively:

*** ambiguous concatenation: (a|ab) <--> (a|ba)

shortest ambiguous string: "aba"

*** ambiguous choice: a?b+ <-|-> (ab)*

shortest ambiguous string: "ab"

*** ambiguous star: (aa|aaa)*

shortest ambiguous string: "aaaaa"

Note that the ambiguity error is reported in terms of the
structure of the regular expression and always with a con-
crete example. Obviously, such error messages make it easy



for the programmer to locate the source of the ambiguity and
take appropriate action (e.g., disambiguate, cf. Section 3.3).

The worst-case theoretical complexity of our analysis is ex-
ponential since we rely on minimized automata, however,
this appears to not be a problem in practice. Also, the anal-
ysis can easily be optimized (e.g., by employing the tech-
niques presented in Section 6 of [4]).

3.2 Ambiguous Recording
For a recording construction, <x=R>, it actually does not
matter whether or not the regular expression, R, is internally
ambiguous; that will not by itself give rise to multiple possi-
bilities for x. Ambiguity, however, becomes a problem when
a recording is put into a context alongside regular expres-
sions that use one of the three constructions capable of in-
troducing ambiguities. For instance, the regular expression,
<x=a>|a, exemplifies this problem for choice; as previously
explained, the string a can ambiguously give rise to either
no match for x or x=a. For concatenation, this is exempli-
fied by a*·<x=a*> where the string a can also ambiguously
result in either x=ǫ or x=a. Finally, for star, <x=a|aa>*,
the string aaa can ambiguously produce the following list
recordings: x=[aa, a], x=[a, aa], and x=[a, a, a].

For this reason, we only have to analyze for ambiguity along
the ancestor paths upwards from recording constructions
(i.e., choices, concatenations, and stars above recordings in
a given regular expression).

3.3 Disambiguation
Whenever the analysis pinpoints an ambiguity, the program-
mer has four ways of dealing with it locally: i) manual
rewrite the regular expression; ii) use a restriction opera-
tor; iii) use disambiguation directives; and iv) ignore it and
rely on default disambiguation.

i) Manual rewriting. The programmer can always
rewrite the regular expression so that it is no longer am-
biguous. In practice, however, this is sometimes cumber-
some with regular expressions since they are declaratively
and constructively specified which is why we have added
three other options.

ii) Restriction. Regular expressions can be extended
with a restriction operator, R1\R2, which is a convenient
disambiguation tool by which unwanted possibilities can be
explicitly ruled out. Note that restriction is inherently con-
structive (intentional) in its first argument in that it con-
structively gives rise to a value, whereas it is inherently non-
constructive (extensional) in its second argument in that it
does not give rise to a value (but merely filters out certain
unwanted strings). Obviously, recordings do not make sense
in non-constructive arguments. From restriction it is easy to
define complement, RC (as Σ∗\R) and intersection, and then
R1 ∩ R2 (as (R1

C | R2
C)C). Note that both operators are

non-constructive in all their arguments. (Our tool supports
intersection, complement, and restriction, but recordings are
only permitted in the left operand of restriction.)

iii) Disambiguation directives. From our characteri-
zation of ambiguity we derive left- and right-disambiguated
variants of the three operators that can potentially introduce

ambiguities; i.e., |L, |R, ·L, ·R, *L, *R. Disambiguation is
essentially a matter of choosing certain ASTs over others.
This is conveniently done by introducing a partial order,
“⊑” on ASTs (i.e., “⊑” ⊆ AST × AST ). For choice and
concatenation we have the following rules:

left(T1) ⊑ right(T2)
concat(T1, T2) ⊑ concat(T ′

1, T
′
2) iff |‖T1‖| ≤ |‖T ′

1‖|

where | · | : Σ∗ → N denotes the length of a string. The
left disambiguators minimize the ordering; whereas the right
disambiguators maximize the ordering (incidentally, R1|LR2 ≡
R1|(R2\R1) and R1|RR2 ≡ (R1\R2)|R2). The star disam-
biguators are then easily defined in terms of the previous
disambiguators:

R*L ≡ (R ·L R*) |L ε
R*R ≡ (R ·R R*) |L ε

Consistent use of only left-disambiguators corresponds to
an eager (aka., greedy) matching strategy; whereas right-
disambiguators yield lazy (aka., reluctant) matches. Note
that all the disambiguation operators above are local and
that a given regular expression may use combinations of all
six variants, even in a nested fashion in which case they are
resolved top-down on the ASTs.

iv) Default disambiguation. Any outstanding ambigu-
ities are resolved using default disambiguation. In our tool,
all constructions are, by default, left-disambiguated.

4. TYPING
In this section, we show how to do type inference for regular
expression recordings, independent of a host language. In
order to be able to type check pattern matching usage in
programming languages such as Java, we need to associate
two kinds of information with it. First, we need a linguis-
tic type that tells us what are possible strings that could be
recorded as a result of a matching at runtime. This is used
to verify that recorded regular expressions, such as [0-9]+,
0|[1-9][0-9]*, or even [-+]?[0-9]+, can always safely be
assigned to an integer-typed variable. Second, we need a
structural type to tell us how recordings are nested within
each other. This is used to make sure that person.age cor-
responds to a matched structure which does indeed have a
recorded field with name age within a recorded field with
name person. The typing uses the following mathematical
structures:

T : L × S overall type
L : RegΣ linguistic type
S : Id →֒ (T ×M) structural type
M : {<0>, <1>, <?>, <*>} type modifier

Below we define type inference for regular expressions with
recordings in the form of a typing judgement ⊢ as a relation
of type ⊢ ⊆ R × T . We will write ⊢ R : (L, S) as a short-
hand for (R, (L, S)) ∈ ⊢, meaning that R is typeable with
linguistic type L and structural type S. For each recording,
x, the structure S, will tell us: S(x) = ((l, s), m), where l
is the regular language of all strings that can be matched
at runtime by x; s is a structural type describing recordings
that are nested inside x, and m is a type modifier telling us
how many times the recording, x, can occur (e.g.: <1>, for
exactly once; <?>, for zero or once; and <*>, for any number
of occurrences). For instance, in the ampersand-separated



name-list example from Section 2.2, the recording name will
have structural type: S = [name 7→ (([a-z]+, []), <*>)].

[Empty]
⊢ ∅ : (∅, [])

[Epsilon]
⊢ ε : ({ǫ}, [])

[Char]
⊢ c : ({c}, [])

[Choice]
⊢ R1 : (L1, S1) ⊢ R2 : (L2, S2)

⊢ R1|R2 : (L, S)
L=L1∪L2,

S=S1©| S2

[Concat]
⊢ R1 : (L1, S1) ⊢ R2 : (L2, S2)

⊢ R1 · R2 : (L, S)
L=L1·L2,

S=S1©· S2

[Star]
⊢ R : (L, S)

⊢ R* : (L′, S′)
L′

=L∗,

S′=S©*

[Record]
⊢ R : (L, S)

⊢ <x=R> : (L, S′)
S′ = [x 7→ ((L, S), <1>)]

Figure 6: Type inference

Figure 6 specifies how to infer such types for recording-
augmented regular expressions. The rules are all straightfor-
ward. Consistent with the semantics of regular expressions,
the two axioms define the language component, L, as {ǫ}
and {c}, respectively. Since none of them have recordings,
they both have empty recording structures, []. The com-
posite rules, just propagate the language of a regular ex-
pression (according to the semantics of regular expressions),
while delegating choice, concatenation, and star onto corre-
sponding operations on structures, undertaken by: ©| , ©· ,
and ©* (which are defined in the following). The only rule
that does something beyond delegation is [Record]. For a
recording <x=R>, it creates a new recording structure, S′,
for the recording, x, as: S′ = [x 7→ ((L, S), <1>)]; i.e., for
which the language is L, and where its structure is that of R
(i.e., S), and with the fact that x occurs exactly once (i.e.,
<1>).

The type modifiers induce a partial-ordering ⊑
M

⊆ M×M
according to inclusions among the values they represent at
runtime (cf. Figure 7). As usual, this order uniquely deter-

mines a least upper bound operator,
F

M
which, not surpris-

ingly, coincides with the choice (union) operator on modi-
fiers, ©| m : M×M → M (defined in the following). Also
concatenation on type modifiers, ©· m : M × M → M, is
straightforward (and monotone):

<*>

<0> <1>

<?>

Figure 7: Partial-order among type modifiers.

©| m <0> <1> <?> <*>

<0> <0> <?> <?> <*>

<1> <?> <1> <?> <*>

<?> <?> <?> <?> <*>

<*> <*> <*> <*> <*>

©· m <0> <1> <?> <*>

<0> <0> <1> <?> <*>

<1> <1> <*> <*> <*>

<?> <?> <*> <*> <*>

<*> <*> <*> <*> <*>

Choice (union) on structures, ©| : S × S → S , becomes:

(S1©| S2)(x) =
8

>

>

>

<

>

>

>

:

((l1 ∪ l2, s1©| s2), m1©| mm2) if x ∈ dom(S1) ∩ dom(S2)

((l1, s1), m1©| m<0>) if x ∈ dom(S1) \ dom(S2)

((l2, s2), m2©| m<0>) if x ∈ dom(S2) \ dom(S1)

undefined otherwise

where ((l1, s1), m1) = S1(x) and ((l2, s2), m2) = S2(x), when-
ever defined.

It basically performs a least upper bound operation on its
constituents. For type modifiers, we union with <0> in cases
where one of the structures in the choice does not have a
recording. (The definition is slightly complicated by the fact
that absent recordings are represented as undefined elements
in the partial function S (i.e., S(x) = undefined), rather than
with explicit <0>-values as in: [x 7→ ((∅,⊥S), <0>)].)

Similarly, concatenation, ©· : S × S → S , on structures is
defined by:

(S1©· S2)(x) =
8

>

>

>

<

>

>

>

:

((l1 ∪ l2, s1©| s2), m1©· mm2) if x ∈ dom(S1) ∩ dom(S2)

((l1, s1), m1©· m<0>) if x ∈ dom(S1) \ dom(S2)

((l2, s2), m2©· m<0>) if x ∈ dom(S2) \ dom(S1)

undefined otherwise

where ((l1, s1), m1) = S1(x) and ((l2, s2), m2) = S2(x), when-
ever defined.

Also here we combine with <0>-type-modifier-values in cases
where recordings are absent. Note that for nested struc-
tures, s, inside recordings, S, we have to take the least up-
per bound, ©| . This is because when determining the kinds
of values x can have in a concatenation, <x=R1>·<x=R2>,
we have to take the union of the possibilities. That is, x is
typed as a list whose elements can be in: L(R1)∪L(R2); i.e.,
the union of the two recordings of the same name. (This is
analogous to typing a heterogeneous Java list, [1, 2.5], as
double[], because the least upper type bound on its ele-
ments yields: double = int ⊔ double.)

Star on structures, ©* : S → S , is straightforward (it always
produces lists of recordings, <*>):

(S©* )(x) =

(

((l, s), <*>) if x ∈ dom(S)

undefined otherwise

where ((l, s), m) = S(x), whenever defined.

Since regular languages are closed under union, concatena-
tion, and star, the language part of the structure is exact.

The above type analysis will infer a type for a recording,
<x=R>; say: [x 7→ ((L, S), m)]. This means that the lan-
guage of the regular expression recorded is, L (i.e., L =



L(R)); the structure, S, gives the typings of all sub-recordings
nested within the recording (i.e., inside R); and the modi-
fier, m, tells us how many times the recording can match at
runtime as an interval (e.g., <*> means zero or more). In
practice, the type inference provides the most specific Java
type for recordings in all of our examples (cf. Section 5).
The most specific type is found via deciding language con-
tainment via DFAs using the predefined regular expressions
for the atomic types of Java (see below).

4.1 Host-language Embedding
After type inference, we have a three components for each
recording, [x 7→ ((L, S), m)]; a linguistic type, a structural
type, and a type modifier. In the following we will explain
how each of these can be used to provide a non-intrusive
language embedding for Java.

Embedding linguistic types. The linguistic used to
provide the most specific Java base type for a recording to
the following predefined regular expressions:

String = .* ;
char = . ;
float = [+-]?[0-9]*\.[0-9]+(E[+-]?[0-9]+)? ;
int = [+-]?[0-9]+ ;
boolean = [Tt][Rr][Uu][Ee] | [Ff][Aa][Ll][Ss][Ee] ;

Integers and characters are the only sets that overlap incom-
parably (on [0-9]). In that case, we prefer int over char.
The most specific type means that for instance, [0-9]+ is
mapped to int, and not float or String.

Note that this ignores overflow in that the regular expression
“0|[1-9][0-9]+” becomes a Java int (irrespective of over-
flow). The tool can be instructed to handle integer 32-bit
integers (via the option "-I 32") which replaces the above
int with the appropriately bounded regular expression.

However, sometimes it is convenient to have “00011101”
typed as a String instead of an integer (to prevent it from
being mapped onto an integer as the number 11101). To ad-
dress this, we permit an optional host language (Java) type
annotation in the syntax for recordings as in “<τ x = R>”,
where τ is one of the atomic types mentioned above. This
construction will be statically checked to verify that L(R) ⊆
L(τ ). The linguistic type inferred will then be L(τ ). This
means that the recording bit8 in the regular expression:
“<String bit8 = [01]{8}>”, will result in a structure where
the type of bit8 is String; and, in turn, that the leading
zeros in the above string will not disappear.

Embedding structural types. Each regular expression
definition gives rise to a Java class and each of its toplevel
recordings gives rise to field variables with appropriate types
and type modifiers (as explained above). Consider for exam-
ple, the following regular expression ($Name denotes inlining
of the regular expression defined as Name):

Name = [a-z]+ ;
Person = <name = $Name > "(" <age = [0-9]+ > ")" ;

This will give rise to the following Java class:

class Person { // auto-generated

String name ;
int age ;

String value ;
public static Person match(String s) { ... }
public String toString() { ... }

}

Classes will always contain: a field, value (to hold strings
matched at runtime); a static method, match, which takes a
String, parses it according to the regular expression (stores
it in value) and returns it; and a public toString() method
(that returns value). Nested recordings give rise to nested
Java classes (as shown in Section 5).

Embedding type modifiers. Type inferred modifiers
(i.e., <1>, <?>, and <*>) give rise to Java type modifiers in
a fairly straightforward way. Consider the following regular
expression:

Points = $Name ":" <point = [0-9]+ >

("," <point = [0-9]+ > ) * ;

The recording, point, will be typed as a <*> (type modifier)
and thus give rise to the field declaration: int[] point; in
a Java class, Points. Since Java does not have optional types
(as for instance Haskell), we also map <?>-types to arrays.
(<?>-types could also be handled via the null-value, if we
box primitive types; or by creating a special Java class with,
say, an isDefined()-method.)

5. EXAMPLES
In the following, we demonstrate that our approach can be
used to perform string-based pattern matching on realistic
non-trivial examples in a purely declarative manner. We
use it on URLs, Apache log files, and the DBLP publication
database.

5.1 URLs
URLs are highly structured and pack a lot of different kinds
of information used by many modern applications. As an
example, consider the following URL:

http://www.google.com/search?q=record&hl=en

It contains a protocol (http), a host (www.google.com) a
path (search/), and a query string (q=record&hl=en). The
following (deliberately simplified) recording-augmented reg-
ular expression conveniently extracts these pieces of infor-
mation:

Host = <host = [a-z]+ ("." [a-z]+)* > ;
Path = <path = [a-z/.]* > ;

Query = <query = [a-z&=]* > ;

URL = "http://" $Host "/" $Path "?" $Query ;

The first three lines defines appropriate regular expression
for hosts, paths, and queries. Note that they all contain
recordings at the outermost level, that are all typed as String,
and which will record the corresponding string values at run-
time. The last line defines URL to be the constant prefix



’http://’, followed by the regular expression for Host (con-
taining a recording), a constant slash character ’/’, what-
ever is defined for Path, a question mark ’?’, and finally the
regular expression for queries. At runtime, when matched
against a URL string, it will record all the relevant sub-
strings.

We now improve on the regular expression by also extracting
so-called key-value pairs, redefining Query as:

KeyVal = <key = [a-z]* > "=" <val = [a-z]* > ;

Query = $KeyVal ("&" $KeyVal )* ;

Since the recordings, key and val, occur under a star, they
will be typed (by the type inference, cf. Section 4) as lists of
strings (i.e., String[] in Java). This means that the regular
expression for URLs can now be used in Java in the following
way; e.g.:

String some_url =
"http://www.google.com/search?q=record&hl=en";

URL url = URL.match(some_url);
print("Host is: " + url.host);
print("Path is: " + url.path);
if (url.key.length>0) print("1st key is: " + url.key[0]);
for (String val : url.val) print("Value = " + val);

The method invocation, URL.match(some_url), parses the
string contained in some_url and the results is in the above
example stored in the variable url of type URL. The pars-
ing method and all of the classes have been automatically
generated by the reg-exp-rec compiler from the regular ex-
pression. Note that all recordings are available as fields of
that object (e.g., url.host contains whatever was matched
as the hostname). Also, url.key and url.val are Java lists
and can be transparently used as such. Note that if we
wanted the keys and values as a list of pairs, we could sim-
ply wrap the keys and values in a pair-recording as in the
following definition:

KeyVal = <pair = <key = [a-z]* > "=" <val = [a-z]* > > ;

5.2 Log files
Our next example deconstructs Apache’s HTTP log files
which look like:

13/02/2010 66.249.65.107 get /support.html

20/02/2010 42.16.32.64 post /search.html

This can easily be handled by the regular expression, reusing
Path from above (assuming appropriate definitions of Day
and Month, see later):

IP = <ip = [0-9]{1,3} ("." [0-9]{1,3} ){3} > ;

Method = <method = "get"|"post" > ;
Date = <date =

<day = $Day > "/"

<month = $Month > "/"
<year = [0-9]{4} >

> ;
Entry = <entry = $Date " " $IP " " $Method " " $Path > ;

Log = $Entry * ;

Since the year is defined by the regular expression, [0-9]{4},
it will be typed as a Java integer (i.e., int), as the generated
code shows. The nested recordings give rise to nested inner
classes:

public class Log { // auto-generated

Entry[] entry ;
String value ;

public static Log match(String s) { ... }
public String toString() { ... }

public class Entry {
String ip , method, path;
Date date;
String value ;

public String toString() { ... }

public class Date {
int day , month, year ;
String value ;

public String toString() { ... }
}

}
}

Now, we can, for instance, report all leap day accesses from
a log file in the following way:

Log log = Log.match(log_file);
for (Entry e : log.entry)

if (e.date.month == 02 && e.date.day == 29)
print("Access on LEAP DAY from IP#: " + e.ip);

This type of use can be applied to a wide range of data
formats (e.g., Java property files and Unix password files).
Note that if we accidentally forget the slash between the day
and month, our ambiguity checker complains and pinpoints
the error with the shortest (lexicographically least) concrete
ambiguous string:

*** ambiguous concatenation: <day> <--> <month>

shortest ambiguous string: "101"

The error message tells us that the date can either be inter-
preted as January 1 (i.e., 1/01) or January 10 (i.e., 10/1).
Here, we assumed that day and month are defined more
sensibly than just [0-9]+ (e.g., Day = 0?[1-9] | 10 | 11

| 12 and Month = 0?[1-9] | [1-2][0-9] | 30 | 31). (If
we were to define day and month more sloppily by, say,
[0-9]+, then the ambiguous string reported would instead
become: “000”.)

5.3 DBLP
Our last example shows that our approach can provide safe,
typed, and structural pattern matching to even highly struc-
tured XML data. As long as the structure has bounded
depth which is the case for DBLP data, we are able to make
a specification via regular expressions. Here is a hypotheti-
cal example of data in the DBLP format describing for two
papers (one of which is published [8]):

<article>



<author>Noam Chomsky</author>
<title>Three Models for the

Description of Language</title>
<year>1956</year>
<journal>IRE Transactions on

Information Theory</journal>
</article>
<inproceedings>

<author>Claus Brabrand</author>
<author>Jakob G Thomsen</author>
<title>Typed and Unambiguous Pattern Matching

on Strings using Regular Expressions.</title>
<year>2010</year>
<booktitle>PPDP 2010</booktitle>

</inproceedings>

Again, this format is easily captured by our approach (even
though it is rigourously structured XML):

Author = "<author>" <author = [a-z]* > "</author>" ;
Title = "<title>" <title = [a-z]* > "</title>" ;
Article = "<article>"

$Author* $Title .*
"</article>" ;

Proceeding = "<inproceedings>"
$Author* $Title .*

"</inproceedings>" ;
Publication = $Proceeding | $Article ;
DBLP = <pub = $Publication > * ;

This regular expression is ambiguous as pinpointed by our
analysis:

*** ambiguous star: <pub>*
shortest ambiguous string:
"<article><title></title></article>

<article><title></title></article>"

The string reported could either match, as intended, two
distinct articles (under the star); or, it could match one
article with an empty title (for which the following substring:
“</article><article><title></title>” has unintendedly
been eaten by the “.*” in Article.

As mentioned in Section 3.3, there are several ways to disam-
biguate. Using restriction (which is the binary infix minus
operator in our tool; i.e.: R1-R2), Article can be re-written
to disallow the unintended interpretation:

Article = "<article>"
$Author* $Title (.* - (.* "</article>" .*))

"</article>" ;

Note that since Article and Proceeding both have a title
with language [a-z]* and type modifier <1>. This means
that so will a publication (due to the definition of “©| ”
and “©| m”, cf. Section 4); since L([a-z]*) ∪ L([a-z]*) =
L([a-z]*) and <1> ©| m <1> = <1>. Similarly, the recording
author becomes the language L([a-z]*) with type modifier
<*>. As a consequence, a publication then always has a title
field, title, of type String and an author field, author, of
type String[] (independent of whether it was an article or
an inproceeding). The following code prints the titles of all
publications:

DBLP dblp = DBLP.match(readXMLfile("DBLP.xml"));

for (Publication publication : dblp)
print("Title: " + publication.title);

For more examples (including the iCalendar format), we re-
fer to the the project homepage:

[ http://www.cs.au.dk/∼gedefar/reg-exp-rec/ ]

6. PARSING
Deterministic Finite Automata (DFAs) provide an efficient
way of deciding the membership problem for Regular Ex-
pressions; i.e., given a string, ω, and a regular expression,
R, deciding whether or not: ω ∈ L(R). A regular expression
can be compiled into a Finite Automaton [25], which can
then be used to decide the membership problem at runtime
in linear time in the size of the input string, O(|ω|). This
works for recognition (i.e., yes/no-answers), but it does not
work for recording and extracting substring matches since
it does not provide structural information of how the string
matched the regular expression.

Of course, determining structural information (syntactic anal-
ysis) is precisely the objective of parsing. However, most effi-
cient parsing algoritms are devised for (Type-2) context-free
grammars, not (Type-3) regular expressions.

6.1 Regular Expression Parsing
Regular Expressions can also be interpreted structurally us-
ing a backtracking algorithm which is a popular strategy
in many languages (e.g., Perl, PHP, Python, Ruby, and

java.util.regex). However, that strategy runs in O(2|ω|);
matching, for instance, a?{n}a{n} against an runs one mil-
lion times slower in Perl than an NFA-based approach, clock-
ing in at 60 seconds for just n=29 [11].

There have been several attempts to extend automata with
recording capabilities, but many are not able to deal with
recordings under iteration [30, 14]. In [22], Frisch and Cardelli
show how to perform greedily disambiguated pattern match-
ing on a string, ω, using a regular expression, R, via an
automata-based approach while retaining structure (i.e., pars-
ing) in O(|ω||R|) time and with O(|ω||R|) memory usage. A
novel approach [34], also based on DFAs, runs in O(|ω|) time
and with O(|ω|) memory consumption.

Parsing Expression Grammars [20] (aka., PEGs) support
EBNF-style regular expression operators (even intersection
and complement) and have linear-time implementations (e.g.,
Packrat Parsing [19]). However, they have a greedy, non-
backtracking semantics which is not able to deal with many
regular expressions (e.g., it is incapable of matching against,
a*a, as it will never abandon consuming as under the star).

6.2 Context-Free Grammar Parsing
It is possible to use a context-free grammar parser for pars-
ing regular expressions via structure-preserving transforma-
tions. A regular expression can be transformed into a CFG
in such a way that parse-trees can be mapped back to the
original structure of the regular expression. However, parsers
able to deal with any grammar run in polynomial time (Ear-
ley [12] in O(|ω|2) for unambiguous and O(|ω|3) for ambigu-
ous grammars; Tomita GLR [37] and scannerless GLR [13]



in O(|ω|3)). Note that the problem of CFG parsing reduces
to matrix multiplication [31] for which the currently best-
known worst-case complexity is O(|ω|2.376) [9]. In our tool
tool, however, we currently rely on a CFG parser that uses
a variant of Earley’s algorithm [33].

Although linear-time CFG parsers exist (e.g., LL(k) and
LR(k) can be done in O(|ω|)), they work only for limited
subsets of (unambiguous) grammars. In practice, regular ex-
pressions are often ambiguously specified and is thus some-
thing one needs to handle. (Recall that we automatically
left-disambiguate any ambiguous operators.)

7. EVALUATION
In this section we will evaluate our approach and relate
it to other similar techniques. We have divided the eval-
uation of our approach into three dimensions: flexibility,
safety, and efficiency. We will contrast each of these to ap-
proaches based on capturing groups (as used in e.g., Perl
and Java.util.regex), CFG-based approaches, and unre-
stricted Turing-Complete programming. The evaluation is
summarized in Figure 8.

Note that there are lots of parser generator tools (e.g., Yacc
[29], SableCC [24], ANTLR [35]), but they are all based on
CFGs and relate to our approach as depicted in Figure 8 and
explained below. (The same applies for the source transfor-
mation language, TXL [10].)

7.1 Flexibility
The examples from Section 5 show that our recording con-
struction is sufficiently expressive for extracting structured
information from strings via declarative pattern matching
based entirely on regular expressions. Here, we will argue
that it is also simple and convenient (especially when con-
trasted to alternatives available).

Capturing groups. A capturing group is a construc-
tion for substring recording like our recordings. Syntacti-
cally, it is written as a set of parentheses the around a reg-
ular expression. Whatever is matched by the construction
is then captured and is subsequently available as the reg-
ular expression; e.g., “\n” (where \1 refers to the lexically
first capturing group, \2 to the second, and so on). The
construction is thus capable of matching any finite number
of substrings. However, if a star is used around a captur-
ing group, it will only record the last substring matched.
Thus, it cannot be used for unbounded list matching. Also,
the individual matches have no structure beyond that of a
string. In contrast our construction is specified syntactically
via identifiers (which is more descriptive than \7) and it can
be used to match and record values over any tree structure
with bounded depth).

Furthermore, capturing groups often come with so-called
back-references which take them beyond regularity. They
permit a dynamically recorded substring to appear in an
otherwise static regular expression. For instance, the regular
expression: (a*)b\1, matches the non-regular (but context-
free) language: { an b an |n ≥ 0 }. In fact, expressivity using
back-references takes them beyond context-free languages;
e.g.: the language {ωcω |ω ∈ Σ∗, c ∈ Σ } is not context-
free, but easily recognizable using back-references: (.*).\1.

(It is unclear exactly what class of languages, abstractly
speaking, is recognized by regular expressions with back-
references.) Note also that the membership problem for
regular expressions with back-references is NP-complete [7].

Context free grammars. Obviously, context free gram-
mars are more expressive than regular expressions, but fewer
properties are decidable (see Section 7.2 below). Grammars
have recursive nonterminals which then make them capable
of parsing tree structures of unbounded depth.

We hypothesize that regular expressions are easier to com-
prehend and use for novice programmers than context free
grammars. Grammars are essentially regular expressions
plus recursive nonterminals. (Curiously, although in no re-
spect a valid scientific argument, a search on Google for
“regular expression”vs. “context free grammar” reveals
a factor of 13:1 in favor of regular expressions; context-free
grammars “only” generate about a million hits (as of March
2010).

Finally, since CFGs are not closed under restriction, we can-
not use restriction for disambiguation.

Unrestricted programming. Obviously any computable
function can be expressed in a (non-declarative) Turing-
Complete programming language such as Java. For a flex-
ibility comparison of our approach versus that of a Type-0
language (Java), we have made a quantitative analysis of
source code. We have compared the full URL specification
written as a recording-augmented regular expression versus
the standard implementation in Java, java.net.URL (ver-
sion 1.136; April 30, 2009). Figure 9 lists the results of
this comparison. For the code size, we see a conciseness
factor of about almost 1:8 (45:347) in favor of our declara-
tive approach. If we look at the cyclomatic complexity [36],
we see that the total number of branches in the two for-
malisms (taken as choices for the regular expressions and
if-conditionals in Java), we see a factor of 1:2. As for itera-
tions (taken as R* and R+ versus while and for loops), we
see a 3:1 in favor of Java. However, a while-loop is opera-
tional and much more complicated than a simple and declar-
ative Kleene star. In addition, the Java implementation has
a whole range of highly operational features (96 method in-
vocations, 9 throw statements, and 1 try statement with 2
catch handlers).

Curiously, and perhaps symptomatic of this code complex-
ity, the current official implementation contains a known,
but unresolved bug as indicated by a “//FIX:” comment
in the source code. Figure 10 displays a short sample of
bugs for java.net.URL (extracted from Sun’s bug reposi-
tory, http://bugs.sun.com/). The history of bugs spans a
decade, which we take as an indication of complexity inher-
ently associated with the (non-declarative) Turing-Complete
approach for this kind of pattern matching. Obviously, some
“errors”are due to natural evolution of the specification (i.e.,
adding new features), but the bug repository reveals no less
than 88 bug entries for java.net.URL, a lot of which are real
implementation bugs. We also conclude that maintainability
(for which legibility is a prerequisite) is crucially important
for this kind of pattern matching.



Approach Our Approach: Capturing Groups: CFG-Based Turing-Complete

Criteria (reg-exp-rec) (Perl/java.util.regex) Approaches: Programming:

Expressivity Regular Language
?

Context-Free Language Recursively Enumerable
(language class): (Type-3) (Type-2) (Type-0)

Flexibility

Declarative
+ + + -specification:

Information Tree(s) String(s) Tree
Anything computable

extractable: (bounded depth) (fixed number) (unbounded depth)
Structured

+ - + +values:

Safety

Guaranteed
+ + + -termination:

Ambiguity
+ - - -decidable:

Containment
+ - - -decidable:

Efficiency
Complexity

O(|ω|) O(2|ω|) O(|ω|2.376) N/A
of parsing:

Figure 8: Evaluation summary of recording approaches (string-based pattern matching and extraction).

Feature Regular Expressions Programming (Java)

code size 45 lines 347 lines

branches 24 “|” (choices) 50 if (conditionals)
iterations 12 “*” (stars) 5 while (loops)

6 “+” (plusses) 1 for (loop)
methods 96 m(..) (invocations)
exceptions 9 throw (errors)

2 catch (handlers)
1 try (handler)

bugs 1 unresolved “fixme” !

Figure 9: Regular expressions vs. unrestricted pro-
gramming (code: “java.net.URL”) for URL matching.

Year Bug ID Synopsis

1998 4175737
java.net.URL should throw
MalformedURLException on incorrect FILE

1999 4221439
https seen as invalid protocol by
java.net.URL

1999 4264177
HttpURL does not handle URL of the
format http://user:passwd@host/

. . . . . . . . .

2006 6506304
java.net.MalformedURLException:
unknown protocol: c

Figure 10: Small sample of bugs for “java.net.URL”
(source: “http://bugs.sun.com/” bug repository).

In contrast, we were able to use the official RFC for URLs [16,
17] directly and augment it with all relevant recordings in
less than half an hour. Obviously, the regular expression
version is much more concise, but also superior in terms of
legibility and maintainability.

7.2 Safety
Safety is the paramount benefit of our approach. Termina-
tion is inherently guaranteed by the formalism; ambiguity
is statically decidable with constructive counter-examples
(cf. Section 3); it is possible to statically infer the language
of recordings exactly (i.e., without precision loss); and lan-
guage containment (i.e., L(R1) ⊆ L(R2)) is decidable. The
latter makes it is possible to pick the most appropriate type
among the types available in a host language, so that we
can type a recording as, say, a list of integers. The analysis

only abstracts away information that the Java type system
does not address (e.g., the number of elements in an array
and the exact types of individual elements in heterogeneous
constant arrays such as: [1, 2.5]).

Termination is also guaranteed in the non-Turing-Complete
alternatives, but this is as far as the other approaches go in
terms of safety guarantees. This is because our approach is
built on pure regular expressions (without non-regular ex-
tensions such as back-references), which means that virtu-
ally everything is not only decidable, but constructively so.

7.3 Efficiency
Section 6 discussed the worst-case asymptotic complexities
of the different approaches (including that of the worst-
case exponential-time interpretation-based strategy used in
many language implementations). Note that for a Turing-
Complete programming language, the worst-case complexity
depends intimately on the particular language to be parsed
and the algorithm implemented.

Figure 11 plots the result of parsing incorrect (i.e., rejecting)
DBLP data strings of increasing length (along the x-axis) us-
ing Java’s java.util.regex vs. our CFG-based approach.
The numbers along the left hand side of the y-axis indicate
the time for java.util.regex in seconds; along the right
hand side of the y-axis, the time for our approach in mil-
liseconds on a standard laptop PC (Intel Core 2 duo, 2.2
GHz, 2 GB memory, Windows). java.util.regex hits ex-
ponential growth on this example; parsing (and rejecting)
a string of about 2,500 characters takes about two minutes
(120 seconds). Our approach, on the other hand, exhibits
a linear behavior and parses strings of 20,000 characters in
about 0.06 seconds. In fact, our approach is able to parse
(and reject) strings of 1.2 mio characters in about 6 seconds.
In 6 seconds, it is able to parse correct DBLP data of strings
of up to 800,000 characters.

Although we see a mostly linear behavior, we should be able
to speed up our tool using an automaton-based approach
(e.g., [22, 34]).



Figure 11: Parsing incorrect (i.e. rejecting) DBLP
data using java.util.regex (in seconds) vs. our
CFG-based approach (in milli-seconds).)

8. RELATED WORK
XML uses regular expressions as types constraining sequences
of elements and for this reason regular expression pattern
matching has been popular in XML-friendly languages such
as XDuce [27, 28] and CDuce [23, 2]. The multi-paradigmatic
language Scala [15] also features regular expression pattern
matching and HaRP [6] adds regular expression patterns to
Haskell via a lightweight preprocessor. All of these languages
offer recording constructions, capable of recording lists that
are more general than lists of characters (via the “x as R”
construction in XDuce,“x::R”in CDuce, and“x@R”in Scala
and HaRP).

In CDuce, regular expressions are added as syntactic sugar
on top of an ML-style pattern matching (augmented with
intersection, XML-friendly, and type-matching operators).
This is achieved by compiling the regular expression patterns
into Finite Automata which are then encoded as ML-style
pattern matching (in normal form with cons-lists encoded
as binary pairs). The paper [21] describes how to use au-
tomata in the compilation of regular expressions to core pat-
tern matching, but only in terms of recognition (i.e., without
recordings).

XDuce statically checks for ambiguities based on a product
construction for tree automata [26]. However, since ambi-
guities are found in terms of tree automata, it is not easy
to relate ambiguities back to the source of the problem in
terms of the original regular expression. Our analysis, on
the other hand, is syntax-directed, pinpoints the exact loca-
tion of all ambiguities, and provides a unique shortest (and
lexicographically least) ambiguous string in the case of am-
biguities.

CDuce relies on disambiguation with left-bias for choice and
with greedy iteration (but has a non-greedy variants). HaRP
employs a first-match policy and disambiguates iteration
non-greedily (but also has a greedy variant). Disambigua-
tion policies can be subtle and are studied formally in [38]
(including the POSIX and the first-and-longest match poli-

cies). These policies are all global. In contrast, we have six
locally disambiguated regular expression operators that are
all related to the potential origins of ambiguities (via the
characterization), including two for concatenation. These
are more general in that different disambiguation conven-
tions can be used at different points in a regular expression.

XDuce and CDuce both have exact type inference and [38]
provides a sound-and-complete proof of their regular expres-
sion type inference. We use our type inference, which pro-
vides the language and nesting structure of all recordings,
to synthesize stand-alone pattern matching and container
classes for Java in a stand-alone and non-intrusive way.

Finally, there are a number of other tools that are also made
for processing unstructured or ad-hoc data (e.g., PADS [18]),
but they go beyond regularity; hence, they are more expres-
sive, but fewer properties are statically decidable.

9. CONCLUSION
We conclude that if regular expressions are sufficiently ex-
pressive, they provide a simple, flexible, and safe means for
declarative pattern matching on strings, capable of extract-
ing highly structural information in a statically type-safe
and unambiguous manner. Also, regularity is enough for
many realistic pattern matching tasks such as extracting
structural information from URLs, log files, and even highly
structured XML data of bounded depth (e.g., DBLP).

We have shown how to statically analyze ambiguity of regu-
lar expressions through a sound and complete analysis that
pinpoints all ambiguities in terms of the structure of the reg-
ular expression, capable of reporting the shortest ambiguous
string. If the grammar is ambiguous, we provide four ways
in which it can be safely and locally disambiguated. We have
also shown how to statically infer the type of structural in-
formation extracted which leads to convenient integration of
pattern matching in languages such as Java in a completely
stand-alone and non-intrusive way with acceptable runtime
performance.

In conclusion, we have shown how expressivity can be traded
for simplicity and static safety in the case of pattern match-
ing on strings.
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