Synthesizing Safety Controllers for Interactive
Web Services

Claus Brabrand
brabrand@daimi.au.dk

December 21, 1998

Abstract

We show how to use high-level synchronization constraints, written in a version
of monadic second-order logic on strings, to synthesize safety controllers for
interactive web services. On top of this, we introduce a syntactic level macro
language that permits the language to be transparently extended with new
constructs. These new constructs will appear as if they were an inherent part of
the original language. Together, the macros and constraints, provide a means
for extending the original language with sophisticated high-level concurrency
abstractions.

Contents

1 The
1.1
1.2

1.3

1.4

1.5

1.6
1.7
1.8
1.9

1.10

2 The
2.1

2.2

Constraint Language 6
Introduction 6
Session-Controller Interaction 7
1.2.1 The Short Wait oo 9
1.2.2 Generalizing Wait oL oL 10
1.2.3 Timeout Lo 12
1.24 Dead. 13
SyCoLogic o 13
1.3.1 Restricting Execution 14
1.3.2 PrefixClosing ¢ 15
1.3.3 SyCoLogic Syntax 15
SyCoLogic Semantics 18
1.4.1 Restrict-by o 18
1.4.2 Forbid/Allow 19
Beyond Regularity—Triggers 20
1.5.1 Triggers 21
1.5.2 Formalizing Counter Automata 25
1.5.3 A Counter Example 26
1.5.4 Ensure—Another way beyond regularity 28
Negated Labels 29
Priority Labels o 31
Events e 31
Dynamic Deadlock Detection (D3) 31
1.9.1 The Halting Reduction. 32
1.9.2 An Approximate Solution 38
Conclusion L 43
Macro Language 44
Introduction 44
2.1.1 Conception L 45
2.1.2 Demands 46
2.1.3 Customization 46
A Brief Macro Surveyo 47
2.2.1 Lexical Level Macros 47

2.2.2 Syntax Level Macros 53

2.2.3 CompariSono e 54

23 Syntax 55
2.3.1 Examples 56
2.3.2 Macros vs. Functions oL 60

24 Semanticsl 61
2.4.1 Resolving Ambiguities 61
2.4.2 Recursiono 61
2.4.3 SCOPE - - . o 62
2.4.4 Order of Expansion 68

2.5 Implementation oo o 69
25.1 Parsing e 69
2.5.2 Parsing Macro Definitions 70
2.5.3 Parsing Macro Invocations 72
2.5.4 Representation 72
255 Weaving oo e 76
2.5.6 File Inclusion over the Internet 76

2.6 Communicating Macro Information 77
2.6.1 Error Reporting 7
2.6.2 Pretty Printing o000 78

2.7 The Split Feature o, 80
2.8 Future Work 83
2.9 Conclusion e 84
3 Synthesis 85
3.1 Imntroduction. 85
3.2 A Chain of Development 85
3.2.1 Allow/Forbid-when 85

3.2.2 Mutex 86
323 Region. Lo 87
3.24 Resource 87
3.25 Protected Lo 89

3.3 An Example Service: RW 89
3.4 Other Examples 92
3.4.1 Alternationo 92
3.4.2 Synchronization L. 92

3.5 Conclusion L 95
4 The Runtime System 96

Introduction

The thesis consists of four chapters, the contents of which will be briefly outlined
below.

Chapter 1

The first Chapter, “The Constraint Language”, introduces the idea of restricting
the execution of an interactive web service according to a set of global safety
requirements specified in monadic second-order logic on strings. This is done
by extending the source code of the service program with labeled points. The
execution of the service will give rise to a sequence of labels, corresponding to
the labels past during execution. It is this sequence that is restricted by the
safety requirements.

We shall also introduce a notion of triggers, that will take us beyond the
boundaries of regularity otherwise imposed by the logic. Technically, the safety
requirements are translated into counter automata, which are essentially DFA’s
augmented with a notion of integer counters paralleling the logic level trigger
concept. These counter automata will be the core of a controller process asso-
ciated with the web service, that is given the power to delay (even indefinitely)
the passing of labels that when passed will cause the safety requirements to be
violated.

Prohibiting two consecutive A labels, not having a B between them, yields
mutual exclusion between the labels A and B. More sophisticated abstractions
can and will be introduced.

Even though highly sophisticated concurrency mechanisms can be imple-
mented, they are hard to capture as abstractions. This calls for some form of
abstraction mechanism, which is the topic of the next Chapter.

Chapter 2

The second Chapter, “The Macro Language”, will introduce a macro language,
that allows for the definition and preservation of parameterized abstractions.
The Chapter will commence with a brief macro survey, investigating a few of
the most popular macro languages. Hereafter, attention is turned towards our
macro language.

Our macro language operates on a syntactic level as opposed to the lexical
level of operation of most other macro languages. The macro language thus
operates on parse trees, rather than uninterpreted sequences of characters (that
is, raw text). All macros are assigned a syntactic category, a non-terminal
type, upon definition, to which the body of the macro and all invocations must
comply. Similarly, all formal macro parameters are typed with a non-terminal,
to which all actual macro parameters are expected to comply. This provides an
intuitive way of adding together parse trees according to the productions in the
grammar.

Along with the definition of a macro, one can specify the exact syntax invo-
cations are enforced to have. This enables a macro to be tailored to have the
right look-and-feel, conveying the meaning and nature of the abstraction.

Since we operate on parse trees, our macros will know enough of the structure
of the language to automatically support alpha conversion of identifiers. This
will avoid the unintentional identifier clashes that are common to most other
macro languages.

All this will provide a means for transparently extending the language with
new constructs that will appear as if they were part of the original language.

Chapter 3

The third Chapter, “Synthesis”, will show how the two preceding independent
languages can be combined so as to provide high-level concurrency abstractions
as if they were an inherent part of the original language. It will also be shown
how the two languages can provide abstractions of varying nature, ranging from
basic primitives to entire new concepts. Also, the Chapter will illustrate how the
macro language can gradually “evolve” the original language. The entire Chapter
can be perceived as a conclusion on what can be achieved when combining our
two languages.

Chapter 4

The final Chapter, “The Runtime System”, is an article “A Runtime System for
Interactive Web Services”, that will explain the runtime model we have used in
<bigwig>.

Implementation Status

All the work presented in this thesis, has been incorporated into the <bigwig>
language (see http://www.brics.dk/bigwig/”) which is an intellectual descendant
of the MAWL language. <Bigwig>is a domain specific language with a C-like
syntax for generating interactive web services from high-level specifications.

At the time of writing, everything presented in the thesis has been imple-
mented, excepting the four features; timeout, dead, event, and split.

Thesis Homepage

We have provided a small homepage for the thesis, which is available at the
URL: “http://www.daimi.au.dk/~brabrand/thesis/”. It contains references to
the macro libraries mentioned and the examples from the thesis, that can be
seen pretty printed in HTML (with and without macro expansion) and tried
out.

Chapter 1

The Constraint Language

1.1 Introduction

When programming in a concurrent environment, programmers often need to
make sure that certain properties hold—or, dually, that certain properties are
never violated. In this chapter we shall present a general solution to this prob-
lem.

Problems of this kind are often neglected, in fact sometimes even ignored.
This is at least true for cgi-based Internet services that quite often place their
fate in the hands of probabilistics rather than sound programming.

We shall emphasize that our aim is not to perform a thorough investigation
of concurrent programming, but to present a framework in which many aspects
of concurrent programming can be uniformly handled.

Our solution is to permit various requirements to be stated along with the
“usual” service code. Given this as input, the compiler will in turn produce a
service program that is guaranteed to obey the specified requirements. Tech-
nically, the compiler will produce a centralized component, called a controller
that will be running along with the associated sessions. For a diagram of the
overall compilation process see Figure 1.1.

The controller process will control the service, prohibiting it from behaving
in an illegal manner (with respect to the requirements). Each time a session
desires to pass certain points deemed (by the service programmer) to be critical
or otherwise of interest to the controller, the session will ask the controller for
permission to continue.

The controller will thus act as a big brother to the sessions by stalling them,
granting permission to continue only when (or if) the entire service has reached
a state in which this is safe. At this point the session will resume execution
from whence it paused.

One could of course argue that the introduction of such a centralized com-
ponent may cause bottlenecks. However, we claim that two factors render this
danger minimal—namely that of fast computers and slow networks. In general,

safety

: service code
requirements

~ 7

compiler

safety ... Compﬂed
controller service code

Figure 1.1: The compilation process.

the speed of a modern network as opposed to that of a contemporary web-server
easily permits overhead associated with the processing of cgi-requests. Even to-
day, the most accessed web servers have glowing networks while the cpu spends
most of its time “sleeping”. In other words, the network is by far the worst
bottleneck.

First (in Section 1.2), we shall say nothing of how these requirements are
specified, but only look at the way the session interacts with the controller,
whilst ignoring the details of exactly how the controller works and how it is
produced. In the remaining parts of this chapter, we shall turn our attention
towards the specification of such requirements.

1.2 Session-Controller Interaction

Essential to the entire system is the interaction between the runtime safety
controller and the session code through the runtime system (as depicted in
Figure 1.1). The statement wait provides this interaction. The syntax of this
construct can be seen in Figure 1.2.

In the following, we shall look at the semantics of the wait statement and
the surface of the controller.

We shall use the term control logic for the inside of the controller (please
note that the word is not inherently biased towards the use of logic). We shall
perceive this control logic as a black box that somehow does all the magic. For
an overview of the components of the controller see Figure 1.3.

The wait construct essentially gives the programmer a way of introducing
labeled points in the service code, that may be of interest to the controller.
The controller in turn has the power to restrict the execution of the service by
stalling the sessions at these labeled points in such a way that certain stated
global safety requirements are satisfied.

*

stm_list n=stm

stm =L

| wait id ;

| wait { waitbranch_list }
waitbranch_list = waitbranch™
waitbranch == caseid : stm_list break ;

| case ! id: stm_list break ;
| dead : stm_list break ;
| timeout exp : stm_list break ;

Figure 1.2: The syntax of wait-statements.

W[
"EEE /\
L TIMEOUT

LABEL QUEUES QUEUE

CONTROL LOGIC

Figure 1.3: The components of the controller.

1.2.1 The Short Wait

The syntax of the short wait statement is: “wait L;”. Whenever a session reaches
such a statement, the following happens. The session will contact the controller
through the runtime system, thus requesting permission to pass the label (in this
case “L”) and suspend (implemented as “unix-sleep”) execution. The controller
responds by placing the requesting session in a queue corresponding to the label
it requested permission to pass (that is, a queue “L”). The controller is thus
equipped with one queue for each label appearing in the service program. The
controller in Figure 1.3 has three queues, namely Ly, Lo, and L3 with two sessions
S; and S5 waiting on the labels L3 and Lo, respectively. The timeout queue will
be explained later.

When (or if) the controller reaches a state in which the session can continue
without violating the requirements, it will inform the stalled session that it is
safe to continue after which the session will do just that.

In order for this to be fair, the controller uses queues plus a token ring (see
Figure 1.4) in order to determine which session is the next one allowed to pass
a given label. The requests are of course placed in queues, so that a session
issuing a wait on a given label always is guaranteed to be allowed to continue
before any other sessions doing the same thing, only later.

LAST

. A—

TOKEN RING

I

LABEL QUEUES

Figure 1.4: The Token Ring.

We shall say that a queue L is enabled if and only if a label L can be passed
without the requirements being violated.

The token ring is there to ensure that no non-empty enabled queues are
inspected more often than others. To this end, the controller will perpetually
circle all the queues looking for ones that are non-empty and enabled. Whenever
such a queue L is found, the affected session is awaken and given the message
that it has been granted permission to pass the label L. We shall say that the
controller has taken the label L.

The token ring will remember which queue was last taken, so the controller
can start its circling of the queues with the queue immediately following the one
last serviced. When the controller has done one full circle of the queues without
taking any labels, it will go to sleep until new requests arrive (continued circling
would not amount to anything).

Example—A Critical Region

A critical region can easily be protected by sticking two wait statements around
it as in example 1.5. This of course assumes that the control logic somehow
guarantees mutual exclusion between the two labels (enterR and exitR).

session S() {

wait enterR;
/* critical region */
wait exitR;

Figure 1.5: A critical region.

1.2.2 Generalizing Wait

The short wait will suffice for many cases. Sometimes, however, it would be
nice with something a bit more expressive. Imagine a scenario containing two
resources that are of equal importance (in the sense that none is preferred over
the other) and require exclusive access. This could of course be achieved by a
few global variables and critical regions. However, if we were to permit a session
to branch on the state of the controller, by letting it wait on a number of labels,
we could implement the imagined scenario quite elegantly (see Figure 1.6).

Exactly where execution resumes now depends on the controller that re-
sponds by telling the session which label was passed. The execution thus re-
sumes at the appropriate point. This syntax was chosen because it is reminiscent
of a switch in the language C.

Having added the possibility of specifying several labels in a wait statement,
the simple strategy of placing the sessions in queues no longer suffices—we need
something more. We must be able to atomically remove a session from all of
its queues, when the controller takes one of its labels allowing it to continue.
In order to accommodate this need, we have linked all the entries derived from
the same wait statement into something we shall call a wait chain. This way
the controller can follow the wait chain and remove all entries associated with
a given session. Such a link can be seen in Figure 1.7 where the session Sg
apparently is waiting for one of the labels Ly and L3 to be taken (the timeout
element in the wait chain will be explained below).

As one can observe in Figure 1.8, the short wait is merely a special case of
the more general wait. Still, it is nice to have the short wait as a shorthand.

10

session S() {

wait {

case enterRy:
/* critical regiony */
wait exitRq;
break;

case enterR,:
/* critical regiong */
wait exitRs;
break;

Figure 1.6: Two critical resources.

Ll‘

T
s
L3,——”/ TIMEOUT

LABEL QUEUES QUEUE

CONTROL LOGIC

Figure 1.7: The controller (with a wait chain).

Figure 1.8: Short wait in terms of the general wait.

11

1.2.3 Timeout

As an additional feature, we have included a timeout branch in the wait state-
ment. This gives the service programmer the possibility of timing out during
a wait which would otherwise not be possible. The expression associated with
the branch is required to be an integer that will specify a time bound in seconds.
The semantics of a wait statement with a timeout branch is the following. If
the session cannot be granted permission to pass any of the labels in the wait
statement within the given time bound, the session will be informed by the
controller that a timeout occurred. At this point, the session will continue by
executing the statement associated with the timeout branch.

In Figure 1.9, the session will wait for permission to pass the label L in which
case the statement S will be executed. If permission is not granted within 7
seconds, the controller will remove the wait-chain, awake the waiting session
and inform it that a timeout has occured. The session will thus cease waiting
and execute the corresponding timeout statement S'.

wait {
case L: S;
break;
timeout 7: S’;

break;

Figure 1.9: Timeout example.

Seconds were chosen as the time unit here because it did not seem sensible to
tighten the precision. This is because of the delay associated with the shipping
of the respons over the network. The time bound should not be relied upon for
high-precision tasks, as it might be the case that the controller is busy circling
the queues at the precise moment when the time has gone. Rather, one should
think of it as if the controller had the right to timeout a session at any point in
time after T seconds after having received and processed the wait request. And
indeed it will, only perhaps not precisely 7 seconds later.

A timeout branch will also give rise to an entry in the wait chain—the entry
is placed in a special timeout queue (see Figure 1.7). The timeout queue has a
tree-like form from the fact that it is implemented using a tree-based priority
queue.

It will not make sense to specify more than one timeout branch because the
one with the lowest time bound will deterministically always win. Thus we shall
enforce that there be only one such.

12

1.2.4 Dead

A wait statement is said to be dead, when none of the involved labels can ever
be taken by the controller. The idea with the dead feature is to allow a waiting
service to act accordingly when or if the controller discovers that it is in fact
dead. Unfortunately, as shown in Section 1.9 this is in general undecidable.

A dead branch in a wait statement also containing a timeout branch will
have no effect whatsoever because the timeout would always eventually occur.
To this end, we will not permit the two branches to appear in the same wait
statement. In fact, to enhance readability we require that any dead or timeout
branch be specified as the last branch in a wait statement.

1.3 SyCoLogic

In this section we shall turn our attention towards the safety requirements and
look inside the black box—the control logic.

We shall place three demands on the safety requirements. They should be ro-
bust, succint, and specified in an intuitive notation. In other words, they should
be easy to formulate as well as modify. Therefore, logic seems as the natural
basis for the specification language. First of all, logic is in its nature much closer
to the language in which informal requirements are written. Furthermore, it is
very easy to add, remove and change parts of a logic-based specification as op-
posed to specifications in terms of automata—the latter being highly sensitive to
even minor changes. Almost the same arguments applies to regular expressions.
Furthermore, logic is in general much more succint than automata or regular
expressions.

Because of this, we have based the specifications on second-order monadic
logic for strings (a.k.a. M2L-Str). This choice is further motivated by the exis-
tence of a very well functioning tool called MONA (see the project homepage:
http://www.brics.dk/mona/) for compiling M2L-Str formulas into minimal de-
terministic finite automata.

M2L-Str is very expressive and succint logic. However, there exists formu-
las, ¢, for which the corresponding MDFA (minimal-state deterministic finite
automaton), Ay, is of non-elementary size. That is, if ¢ is of size n, then the

2
corresponding automaton A4 can be of size 2 }n

This is of course, seen from a complexity point of view, very bad news. But
seen from the point of view of language design, though, it is useful to have such
a succinct logic as the basis of ones specification language. A succinct logic will
simply imply shorter specifications that are easier to write.

Given such a safety requirement, ¢, and a sequence of labels w € ¥*, the
formula ¢ will either evaluate to true or false when interpreted over w. The
former case is denoted by w [¢, the latter by w [~ ¢. In this way, the formula ¢
induces a language, namely the set of sequences of labels for which the formula
is true, that is,

13

L(¢) ={weX |wk ¢}

Using the MONA tool, such a formula ¢ is now turned into the unique corre-
sponding MDFA Aj.

We shall characterize an automaton A by a five tuple (Q, %, ¢, —, F'), where
Q is a finite set of states, ¥ is a finite set of labels, § € @ is the initial state,
—C @ x ¥ x @ is a transition relation (or transition function from @ x ¥ to
@, if A is deterministic), and F' C @ is the set of acceptance states (a.k.a. final
states).

By this convention, the automaton above A4 can be specified as (Qy, Xy,
s> —¢, F. dJ)-

We define the relation ~»C Qx X*x @ (abbreviated as g ~ ¢’ for (¢,w, ¢') €~)
inductively in terms of — by:

g~ q
g~ q iff 30" €Q,0eT gD ¢ NG S ¢ Aw=ou

The language associated with the automaton can now be defined by:

L(Ay) = {w € 3*3qp € Fy : G ~¢ 4o}

MONA guarantees that L(¢) = L(Ay). It is this automaton that will be used
as a controller to restrict the execution of the service. It has the property that
a sequence of labels w € ¥*, is accepted by A, (w € L(Ay), if and only if it
satisfies the safety requirement ¢ (that is, w = ¢).

1.3.1 Restricting Execution

With the introduction of labeled points in the service code, each service run
will give rise to a (finite or infinite) sequence of labels. Namely, the sequence of
labels the service passed during execution. It is exactly this sequence that will
be restricted through our use of safety requirements.

A service S can be perceived as an infinite state automaton As = (Qs, s,
ds, —s, Fs = Qg). The transition relation —g corresponds to passing labels
during execution. Note that this automaton is neither guaranteed to be finite
nor deterministic.

Assuming that ¥g = ¥4 (in the following referred to as), we can define
the product automaton Ag x As as (Qs X Q¢, X, (4s,Ge), = Sxe, Fs x Fg). The
transition relation is defined compositionally as:

(@5,96) = (dh,0) © a5 D5 @i Ny 2 d

From this we obtain:

14

Yw e ¥* :wEL(ASXA¢)<:>wEL(A5)/\wEL(A¢)

In other words L(Ags x Ay) = L(Ag) N L(A4). Again, this product automaton
might not be finite (if Ag is not). If w is accepted by the product automaton,
then w specifies an execution of the service S (w € L(Ag)) and furthermore an
execution that does not violate the safety requirement ¢ (w |= ¢). Thus, the
product automaton has exactly the behavior we want our system to have.

Of course, we simply cannot run a service and then when (or rather if) it
finishes, decide whether it was a wvalid execution or not—depending on whether
the automaton ended up in an accept or reject state. Also, we want the require-
ments to always be satisfied. Therefore, we want to run the finite automaton A4
induced from the requirements along side the service, while taking transitions
corresponding to passing labels. Since we do not want to violate the safety re-
quirements at any point, we require that we never reach a non-acceptance state
in the automaton Ag.

Now, all we need to do is make sure that:

e the service asks the control automaton for permission each time it desires
to pass a label; and

e the control automaton only grants permission to pass labels, whose corre-
sponding transition does not take us to a reject state.

In this way, the requirement, ¢ cannot be violated at any point in time.

1.3.2 Prefix Closing ¢

We prefix close all formulas, because it does not make sense to restrict a service
by a formula that is not prefix closed. Hence, the formula 3¢ : L(t), has no effect
whatsoever, since it will be prefix closed and thus valid on all strings.

The prefixing of formulas is easily done on automata level. A prefix closed
minimalized automaton has at most one reject state. Taking advantage of this
fact, we only need to define the transitions that take us to acceptance states
and in this way assume that all the rest will take us to the reject state. Behold
the automaton Ma s = ({¢.¢',4"}, {4,B},q,{(¢,4,4¢"), (¢,B,q), (¢',A,q¢"),
(¢',B,q), (¢",4,4"), (¢",B,q")}, {q,q'}) depicted in Figure 1.10.

Using an implicit reject state it can be shortened to the automaton ({q,q'},
{4, B},¢,{(0: A, @), (¢, B,a), (¢', B,a)}, {a, ¢'}) illustrated in Figure 1.11. Since
all the states shown are acceptance states, we shall omit the double circles.

Henceforth, we shall depict automata with implicit reject state.

1.3.3 SyCoLogic Syntax
Here is the syntax for the SyCoLogic (Synthesis of Controller) language.

15

Figure 1.11: The MDFA M4 p with implicit reject-state

constraint

constraintbody _list
constraintbody

label

trigger
trigexp

formula

where o €

==_1
5 -

constraint {constraintbody list }
constraintbody™

label

trigger

formula ;

label id_list ;

label priority id_list ;
trigger id when trigexp == trigexp ;
trigexp + trigexp
trigexp — trigexp

+ trigexp

— trigexp

intconst

#id

true

false

id o id

id (id)

(formula)

! formula

formula e formula
all id : formula

is id : formula
restrict formula by id

,<,>,<=,>=}and e € {&&, ||,=>,<=>}

16

As can be seen, constraints are comprised of labels, formulas, and triggers. The
first is used to declare the labels to be used in the previously explained wait
statements. The formulas are basically standard monadic second-order logic but
with a single nonstandard construct, restrict-by, that will be explained below.
The triggers present a way of taking us beyond the boundaries of regularity
otherwise imposed by the logic of the formulas, as will be explained later.

It is possible to specify several formulas in one constraint, however it has
the exact same effect as if they were specified individually. That is, the re-
quirements “constraint { ¢; ¢'; }” and “constraint { ¢ } constraint { ¢'; }”
mean the exact same thing, and will both ultimately be taken as: “prefix(¢) A
prefix(¢')”.

Actually, we only use monadic first-order logic simply because we have not
found any examples that needs the second-order sets. However, there is abso-
lutely no reason why we cannot incorporate second-order constructs into SyCo-
Logic.

There are a couple of reasons why labels are explicitly declared and not
just inferred. Due to the existence of the priority concept, we need to specify
which labels have priority (and which not). Also, we have trigger-labels that
definitely need declaration. Finally, the rest of the <bigwig>language is a
C-like declarative language, so it thus respects the overall look-and-feel.

One may be surprised to find that we have not included predicates. The
reason being, as previously hinted, that we have a full scale macro language
built on top of the syntax that will serve these needs.

When several formulas are specified, they must of course all be satisfied.
Thus,

Example—a formula restricting a label

Consider the following formula, specifying that there must be a B between any
two A’s—yielding mutually exclusive access between A and B (see Figure 1.12).

Vi t" bt <t" NAG)NAR") = (3 it <t <t" AB(t))

In SyCoLogic, the formula will be specified as in Figure 1.12.

all 0:
all t2:
t0<t2 && A(t0) && A(t2) =>
(is t1:
t0<t1<t2 && B(t1))

Figure 1.12: A formula—mutex(A,B)

17

1.4 SyCoLogic Semantics

All constructs have straightforward mathematical semantics, save one, restrict-
by. The semantics is defined relative to an environment E : Id < N (or
Id — N), that holds the values of all free time-variables (a.k.a. position-
variables) that will specify positions in the sequence of labels (or string) w € X*.
The string w will also be perceived as a function w : N — ¥ mapping each
position to the label at that position in the string.

Also, we shall define the relation |=C ((Id < N) x (N < ¥) x formula).
(E,w,) € E will be abbreviated as E =, [#]. Also, we shall write w |= ¢ for
1g o [¢], where Lg is the empty environment.

Before we proceed with the definition of |=, we need to present a notational
convention. If f : D — E is a function, and dy and ey members of D and F,
respectively, then we define f[dy — €] to be:

f[dg — 60](d) =

€0 ,if d= do
f(d) ,otherwise

We are now ready to specify the relation =. It will be defined by structural
induction in terms of the syntax of ¢.

E |=, [true] iff true

E =, [false] iff false

EE, [t==1] iff E(t)=E({)
ERE,t!'=1] iff E(t) #E(t)

E =, [t>=1t] iff E(t) > E(t')

E =, [t<=1t] iff E(t) < E(t)

E =, [t>1] iff E(t) > E(t)

E =, [t<t] iff E(t) < E(t)

E =, [L(1)] iff wE(l)] =L

E . [(9)] iff E =, [¢]

E ., [9] iff —Ek, [¢]
El,[o&& ¢l iff El=, []NE |, [¢]
El. ol 41 iff El=, [9]VEF.[¢]

EE,[p=>¢] iff
E=, [¢ <=>¢'] iff
El=,[allt:¢] iff
E k. [ist: ¢] iff

El=. 9l = E o 91
Bl [¢] & E R [9]
VneN:n <|w| = E[t = n] =, [¢]
IneN:n<|wAE[t—n] E, [¢]

1.4.1 Restrict-by

In this section, we shall take SyCoLogic™ to mean the language specified by the
syntactic category formula above and SyCoLogic to be the same but without
the restrict — by construct.

18

The formula “restrict ¢ by ¢’ means that the formula ¢ is restricted in
such a way that time-variables introduced through quantifiers are allowed only
to specify positions in the string before the time (or position) t.

Instead of directly specifying the semantics of the restrict — by construct,
we shall exhibit a translation function that can be applied to a formula in order
to desugar this construct. We define [-] : SyCoLogic™ — SyCoLogic as follows:

[true] = true
[false] = false
[Lol] = Torl
[Z(1")] = I(I)

[C¢)]
[! 4]

([o])
Lol

[¢ '] = [¢lel¢]
[all ¢ :] = allt:[d]
[ist: ¢] = ist:[¢]
[restrict true by 7] = true
[restrict false by 7] = false
[restrict I o I' by 7] = Torl
[restrict I(I') by 7] = I(I)

[restrict ! ¢ by 7]
[restrict (¢) by 7]

! [restrict ¢ by 7]
([restrict ¢ by 7])

[restrict ¢ o ¢ by 7] = [restrict ¢ by 7] e [restrict ¢' by 7]
[restrict all t: ¢ by 7] = allt: t<7 => ([restrict ¢ by 7])
[restrict is ¢t : ¢ by 7] = ist: t <7 && ([restrict ¢ by 7])
[restrict restrict ¢' by 7 by 7] = [restrict [restrict ¢' by 7'] by 7]

The reason why we have included this construct in the language will be clarified
below.

1.4.2 Forbid/Allow

Often, a service programmer needs to prohibit a label, L, whenever a formula,
¢, is true on the sequence of labels, w seen thus far (that is, w |= ¢). To this
end, we want to provide an intuitive syntax like:

forbid L when ¢
Exactly this can easily be achieved through the restrict-by construct. We
shall define the forbid-when construct in terms of another useful construct,

allow-when (with the obvious semantics), that is in turn defined in terms of
the restrict-by construct.

allow L when ¢ := all now : L(now) => restrict ¢ by now
forbid L when ¢ := allow L when (!¢)

19

Notice that all formulas obtained from using allow and forbid at the outermost
level are automatically prefix closed.

The reason why we have not included these in the language, is because they
can be defined in terms of the rest of the language using our generalized macro
concept (see Section 3.2.1).

Of course, we could also have chosen these two over restrict-by. This choice
is partly motivated by the fact that restrict-by has an obvious self-contained
semantics and partly by our overall design approach. By this we mean, that we
only include the basic building blocks (or primitives) in our core language and
then build everything else up in terms of these.

Using, the forbid-when construction, one can easily define mutex (see Fig-
ure 1.13) in a very intuitive manner:

forbid A when
is t: A(t) &&

(all tt: t<tt => !B(tt));

Figure 1.13: mutex(A,B) in terms of forbid-when.

As can be seen below, the definition here corresponds exactly to the one previ-
ously given (see Figure 1.12).

forbid A when 3t : A(t) A (V' : ¢t < t' => —B(t"))

Vit A(t") = —[restrict (3t : A(t) A (V' 1t <t = ~B(t'))) by t"]
V' AR = -3t <" ANAR) AV it <t = (<t = -B(t))]
V' AR = Ve < ANAQR) V(3 it <t A(E <t AB(H)))]
V' AR = Ve <t"ANA®R) = (Tt <t A(E <t AB(H)))]
VEA" St <" AAR) AART) = (3t t <t <" AB(t'))

mutex(A, B)

1.5 Beyond Regularity—Triggers

Let us for a moment consider the reader/writer-problem (bounded by the fol-
lowing constraints):

e At any given time there must be at most one thread writing.
e While there are threads reading there must not be any threads writing.

e While there are threads writing there must not be any threads reading.

Writers have priority over readers (that is, if a request for permission to
write is given, no new readers are allowed).

20

For reasons of simplicity, we shall ignore the last point in the following. The
full-scale problem will be treated in Section 3.2.4.

Unfortunately, this cannot be expressed in M2L-Str since we would have to
somehow remember the unbounded number of readers at any given moment.
The positions at which there are no readers in progress are exactly those where
the number of enterR and exitR labels occurring before that position are the
same. This is non-regular in the same way as the language {a™" | n > 0}
and therefore cannot be expressed in M2L-Str. We can of course constrain
the problem to any fixed maximum number of readers (N) corresponding to
{a"b™ | N > n > 0} which is indeed a regular language (it is finite) and hence
expressible in M 2L-Str.

In order to overcome this hurdle, we have invented a notion of triggers,
that will take us beyond regularity.

1.5.1 Triggers

Triggers are constructs that need to be explicitly declared. The following dec-
laration...

trigger noR when +# enterR == # exitR ;

...will give us a label (in this case noR) that will “fire” (that is, the edge labeled
noR will be taken in the resulting automaton) exactly once each time the equa-
tion becomes true. In the above case, noR will fire each time the number of
enterR and exitR labels goes from being unequal to equal.

Each trigger T" will give rise to a counter yr in the control logic. This
counter, will increase and decrease with the firing of labels in such a manner
that it is zero precisely when the expression specified in the trigger is satisfied.
When this happens, the counter label will itself fire.

We shall restrict the triggers in such a way that each label appears at most
once in each trigger, otherwise a trigger could pass the zero value without firing.
Counters can thus be represented as a four tuple, the first constituent is the name
of the trigger label, the second and third constituents are the sets of labels that
when firing will cause the value of the counter to increase respectively decrease
by one. The last constituent is an integer, namely the initial value of the counter.

(7)’7inc;7dec;7init) el x P(E) X 7)(2) X 7, where Yine N Ydee = 0.

We shall say that a label is in positive or negative position in the trigger
(trigger T when te == te') when it is in the set pos(te) Uneg(te’) or neg(te) U
pos(te'), respectively. The functions will be defined below. The set of labels
in positive position are those that increase the trigger. Similarly, the negative
position labels are those that decrease the counter.

The functions pos,neg : trigexp — P(X) and init : trigexp — Z used are
defined in the following:

21

pos(te + te') = pos(te) U pos(te') mneg(te + te') = neg(te) U neg(te')
pos(te — te') = pos(te) Uneg(te') mneg(te — te') = neg(te) U pos(te')
pos(+te) = pos(te) neg(+te) = neg(te)

pos(—te) = neg(te) neg(—te) = pos(te)

pos(#L) = {L} neg(#1) =

pos(n) = neg(n) = @

init(te + te) = init(te) + init(te')
init(te — te) = init(te) — init(te')

(

(
init(+te) = init(te')
init(—te) = —zmt(e')
init(#L)
init(n) =

The four tuple we shall use given a trigger T (trigger T when te == t¢') is:

yr = (T,pos(te) Uneg(te'),neg(te) U pos(te'),init(te) — init(te'))

Since pos(te) = neg(—te), we get that:

yr = (T, pos(te — te'), neg(te — te'), init(te — te'))

This counter has the property that the trigger is zero precisely when is trigger-
expression is satisfied (proof omitted).

The trigger in the above example can thus be specified by the four-tuple:
Yok = (noR, {enterR}, {exitR},0).

We shall use a relation - C trigexpx (P(X) xP(X) x Z) in order to determine
whether we have a valid trigger or not. We shall write (te, (Yine, Ydec, Yinit)) € b
as Fte: ('Yinc;’ydecaryinit)-

A trigger
trigger T when te == te'
is said to be wvalid if and only if
Fte—te' ;v
The relation F is defined by structural induction on the syntax of ¢rigexp.
Yine N Vine =0

,if and
Ydec N ’Y;ec = @

Fte 1 (Yine, Vdec Vinit) Fie: ('7z"nc"7£tec"yz"nit)
Fte+te' : (Yine U Yines Ydee U Viees Yinit + Vinit)

22

0

'Yinc N ’Y;ec
,if and

Ydec N ’Y;nc = w

Fte: (Yine, Vdee, Vinit) Rk (’Yz{ncv ’Y;ec’ 'Yz{nit)
I_ te — tel : (fy"'-c U fyélec”ydec U ’Yz{nw Yinit — ’Yinzt)

Fte: (’Yinca Ydec, ’anzt)
E +ie: (7inca Vdec 7znzt)

Hte: (’Yinca Vdec 7znzt)
F—te: (’ydecfyinca _’Yant)

F#L:({L},0,0)

Fn:00n)

The above can easily be applied to check whether a trigger is valid or not.
Actually, we have that (proof omitted):

Yine = pos(te —te') A
Fte —te' : (Yines Ydec, Vinit) < Vaee = neg(te — te') A
Yinit = init(te — te')
A Trigger Example—Reader/Writer
The reader/writer mentioned above can now be easily solved by using a trigger
noR to determine when there are readers in progress.
SyCoAnalysis

As can be seen in Figure 1.14, the triggers can be included in formulas in order
to restrict labels. Of course, this also gives the programmer the possibility
of restricting the triggers themselves. It is not clear what effect a trigger T,
restricted by the formula V¢ : =T'(t), should have when it fires. We list three
obvious possibilities here:

e T will simply not “fire”.
e T fires, causing the automaton to enter the reject state.

e Runtime error!

23

constraint {
label enterR, exitR, enterW, exitW;

mutex(enterW, exitW);
trigger noR when #enterR == #exitR;
allow enterWW when (all t: lenterR(t)) ||
(is t: noR(t) && (all tt: t<tt => lenterR(tt)));
forbid enterR when (is t: enterW(t)) &&
(all tt: t<tt => lexitW(tt));

}

session reader() {
wait enterR;
/* reading ... */
wait exitR;

}

session writer() {
wait enterW;
/* writing ... */
wait exitW;

}

Figure 1.14: The Reader/Writer Problem (without priorities).

24

Choosing the first would render the entire trigger concept highly unreliable, as
they would simply not fire when they in fact were supposed to, causing them
to behave in a rather unexpected manner. After the automaton has entered the
reject state as in the second case, no label is ever enabled—driving the system
to a grinding halt. For these reasons, we have chosen the third.

Of course, this choice is made in the absence of an analysis guaranteeing that
triggers are never restricted. Whether a trigger is disabled or not can easily be
seen by inspecting the automaton. It simply amounts to determining whether
there are transitions labeled with a trigger label going to the reject state. If this
is the case, the compiler should issue an error.

Triggers are in nature uncontrollable (as in [3])—meaning that they should
occur without the service programmer being able to influence it.

1.5.2 Formalizing Counter Automata

A counter automaton is a six-tuple (Q, go, X, F, C, —), where:

e () is a finite set of states;

® ¢y € @ is the initial state;

¥ is a finite set of labels (or input symbols);

F C @ is the set of acceptance states (or final states);

C is a finite set of counters: I' x P(X) x P(X) x Z, where I is the set of
all counter names; and

e 5C(QXT—>Z)xP)x(BUl)xQx (' > Z)xP(T))is a transition
relation.

For ordinary finite-state automata, the concept of state is entirely modeled
by the elements of (). However, we need to also incorporate the values of all
counters into the notion of state. This could be described as an element in
I' —» Z, that is, a function that for each counter gives the value. Finally, we also
need to know something about which of the counters that are to fire actually
have, which calls for a third element in our notion of state.

The initial state is (go,So,0) € (Q x (I' = Z),P(T")), where:

v(')/;’yinca')/deca')/init) € C: SO('Y) = Yinit

No counter may have a label both in its increase and decrease set, that is:

V(% 7inc>'7dec>'7init) S C: Yine N Ydee = 0

25

As usual, we shall abbreviate the transition relation (g, S, Z,0,¢',S',Z") as
(¢,5,72) % (¢',S',Z"). Also, we shall constrain the relation so that:

(0,8,2) % (¢',S',Z") , where 0 € ¥ implies

Z =0 and

nn

(v)+1 ,if 0 € Yine
v(’ya')/inc”)/dec:’yinit) € C: SI(’Y) = S(’Y) -1 7if (S Ydec and
S(7) ,otherwise

Z' = {7 | (%, Yines Vdees Vinit) € C = S'(7) = 0A S(y) # S'(7)}

The requirement that Z be empty will ensure that no label transitions are taken
when there are counters that are to fire. The next requirement will make sure
that the appropriate counters are updated according to the definition of the
counter. The last requirement will make sure that Z’ will contain the counters
that become zero.

(¢,5,7) 5 (¢',S",Z') , where y € T implies Z' = Z\ {7} and S =5

This requirement is to make sure that all counters that are to fire actually will,
one by one. Notice, that the sequence in which the counters fire is unspecified,
as in our system.

That no counters are restricted can also be formulated as a static requirement
on the transition relation:

VgeF, Se(l - 2Z), ZeP(): Vye Z:
I/ €F, S'e (T =7Z), ZecPD): (¢,52) 5 (¢,5", 2"

1.5.3 A Counter Example

As an example of a counter automaton, we have taken the R/W example (with-
out writer priority) from Figure 1.14. The resulting control logic, that comprises
an automaton and a set of counters, can be seen in the Figures 1.15 and 1.16.
Note that we have in both figures shortened the label names from noR, enterR,
exitR, enterW, and exitW, to v, R, R" W, and W', respectively. Figure 1.15
shows the “big” automaton obtained as the conjunction of all (three) (individ-
ually prefixed) formulas. In order to avoid the state explosion problem, we
actually use FDFAs (factorized deterministic finite-state automata) or rather
factorized counter automata as our control logic (as proposed in [4]). Each
formula will give rise to a factor in the FDFA. Figure 1.16 shows the three
counter automata factors, which are equivalent to the product automaton. The
advantage of using FDFAs is remarkable. For instance, n independent mutex
constraints would yield a product automaton with 2™ + 1 states, whereas the
factorized ones make do with 3n states. Both of the control logics display a
scenario where there are two readers in progress, as can be seen from the value

(1))

of the counter and the current states of the automata marked by “x”.

26

counters : {(v,{R},{R'},0)}

value(y) =

Figure 1.15: The product counter automaton from R/W

v,R,R",\W' ~,R,R' by

v, R',\W,W' R,R' W'

oEC oM

v,R,R"\W' ~,R W

counters : {(v, {R},{R'},0)}
value(y) =

Figure 1.16: The factorized counter automata from R/W

27

1.5.4 Ensure—Another way beyond regularity

We have also considered another concept taking us beyond regularity which
we have dubbed anonymous counters (or counter constraints). An anonymous
counter must be declared so:

ensure trigerp o trigexrp ;

Unlike the triggers above, the anonymous counters are not integrated into the
formulas. Instead they silently ensure that the associated expression is never
violated.

However, the expressibility associated with these counters is strictly con-
tained in that of the triggers.

Given such an anonymous counter, (ensure te o te'), one can construct a
corresponding trigger, (trigger T when te == te’) and some formula that will
simulate the counter precisely (that is, have the exact same behavior). This will
be briefly sketched in the following.

The idea is (when o is ">=") to forbid those labels that may want to decrease
the corresponding counter whenever the counter has fired signaling that it has
reached zero and none of the labels that increment has fired (causing the counter
to have a positive value) since. If the counter is initially zero, one also has to
forbid the decreasing labels when there has never been any that causes it to
increase.

See Figure 1.17 for an example of anonymous counter simulation.

ensure #A - #B >= #C - #D ;
trigger T when #A - #B == #C - #D ;

forbid B when (all t: !(A(t) || D(t))) ||
(is t: T(t) && (all t': t<t’ => I(A(t) || D(t))));

forbid C when (all t: I(A(t) || D(t))) ||
(ist: T(t) && (all t': t<t’ => I(A(t) || D(t))));

Figure 1.17: An anonymous counter simulated by a trigger and two formulas.

The rest of the cases can be handled in terms of “>=" (see Figure 1.18)—
provided we ignore those ensure that have initially violated expressions.

Because the original triggers were integrated in the formulas unlike the
anonymous counters, there are certain requirements that are easily expressible
with the triggers and impossible with ensure. An example of this could be if
one wanted to forbid a label after the second time a trigger fired.

28

ensure te == te'; := ensure te >= te'; ensure te' >= te;

ensure te |= te'; := ensure te >= te'+1; ensure te' >= te + 1;
ensure te <=1te'; := ensure te’ >= te;

ensure te > te'; = ensure te >=te' + 1;

ensure te < te’; = ensurete >=te + 1;

Figure 1.18: Ensure te o te’, for o € {==,! =, <=,>,<}

Because of this, we have chosen the trigger concept over ensure.

1.6 Negated Labels

Experiments have shown that it is very helpful to be able to react appropriately
when issuing a wait on a label that is not enabled. An example of this could
be if the service programmer wanted to use a resource (that required exclusive
access) only if it happened to be available. Meaning that he does not want to
wait for it to become available if it was not readily so.

One approach would be (as shown in Figure 1.19) to introduce a default-
branch in the waitbranch with the obvious semantics.

forbid L when ¢;

wait {
case L:
S
default:
S

Figure 1.19: Negated Labels - “default”

Of course, this can be achieved through explicit programming. It amounts
to, for each restriction of the given label, to explicitly add complementary con-
straints in such a way that this new label would be restricted when and only
when the original label was not (see Figure 1.20).

29

forbid L when ¢;

allow L, .y when ¢;

wait {
case L:
S
case Lpeg:

S

Figure 1.20: Negated Labels - up to the programmer

As can be seen, this is a rather tedious approach especially if there are
many such restricting formulas. Of course, all this could also be handled by the
compiler.

Yet another approach is to introduce the notion of a negated label, written
“IL”. The idea is that for all labels, L, there is a negated version, “!L”; that is
enabled precisely when L is not. When such a label is “taken” it has no effect
on the automaton (that is, the automaton will not change state).

The appealing factors concerning this solution compared with the first is
that it can be implemented in the controller preserving the scheduling model
and at almost no cost whatsoever. The problem with the first is that it is not
clear when the default branch should be scheduled. If scheduled by adding a
“default” queue to the token ring, we would have to check all other branches
in the wait every time the token reaches this queue in order to make sure that
none of them were enabled. Also, a wait statement, waiting for two labels to
become disabled cannot be readily expressed with the default concept. To this
end, we have included this negated label mechanism.

forbid L when ¢;

wait {
case L:

S
case IL:

s

Figure 1.21: Negated Labels - “IL”

30

1.7 Priority Labels

As a feature we have introduced one level of priority on labels. This will in the
controller give rise to another level of queues with their own private token ring
(as illustrated in Figure 1.22). The controller will every time the automaton
changes state (that is, when a label is taken) do one full circle of the priority
queues in order to guarantee that any such are taken before it resumes circling
the original token ring.

LASTp PRIORITY
O
- TOKEN
RING

G

PRIORITY LABEL QUEUES

LAST

_

TOKEN RING

J o0 .

LABEL QUEUES

Figure 1.22: Two token rings to implement priority.

We emphasize that the use of such labels is highly dangerous since it may
cause starvation of the labels that do not have priority.

1.8 Events

In this section we shall briefly consider the possibility of dealing with external
events in our system. These are basically labels but with the exception that
they occur in an uncontrollable fashion, much like the trigger labels, but based
on external factors, such as when the harddisk or the memory fills up, or when
the service coredumps, etc. The idea is that a service then could have special
sessions (event handlers) waiting on these labels, ready to react appropriately
(see Figure 1.23). However, this feature has not been implemented, nor fully
explored.

1.9 Dynamic Deadlock Detection (D?)

It would be useful to the service programmers if the system could somehow
inform a waiting session when it is blocked by a dead wait statement, thus
permitting the session to react appropriately.

Unfortunately this is not possible to compute in full generality. This can be
proved by a reduction argument showing that if this was somehow possible, we
would be able to solve the halting problem.

31

session S() {
wait HardDiskFull;
/* remove something... */

}

Figure 1.23: HardDiskFull event handling

1.9.1 The Halting Reduction

Below we have sketched a simple language with three syntactic categories; arith-
metic expressions, boolean expressions, and commands:

a == nlzla+a] —a
b = —lb1|b1/\b2|a120
u= xz:=a|if bthenc|e¢ ; ¢o|while bdo ¢

The language is clearly Turing equivalent, rendering the halting problem unde-
cidable (with respect to this language). The goal is now to show that if we could
decide precisely when a label is dead, then we could also solve the undecidable
halting problem. Logically, this corresponds to the following deduction rule:

Halting undecidable , solve D? = solve Halting
D? undecidable

Formally, for every program H (belonging to the command category) in the
above language, we construct an automaton such that a certain label, say , is
reachable (or live) if and only if the program H terminates:

H| < rlivein: [H]~~~O—"—0)

Here, [-] is the translation function that given a program produces a corre-
sponding automaton (in which 7 is assumed not to occur), and the state im-
mediately following [H] with a squiggled arrow signifies the acceptance state
in the automaton obtained from H. The term acceptance state is perhaps a
bit misleading, as it is only used to specify how automata are composed from
their immediate constituents, using structural induction. The acceptance state
in the automaton [H] is the non-acceptance state left to the acceptance state in
the diagram above. The squiggled arrow is thus used as a notation for combin-
ing automata. Incidently, the problem above equivalent to that of determining
whether the language associated with the above automaton recognizes anything.

A key idea in the translation [-] from programs to automata is that variables
and program state are modeled by the counter concept in our automata. Each
variable will give rise to a counter holding the value of the variable.

Each variable x in the program will give rise to a counter (v, {z*},{z™},0),
which we shall refer to by the same name (). For each such counter, we have

32

labels to increase (z7) and decrease (z7) it along with the counter label itself
(72) used when the counter fires (that is, when the counter becomes zero).

Furthermore, to simulate evaluation of arithmetic and boolean expressions,
each point (in AST sense) will also give rise to a counter. We shall implic-
itly label all points in the program. A program a; + as will be labeled as,
(a1’ 4+ ax*2)t. Each such label, ¢, will give rise to a counter (v,, {v},{v~},0).
The simulation of the evaluation of the arithmetics expression will assume that
its constituents have computed a;® and a2?2, the values of which reside in
the counters (7,,,{v;"}, {r; },0) and (v,,, {v5 }, {v; },0). Since we have while
loops and our automaton requires a finite number of counters, we need a mech-
anism to “reset” these counters (induced by the points in the program) in order
to be able to reuse them. We propose the following:

174

Yv

T

reset v

The only way through the automaton is when v becomes zero so that we take
the «, transition. In this way we can stick this automaton in whenever we need
to reset a counter.

We now proceed by structural induction, depicting the translation for each
of the three syntactic categories separately.

Arithmetic Expressions

In translating arithmetic expressions to automata, we maintain the following
invariant:

There is at least one way to the acceptance state,
and for all such ways, v will obtain the value of the
arithmetic expression. Furthermore, the state is pre-
served.

The first translation rule (for constant n) is simple:

ll+ y+ u+
reset VW M

n

!

33

We just increase/decrease the counter v n times depending on the sign of n.
The next rule for variables z is more demanding;:

rreset v~—~—vreset o

[2]

All this is needed to ensure that the value in the counter z is unaffected by
us inspecting its value. A counter, o, (associated with this automaton only)
remembers the value of z so that we are able to reconstruct the value before
finishing. The only way along the long arrow is =y,, in which case the original
value of the counter would have been reconstructed in the counters v and o.
The only way to the acceptance state is when the counter o fires, in which case
the value of the counter x would have been reconstructed. Basically, we just
copy the value of the counter z to v, using a “temporary” counter o.

The third rule is addition (a; + az). Since this is one of the inductive cases,
we assume that [a1] and [az] give us the automata corresponding to a; and
az with results in v and vs, respectively. We now need to combine these two
automata in a sensible way, reflecting the addition:

reset v~——~>[ai]

lax + a2

As always, we begin by resetting v after which the automaton corresponding to
ay is “run” yielding a value v;. This value is transfered to v. Finally, the second
automaton is run and the result is transfered to . When we reach the accept
state, v will clearly hold the sum of v; and v» as desired.

The final arithmetic case, —a, is straightforward and presents no new ideas:

34

reset v~——~>[ai]

[—ail

Boolean Expressions

As with the arithmetic expressions we have an invariant to maintain, this one
being:

There is at least one way to the acceptance state, and
for all such ways, v will obtain the value zero if the
boolean expression evaluates to false, and one if the
boolean expression evaluates to true. Furthermore,
the state is preserved.

We shall introduce a notational convention, that will shorten some of the au-
tomata:

The rule for negation (—b;) will give rise to the following automaton during the
translation process:

sreset v~—~~3[b1]

[=0:]

35

Initially v is reset and the automaton corresponding to b; is run, leaving the
result in ;. The invariant now guarantees that vy is either zero or one. If
it is zero, we need to produce a one in v since we are negating the boolean
expression, and vice versa. If the value of the counter v; was zero, the label
v, will be taken, as the counter v, will fire after which we increase the value
of the counter v, producing a one. This corresponds to the lower route in the
diagram above. If on the other hand, it was one, we can go to the acceptance
state taking the upper route (that will decrease it and let it fire).
The final two boolean rules, by A by and a; > 0, are presented below:

sreset v~—~—~3[b1]

[b1 A b2]

reset v~——~>[ai]

lar > 0]

Commands

The invariant for commands reads:

There is a way to the acceptance state if and only
if the command (program) halts. Furthermore, the
state of the automaton corresponds to the state of
the program.

36

Regarding assignment (z := a), we reset x, run the automaton induced by
a and transfer the result to the counter x, as done in the arithmetic case z:

reset z~~~>[a]

[z :=da]

The translations for the three remaining commands are portrayed below:

[if b then (]

Initially, we run the automaton resulting from the translation of the boolean
expression b. If this expression evaluates to false, the value of the counter v
will be zero and the counter will fire, causing us to take the transition labeled
Yo, , ignoring the automaton [c]. If on the other hand, the expression was true
(the value of the counter was one), we can take the downward route. This will
decrease the value of the counter by one, after which it will fire and takes us
to the automaton [c], that is “executed”. After execution, we end up in the
acceptance state displayed in the diagram.

>[[61]] M[CQH W\—)@

lei s el

Tv

[while b do]

37

Conclusion

Resulting from the invariant for commands we have that for any program H
(belonging to the syntactic category c):

H| < wrlivein: [H]~~~O—"—0)

Therefore, if we could determine precisely when a given label is dead, we could
solve the halting problem. This proves that the dynamic deadlock detection is
undecidable.

1.9.2 An Approximate Solution

As shown above, dynamic deadlock detection is undecidable. This does however
not mean that we cannot determine liveness at all. It simply states that in
general the problem is undecidable. Fortunately there are many cases, even
interesting ones, for which we actually can determine liveness in the above
sense.

If we did not have any counters, the deadlock detection would be trivial.
One could simply for each state color the graph induced by the automaton and
take the union of all labels occurring on the edges. By taking the complement,
one obtains the deadsets (that is, the set of labels that can never occur). This
calculation would be precise because if a label is unreachable from the current
state (that is, all instances of this label lead to the reject state), then the label
is dead.

The problem with the counters is that a counter may itself be dead (that
is, it can never reach zero—so that =y, never occurs). This might of course
render a part of the automaton inaccessible which will kill off the labels that
only occurred there. Again, these newly dead labels might kill off new counters
and so forth...

If we were able to precisely say when a counter is dead, we could compute
liveness precisely using the above scheme, disregarding all edges concerning
the counter. In other words this is the heart of our griefs—and incidently the
problem that is undecidable.

However, we can exploit the fact that if a counter at a given point is positive
and all the negative contribution labels associated with it are all dead, then
clearly the counter is dead. Similarly with the signs reversed.

We introduce the function D : Q — P(X), that for each state, ¢, gives the
set of labels that are dead at the state q.

(v >0Amneg(y) € D(q) V(v <0Apos(y) C D(q)) = v dead at q.

Here, neg(y) and pos(vy) give the sets of labels that decrease and increase the
value of the counter v. Notice that the implication is uni-directed, a biimplica-
tion would mean that we were able to solve D? precisely. It is from this fact
the word approximation stems.

38

Pre- vs. Re- Calculation

We are now presented with a choice. Either we could try to pre-calculate all
possibilities and simply look them up when they occur, or we could re-calculate
the dead sets every time a counter dies (having initially calculated the scenario
where all counters are live).

Pre-Calculation

Unfortunately, it is not generally the case that:

DSl (q) U DS2 (Q) = DS1U52 (Q)

where Dg : Q — P(£UC) is the D function above generalized to give for each
state q, the set of labels and counter labels that are dead as a direct consequence
of the set S of counters being dead. Therefore, we have to take all possibilities
of dead counters into account. That is, we cannot infer what is dead as a result
of two counters from what is dead as a result of the two, individually. The
following example will illustrate this:

~

OQ automaton

7

~

As can be seen in the example, the entire dot-framed automaton is live if one
(or none) of the two counters v and ' are dead, but not if both are.

This means that we have an exponential dependency on the number of
counters, in that we have to do O(2!¢!) individual pre-calculations, if C' is
the set of all counters. In fact, this can be perceived as a complete lattice
({Dsla)|SCCY, C):

Dy oy
[]

o e ..l.){”("f/ JDW}(q)
Dy(q)

39

Re-Calculation

The exponential factor, and the fact that during any run we will only take
one path from the base to the top (of the figure above) are strong arguments
against the pre-calculation scheme. Fortunately, it is possible to (re-)calculate
the deadsets in time ©(V + E). The algorithm below will do just that. This
is fast enough for supporting an incremental solution, where we have a process
running, for instance in parallel, recalculating the dead sets every once in a
while.

The Algorithm

Clearly, all nodes belonging to the same Strongly-Connected-Component (ab-
breviated SCC from now on) will have the same live and dead sets. For this
reason we can save time, by first calculating these components using the conven-
tional SCC-algorithm found in [5]. However, the algorithm has been strongly
adapted to our scenario. When we are done, we can calculate the local live set
of any component as the labels occurring on an edge going from a node in the
component. Now the live sets are readily computable as the local live set of the
component itself plus the local live sets of all the components reachable from it.

Because (GT)" = G and SCC(G) = SCC(GT), we can reverse the order of
G and GT in comparison to the traditional SCC-algorithm. That way we can
completely ignore the labels when calculating the transposed graph and when
performing the DFS. Also, the edges now have the right orientation so that the
local live sets can be easily collected during the coloring phase (step six below).

Let S be the set of dead counters at the current state, g. The algorithm
proceeds as follows:

O G :=G\ v -edges, Vy € S.
Color G starting at q.
G:=colored(G)—everything uncolored is clearly dead.

Compute GT, ignoring labels (that is, edge-annotations).

o 0o o O

Perform a depth first search DFS(GT) in order to calculate the finish-
ing times—which are the numbers obtained from a post-order depth-first
traversal of the graph.

O Color(G) in descending finishing times order. Every time a new node (the
one with the highest finishing time) is chosen, we add an entry in the
SCC-table. During the coloring from this node, all the labels encountered
are accumulated in a set (localliveset, that will later constitute the live
set for this SCC). As a color, we install a “backpointer” (the number of
the current SCC) and every time a node is colored, we add this node to a
set (Reachlist) holding all the member-nodes of the current SCC. Every
time an already colored node (with a color different from the current) is

40

encountered, we have reached an edge between this SCC and another. The
identity (number) of the target component is added to the Connected —to
set in the SCC-table. The three sets; Connected — to, the Reachlist and
the live set mentioned above are recorded in the SCC-table for the current
component. When we get stuck (we cannot color anymore), we chose a
new node as explained above and repeat the process. This is repeated
until everything is colored and we thereby have found all the SCC’s.

O Calculate the live sets from the local ones. This is done by running through
them in the order in which they appear in the SCC-table and taking the
union with all local live sets from all components in the Connected — to
set.

O Live sets are reversed to dead sets (by taking complement with respect to
L, the set of all labels).

The first three points will ensure that trivially unreachable parts of the graph
are disregarded. The steps four, five and six will find the strongly connected
components. Finally, steps six, seven and eight will extract the dead sets from
the information given by the SCC-analysis.

The algorithm is linear in the size of the graph ©(V + E), which is roughly
O(| L] |Q]), the number of labels times the number of states in the automaton.

This algorithm can if desired run incrementally as a parallel process in the
sense that it looks for dead counters and when one or more are found, it applies
the above algorithm to re-calculate the dead sets.

Example

Consider the following automaton, where the current state is A and v € S:

@—@/“.—@—@D

B

DD @D

Because v € S (that is, 7y is dead), the y-edge is removed according to step 1.
In step 3, the states X and Y get eliminated because the current state is A and
there are no paths from A to X or Y. In other words, the automaton will look
like this immediately after step 3:

41

@f“—@—@D b

X

DD G-

In step 4, we calculate the transposed automaton without annotations on the
edges, after which the automaton looks like this:

W S®—@—0D

0 e

In step five, we do a depth first search resulting in:

5/10 4/11 1/12 155
k_\

G @)
7/8 6/9 2/3 13/14

CamoliCa
The first number (before the slash) signifies the time we reach the node and
the second number is the finishing time for the node. As can be seen, we have
(arbitrarily) chosen C as the first node and when we could no longer color, we
(arbitrarily) chose H, and finally D
After we have completed step six, we will have a SCC-Table:

No. | Reachlist local live set | Connected-to
{D} {b,d} [

{H} {d} 0

{C,G} {c,d} {1,2}
{B,A[EF} | {a,c} {3}

Corresponding to the following SCC-division of the automaton:

=W No| =

4 3 1
%é@*@ﬂ &

HD G-

42

Finally, after the steps seven and eight, we will have the desired live and
dead sets:

No. | live set dead set
1| {b,d} {a,c}
2 [{d} {a,b,c}
3 | {b,c,d} {a}
4 | {ab,c,d} | 0

We have thus presented an incremental linear-time (in the size of the automaton)
algorithm for finding the sets of dead labels at each point in the automaton.
However, the algorithm only works on the product automata and does not
generalize to the factorized automata we use (as explained in Section 1.5.3).
Because of this, we do not use it.

1.10 Conclusion

We have seen how the introduction of labels in the service source code along
with safety requirements could produce along with the service, a controller that
ensured the requirements were never violated. Also, we introduced the notion of
triggers that allowed us to transgress the borders of regularity, in a way that was
highly compatible with the logic. All this allowed us to specify intuitively various
concurrency mechanisms, such as mutual exclusion and the more sophisticated
reader/writer problem. In Chapter 3, we shall see more examples of high level
concurrency mechanisms, implemented this way.

Unfortunately, our solution lacks a means for defining and preserving the
essence of such mechanisms, making them available as general concepts. As we
shall see in the Chapters 2 and 3, this problem has a very general solution.

43

Chapter 2

The Macro Language

2.1 Introduction

It is very often the case that a fragment of a program captures an abstraction
that has a self-contained meaning independent of the program as a whole. Such
a fragment will thus have a tendency of occurring in numerous programs and
often even several times in the same program, yet with slight variations that
depend on the immediate context.

It would be useful, if the programmer could somehow define such abstractions
in a manner that is flexible enough to permit certain parts of the abstraction
to be parameterized and then, for each occurrence in the program tailor this
unspecified part according to its context.

Of course, a language could readily contain a vast number of primitives (with
intuitive syntax). However, such a language, static in nature, could never even
hope to capture all desirable abstractions. A language designed with this view-
point would grow indefinitely constantly requiring revisions (and thus compiler
updates). An inflexible and costly affair.

However, another solution exists. We shall allow the programmer to dynam-
ically compose and preserve such abstractions, making them available to other
programs and programmers. This is reminiscent of a function library but with
extreme syntactic flexibility.

We shall distinguish between function style and primitive style syntax. We
will not give a concise definition here, but rather illustrate the differences
through an informal example. Consider the language C augmented with a
repeat-until construct (semantics, unspecified). A function style usage could
look something along the lines of: repeat until(z = z*xy;y =y —1;,y == 0);
whereas a primitive style usage might read: repeat {z = z xy; y = y —
1; } until (y == 0);. The second really has the look and feel of the C language,
with enforced braces, parentheses and semi-colon as statement terminator. En-
forced in the sense that it would be treated as an error if one were to omit
them.

44

Thus, the crucial difference here is one of syntax. Superficial some may
argue, but it does have the non-negligible advantage of making programmer
defined constructs appear as if they were part of the original language itself.
In other words, the difference is transparency—a recurring concept in computer
science. Additionally, the syntax may help convey the meaning of and reflect
the nature of the abstraction.

Of course, we do not get all the benefits of language primitives. Some
such may, for instance, require non-trivial demands on usage, to be determined
through analysis, that in turn would enable efficient implementation that would
not otherwise be possible.

We would like to build a framework that allows for such fragments to be
specified and used. To this end, we have dusted off an old, well-known and
widely used concept, namely macros. We present a macro language in which
the above is possible.

The macro language presented is currently hardwired into <bigwig>, but
the ideas of the macro language are completely general (that is, they are in no
respect specific to <bigwig>) and can be transferred to any modern program-
ming language. In fact, we seriously consider creating a tool MetaFront for
fast generation of compiler front-ends inherently supporting such macros.

2.1.1 Conception

The concept of macros is by no means a new invention. Webster defines the
adjective macro as “intended for use with relatively large quantities” and the
noun as “a single computer instruction that stands for a sequence of opera-
tions” (originating in 1959). This of course also applies to parameterized cases.
Macros quickly caught on and became an extremely widespread structuring and
information-hiding mechanism for low-level machine code languages. However,
with the improvement in compiler technology in the early 70s, and hence the
success and availability of numerous high-level languages, macros were confined
to a less prominent existence. Since then the notion of macros has been used
in many other contexts that really have nothing to do with text expansion, for
instance, keyboard macros.

Although a powerful syntactic abstraction mechanism, macros even today
remain but a second-rated feature of most modern high-level programming lan-
guages. This is mainly due to the many inherent inconveniences directly result-
ing, we claim, from their often lexical nature. We will attempt to lift the notion
of macros to operate on syntax rather than on sequences of characters or lexical
tokens.

Conceptually, our macros should be thought of as operators on parse trees
as illustrated in Figure 2.1. The figure nicely conveys the intuition behind our
macros. The white parts are written by the service programmer and the grey
part is written by the macro programmer.

45

PROGRAM MACRO DEFINITION PROGRAM

repeat Suntil (E)

repegt Suntil (E)

Figure 2.1: Macros—Operators on parse trees

2.1.2 Demands

We shall place several demands on our macro language and on the implemen-
tation.

As mentioned above, we want our macros to work on parse trees instead of
raw (ascii) texts. That is, we want them to operate on a syntactic level rather
than a lexical one, permitting only parse-consistent operations. Also, we want
them to be completely general in the sense that they should work on all the
non-terminals of the grammar. Additionally, they should constitute a closed
scope, alpha converting identifiers to ensure this.

We require that the macros be transparent so that they will not bother the
compiler writer. Finally, one must be able to invoke the macros through a syntax
flexible enough to permit the language to be transparently extended.

Regarding the implementation, we should be able to pretty print the code
both with and without macro expansion. Our second implementation demand is
that, the compiler should issue sensible error messages. By this we require that
any errors should be reported exactly where they occur—even if in the body
of a macro. Also, for all non-parse errors, one should get the complete trail
of macro invocations and arguments corresponding to the particular erroneous
program point so as to aid debugging.

2.1.3 Customization

Since the macros can embody an abstraction with a meaning in itself that can
be communicated through invocation, it could very well be the case that the
macro programmer is not the same person as the service programmer.

Also, one could imagine a library of domain specific macros that were tailored
for certain types of services. For instance, a macro library that was customized
for the development of web shopping sites, with shopping baskets, customers,

46

shelves, products and the like appearing as if they were part of the original
language.

2.2 A Brief Macro Survey

Most programming languages come with macros in some form or another. Macros
can be divided into two categories (lexical and syntactical) depending on the
level on with they operate.

2.2.1 Lexical Level Macros

The vast majority of macro languages operate purely on a lexical level. By this
we mean that they only support substitution of tokens with arbitrary sequences
of characters. The tokens may be parameterized, in which case the substi-
tution sequence may contain place-holders (or gaps) for the parameters, that
themselves are but arbitrary sequences of characters. The crucial point here is
that these macros have no knowledge of the syntax of the language whatsoever.
Conceptually they constitute a preprocessor, that is, a separate first step in
compilation, although rarely implemented as such for reasons of efficiency. In
the following section we will look at a few such macro languages. The C Macro
preprocessor is very representative here, in the sense that it has most of the
inconveniences inherent to this category of macros.

After this, we will briefly consider two more rather different macro languages
belonging to this category, namely the universal unix standard macro prepro-
cessor called m4 and the TEX macros.

The C Macro Preprocessor—Cpp

In (ansi) C’s macro preprocessor, Cpp, macros are declared as follows:

#define name replacement—text
#define name (arguments) replacement—text

Subsequent occurrences of the identifier specified as the name will be substituted
with the replacement-text. If the definition contained arguments (a comma
separated list of identifiers), the corresponding identifiers in the replacement-
text would be replaced with the arguments supplied upon invocation.

The macros are completely independent of the rest of the language which
has some counterintuitive effects (see Figure 2.2).

This program has three peculiarities, one for each macro. Since the substi-
tution is purely lexical, macro expansions may have surprising effects such as

the one in the figure (taken from [1]) where | square(y+1) | becomes | y+(1*y)+1

and not the expected | (y+1)*(y+1) | Similarly, the macro invocation of pos will

“steal” the following else (C resolves the ambiguous else by attaching it to the
closest previous if) causing, most likely, an unintended behavior. Additionally,

47

#£define square(x) x*x
#define pos(x) if (x<0) x=-x

#define swap(a,b) { int x; x=a; a=b; b=x; }

if (square(y+1)<x) pos(x);
else swap(x,y);

Figure 2.2: Peculiar C example

because the macro language is independent of scope, the substitution may cause
inadvertent identifier clashes as is the case with the invocation of the last of the
macros, swap. After execution of swap(x,y), x and y will not have been swapped,
as the programmer probably aimed for.

Notice finally that “swap(x,y);” has two statements—one compound state-
ment corresponding to the body of the macro swap and one empty statement
“.”. This does not pose any problems here, but imagine placing this somewhere
that expected only one statement, for instance in an if-else statement. This can
be “hacked”, by placing the compound statement in a do-while statement with
a constant false condition ensuring one and only one execution of the body.
Here, a final semi-colon would be allowed, terminating the do-while statement.
Unfortunately, the Cpp macro programmer needs to be aware of such pitfalls.

If the body of the macro contains syntax-errors, they will only be discovered
when the macro is invoked. Furthermore, such macro errors will be reported
as if they occurred at the calling point. Because of this, Cpp macros are quite
often very hard to debug. Of course, this is implementation specific.

Also, Cpp macros have restricted syntax as they can only be specified in
the usual function-like manner.

Cpp has a few control language constructs available at preprocessing-time
for doing conditional inclusion; #if, #ifdef and defined. Also, there is a
construct #undef that, not surprisingly, undefines a macro and can be used to
simulate local macro definitions.

The intricate details of how, when and in what sequence Cpp expands macro
calls are rather complex.

In contrast to C’s otherwise static scope rules, the scope rules for the macros
are dynamic. Consider Figure 2.3 with two macro definitions one of which is
defined in terms of the other that is subsequently redefined. A macro is available
from the point of definition and onward, lexically speaking. However, since Cpp
does not expand the body of a macro until the time of invocation, the call to
B will cause a new macro call (to A). The identity of A is determined in the
current environment and not the one at the point where B was defined. Hence

48

B expands into 42 and not 87. The arrows in the figure each represent one level
of expansion.

#define A 87
#define B A
#undef A

#define A 42

B - A — 42

Figure 2.3: Cpp has dynamic macro scope

Cpp has a controversial approach to recursive macros. As explained above,
the body of a macro is only treated at invocation time and the recursive case is
no different. No errors or warnings are signaled, instead, Cpp will keep track
of which macros are in the process of being expanded and ignore calls to such
macros. To this end, recursive and mutually recursive macros will get expanded
one level. For instance, x in Figure 2.4 would at runtime evaluate to 10.

int x =7;
#define x (3+x)

x = (3+x) = 10

Figure 2.4: Recursive macros in Cpp

Regarding the order of expansion for nested macro calls, we distinguish
between applicative order of reduction as opposed to normal order of reduc-
tion (henceforth abbreviated AOR and NOR, respectively). The two terms are
taken from the A-calculus, and are two ways of determining the sequence of
reductions in the calculus. Macro expansion is in many ways similar to beta-
reductions in the A-calculus. NOR will expand the outermost macro first,
yielding a call-by-value semantics, while AOR commences with the innermost
resulting in call-by-name.

However, Cpp uses none of the two schemes. When Cpp encounters a
macro call; it scans the arguments, while expanding any macro calls into the
body of the outermost call. Finally, the whole body of the outermost macro is
scanned (implying a rescan of any of the arguments) and any macro invocations
are expanded.

This is illustrated by the example in Figure 2.5, that when run produces
the error “macro ‘id’ used with too many (2) args”, corresponding to the

49

third expansion sequence in the figure.

F#define id(x) x
F#define one(x) id(x)
F#define two(x) a,b

one(two)
—a0r one(a,b)
—>AOR arity-error ‘one’!

one(two)
—n~Nor id(two)
—+NOR two
—NOR ab

one(two)
—2, id(a,b)
—¢ arity-error ‘id’!

Figure 2.5: The Order of Expansion in Cpp

The above can be exploited to piece together a macro call partly coming from
the body of a macro and partly from the actual arguments as in Figure 2.6.

##define succ(x) ((x)+1)
F£define call7(x) x(7)

call7(succ) — succ(7) — ((7)+1)

Figure 2.6: Piecing together a call

When expanding the macro call7, its argument, the sequence of characters
“succ”, is scanned, but since “succ” has no arguments (no parentheses) contrary
to the definition of the macro succ, Cpp does not treat is as a macro invocation.
Hereafter Cpp scans the text produced and will at this point discover a macro
call to succ and expand it.

M4—Unix Macro Preprocessor

The entire basis for m4 is highly different. M4 it is not tailored for any specific
language, rather it acts as a universal preprocessor, independent of the target

50

language. Originally though, m4 was the rational Fortran preprocessor called
“ratfor”. It bares quite a few similarities to the Cpp macros. M4 has some
thirty-odd built-in macros, some of which have side-effects, such as define used
for defining new macros (see Figure 2.7).

define('square’,‘'eval($1 * $1)’

square(3) — eval(3*3) — 9

Figure 2.7: A macro in m4: square

The macro define takes two arguments in parentheses, the first is the name,
while the second is the body. The arguments in the body are ciphers preceeded
by a dollar-sign and thus the number of arguments to a macro is implicitly
specified as the maximal such number mentioned in the body. Whenever a macro
is invoked with too many or too few arguments, they are assumed to be NULL
or ignored, respectively. The preprocessor distinguishes between plain text and
quoted text. Quoted text can be arbitrarily nested and will always evaluate to
the text within, stripping away the outermost quotes, without expanding any
macros. This supplies a simple way of delaying the expansion-time for macros.
Note for instance that the quotes around the invocation of the built-in macro
eval are essential and serve to delay the invocation until the arguments are
supplied. The result of a macro expansion is as in Cpp reread to expand any
new macro calls. This is exactly when the eval macro will be invoked. It
will evaluate its argument using 32-bit signed integer arithmetic, using C-like
arithmetic syntactic conventions.

The remaining built-in macros can be placed in one of the following cate-
gories:

e evaluation of simple arithmetic expressions;
e simple string operations;

e file inclusion;

e conditional branching;

e system calls;

e management of (multiple) output files;

e explicit stacking of macro definitions; and

e dumping various macro information.

51

Apart from the syntax of macro declarations, the overall result is more or less
the same as in Cpp, with the same shortcomings such as no alpha conversion
and restrictive invocation syntax. In the following we will mention the main
differences.

As opposed to Cpp, the macro scope in m4 is static and all macros, even
the ones in the body of others get expanded immediately. Hence a call to a
macro defined as B in Figure 2.3 in m4, would yield 87, as the body of B would
have been expanded into 87, literally.

Recursion is handled in a much more intuitive manner—m4 will simply
reject any such attempts, by issuing an error and abort compilation.

For further details on m4 we refer to the table in Section 2.2.3.

TEX Macros

TEX provides a somewhat different macro language. Here, one can define along
with the macro, the syntax of the call. It is then enforced that all invocations
comply with this particular syntax which is also used for matching arguments.
Macros are completely integrated with a full-scale interpreted compile-time lan-
guage that also guides processing. TEX does not receive any input and is
fully interpreted on compile-time, deterministically producing its dvi output
for which there is no concept of runtime.

TEX macros are defined by the \def construct, or similar variants, followed
by the name of the macro preceeded by a backslash. Hereafter follows a sequence
of tokens and arguments. The arguments are identified by ciphers preceeded by
the token “#”, bounding the number of arguments by nine. Finally comes the
body of the macro, which is taken to be whatever is written between two bal-
ancing brackets. Of course, the body can also contain corresponding argument
usages, the treating of which is deferred to invocation-time, as with the Cpp
macros, yielding dynamic macro scope.

\def \vector #1[#2..#3|{
S({#1}_{#2} \Idots {#1} {#3})$

\vector x'[0..n-1] — $({x’} {0} \ldots,{x'} {n-1})$

Figure 2.8: A TEXmacro example: \vector

Figure 2.8 shows a definition of a macro called vector plus an invocation
of it. The macro is defined to expect its arguments properly delimited by
square brackets and two dots. The invocation will of course ultimately gen-

erate‘ (', @' no1) ‘

52

TEX’s level of operation is lexical in a slightly different way than that of
Cpp and m4, as the body of a macro gets tokenized at definition time, that
is, it is not completely raw text. Except from a few very special cases, this
gives the same behaviour. If, for instance, the invocation syntax is redefined
after a macro containing invocations of other macros is declared, any such calls
resulting from the invocation of the macro itself (thus with an old invocation
syntax) will still be treated as such.

Invocations are ambiguous in the sense that there are several possibilities of
binding actuals to formals. The argument of a delimited argument is defined to
be the shortest (possibly empty) sequence of tokens with properly nested {...}
groups that is followed by the particular list of separator-tokens.

As a consequence, it is not possible to directly nest macros such as the one
above, as the]’ in the innermost call would terminate the outermost call. Of
course, this can be amended by explicitly wrapping brackets around the second
call.

TEX has a different approach to the order of expansion, namely NOR. Outer
macro calls are handled before inner ones. This call-by-name semantics is due
to the fact that the compile-time control language is completely integrated with
the macros and is to react on macros calls that might change the environment
for things within the call. However, expansion of a macro can be delayed, so
as to treat the inner macro calls first, through the \expandafter construct,
yielding AOR.

Recursive macros are handled, or rather not handled, so as to produce eternal
expansion. Of course, the idea here is that the control language can halt this
process when, for instance, some compile-time variable reaches a certain value.

The intricate details for determining exactly how actuals are bound to for-
mals, on the other hand are relatively complicated with excepting rules for
special tokens, such as whitespaces, curly brackets, plus constructs \par and
\long for instructing the parser when to abort treating a macro invocation.

TEX also provides a way to aid the “programmer” in debugging his macros.
TEX will print the actual-formal bindings of all macro invocations, for which the
compile-time variable \tracingmacros is positive. However, this information
gets logged along with a lot of other information.

The TEX macro language has been successfully used to extend TEX to, for
instance, WTEX and BibTex.

2.2.2 Syntax Level Macros

Contrasting lexical level macros, we have the other category, the syntaz level
macros. As hinted by the name, these macros are closely coupled with the
syntax of the language. The picture here, however, is quite different and there
exist very few such examples. We shall briefly consider one, namely Scheme’s
Hygienic macros.

53

Scheme Hygienic Macros

In Scheme it is possible to specify macros as syntactic transformers. In order to
facilitate this, Scheme provides a pattern matching language for specifying such
macro transformers, as can be seen in Figure 2.9 where we have presented an
example of a Scheme macro and. Before any evaluation takes place, Scheme
will transform all macros, using pattern matching to choose which syntactic
transformations to apply using NOR beta-reductions. Hence, there is no concept
of macros on evaluation-time.

(define-syntax and
(syntax-rules ()
((and) 1)
((and b) b)
((and b ...)
(if b (and ...) #f))))

Figure 2.9: A Scheme macro example: and

A Scheme macro will preserve the lexical scope of the program and alpha
convert all identifiers to avoid conflicts with other identifiers.

Scheme’s macros are syntactic, because they enforce the syntactic structure
of Scheme and know enough about it to alpha convert identifiers. However,
there is only one syntactic category, namely expressions, the syntax of which is
explicit on runtime. All Scheme’s macros must comply with the prefix syntactic
style of Scheme.

2.2.3 Comparison

In this section we will juxtapose the four macro languages we looked at in the
previous along with our macro language <bigwig> that is the topic of the rest
of this chapter. The table below exhibits characterizing properties for each of
the five macro languages.

First, the level of operation that reveals the nature of the macro concept,
then the existence and nature of any control language interpreted at compile-
time along with the macros. After this comes a lot of cosmetic aspects of the
macros. We take transparency to mean whether the macro user is or needs to
be aware of them. However, we do acknowledge that this is perhaps a rather
subjective category. Hereafter, we present semantic aspects dealing with ambi-
guities, scope, and overall behaviour. Finally, we exhibit implementation specific
properties such as the support for pretty printing with and without the macros
expanded and the trailing of errors to aid debugging.

o4

| Property\Language || Cpp | m4 | TeX | Scheme | <bigwig>
Level of operation lexical lexical lexical (syntatic) | syntactic
Macro computation no limited | full-scale | patterns no
Invocation syntax id(...) id(...) | arbitrary | (id...) arbitrary
Argument syntax id $/0-9] #[1-9] patterns id
Typed arguments no no no no yes
Transparency no no yes yes yes
Macro ambiguities none none shortest none greedy
Macro backtracking no no no patterns no
Order of expansion mixed inner” outer™ outer inner
Macro scope dynamic static dynamic | dynamic static
Local macro scope no yes yes yes yes
Multiple definitions no no no patterns split
Alpha conversion no no no yes yes
Recursive definitions 1 level rejected loop pat./loop rejected
Pretty printing no no no no yes
Error trailing no N/A (no) no yes

Table: Comparing five macro languages.

At first glance, macro languages may appear relatively indistinguishable in be-
haviour, but as the table above shows, they are in fact highly different and in
lots of respects. No two of the above macro languages are quite the same.

One important issue that discerns our macro language from the rest is the
fact that it has been designed and that as an individual entity, contrary to
the others, that sort of evolved from other applications. Although our macro
language has been designed as a separate entity, it has been developed along side
the rest of the <bigwig> language, for which it has always played a conscious
role. For these reasons, the <bigwig> macro language has been guided by an
overall design strategy, as an intuitive and comprehensive extension to a C-like
language.

2.3 Syntax

In this section we will present the syntax for defining macros along with a lot of
examples, gradually increasing in complexity. After this, we shall look at some
naming conventions and conclude with comparing macros and functions.

macro_list : macro*
macro : macro < nonterm > id macroparam
macroparam : < nonterm id > macroparam

| id macroparam
| token macroparam
| = { macrobody }

The first production for the non-terminal macroparam is for declaration of macro
arguments. The next two are for adding separators either in the form of an

35

identifier or a token. The last one is to terminate the macro header and thus
requires the macrobody the type of which, of course, corresponds to the non-
terminal type of the macro, written after the keyword macro. All macros are
in <bigwig> declared before the actual service, so that one first extends the
language by declaring macros (typically by including some libraries) and then
specifies the actual service for the “fixed” extended language. This could easily
be modified so as to allow macros to be declared within the service code.

2.3.1 Examples

Let us look at some examples. To underline the generality of our macros, we
will exhibit examples from several different syntactic categories.

One of the simplest macros one could write, would be a macro that does not
take any arguments as is the case for the macro pi in Figure 2.10.

macro <floatconst> pi ::
3.1415927

}

Figure 2.10: A very simple macro: pi

When declared it will appear to the programmer as if the floatconst syntactic
category had been extended with a production pi. This is different from a
lexical macro in that the macro invocation of pi is only allowed in places where
a floatconst would be.

Figure 2.11 shows a macro defining a new construct maybe, that takes one
argument, namely a statement and executes it with 50% probability.

macro <stm> maybe <stm S> 1= {
if (random(2)==1) S

}

Figure 2.11: A macro taking an argument: maybe

Consider the regezp category in the <bigwig> grammar (which is avail-
able at http://www.brics.dk/bigwig/langspec/grammar.html). As one can see
there is something called star, for Kleene’s star on regular languages, signal-
ing zero-or-more. However, there is nothing called plus for one-or-more. Such
a construct could easily be defined by a macro. This will be a nice example
(see Figure 2.12) of a macro that uses token separators to enforce a particular
syntax. The macro definition contains two tokens (corresponding to the third

96

production of macroparam), namely the two parentheses. The compiler will
thus automatically enforce that invocations of the macro plus contain the two
parentheses in the sense that it would be a syntactic error to omit them. In this
way the macro author can tailor his macros to have the desired look-and-feel.

macro <regexp> plus (<regezp R>) 1= {
concat(R star(R))

}

Figure 2.12: A macro definition with tokens separators: plus

Of course, this could be abused to write macros that expected horrific syntax
with, for instance, unbalanced parentheses of varying types. But this comes
with extreme flexibility. So the macro programmer should take some care when
designing the macro’s syntax.

A similar macro, but from a completely different syntactic category, is the
macro never in Figure 2.13.

macro <formula> never (<idL>) = {
all t: 1L(t)

}

Figure 2.13: Another macro with token separators: never

Let us now define the macro implicitly referred to in Figure 2.1; repeat-
until. This can not surprisingly be done in terms of while, see Figure 2.14.
This could of course have been done easier in terms of do-while, but doing it
in terms of while will illustrate a point. This macro will take two arguments,
S and E.

As can be seen in Figure 2.14 this really has the look-and-feel of C. The
repeat-until construct is transparent in the sense that it appears to the pro-
grammer as if it really was in the language.

The macro uses its statement argument S twice. Since we do not use DAGs
(reasons explained later) it will be present twice in sub parse trees resulting from
invocations of this macro. For this reason, it would probably be a better idea
to write it a little differently as in Figure 2.15. Another reason exists, further
motivating the choice for the second version. This explanation, however, is
deferred to the section on pretty printing.

There is no reason why the body of a macro-definition cannot contain another
macro invocation, as is the case with our next example. Here, we have a new
macro forever defined in terms of repeat-until. Actually, such a macro will

o7

macro <stm> repeat <stm S> until (<exp E>) ; = {
{
S
while ('E) S
}
}

session S() {

x =1;

repeat {
x = x¥y;
y=y1L

} until (y==0);

Figure 2.14: A macro taking two arguments: repeat-until and an invocation

macro <stm> repeat <stm S> until (<exp E>) ; = {

{

bool first = true;

while (first || 1E) {
S

first = false;

Figure 2.15: Another version of repeat-until

58

only be expanded once, namely when the other macro is parsed, yielding static
macro scope, but all this will be explained later.

macro <stm> forever <stm S> 1= {
repeat S until (false);

}

Figure 2.16: A macro defined in terms of another

Even an entire service could be written as a macro (see Figure 2.17).

macro <service> my <stringconst C>
hello-world service! ::= {
service {

session Hello() {

html HelloWorld = <html>
<h1>Hello World< /font>< /h1>

< /html>;
exit plug HelloWorld[color = C];

}

}
}

my “blue” hello-world service!

Figure 2.17: An entire service as a macro

Naming Conventions

Before we proceed, we will establish some naming conventions. In order to do
so, let us look at Figure 2.14 again. The macro itself will be referred to by
its first identifier (repeat in the Figure). We will refer to and in the
macro definition header as the formal arguments of the macro. Correspondingly,

‘ {x=x*y;,y=y-1;} ‘ and |y == 0| will be called the actual arguments of the
macro. As for , , and in the body of the macro definition, we will use

the term macro argument usage. Finally, we shall call until a macro separator
and refer to the tokens (the two parentheses and the semi-colon) by the term
macro separator tokens.

59

2.3.2 Macros vs. Functions

Macros may at a first glance appear similar to functions, but there are significant
differences. A macro takes syntar as arguments on compile-time, whereas a
function takes values as arguments on runtime.

Macros are in their very nature non-recursive, so we definitely still need
functions. Additionally, functions have several other advantages over macros,
like different parameter mechanisms, space economy, and type information.

One should bear in mind that the macros are in no way designed to replace
functions. We want both abstraction mechanisms.

In the following we focus on the benefits of macros over functions as they
are in C (and many other similar languages). To this end, we have sketched a
list of benefits from the macros that does not come with such functions.

1. Genericity. They work on all non-terminals. So far we have seen examples
of macros defined for floatconst, statement, regexp, formula, and the service
category.

2. Uniformity. Abstractions are defined in the same manner for all syntactic
categories. This is especially useful in <bigwig>, since it basically is an
ensemble of domain specific languages with constraints, regular formats,
html, and so on.

3. Transparency (internally). The compiler has no need for binding calls to
definitions.

4. Querloading. They are independent of the type system and hence provide
a means for defining type overloaded constructions.

5. Efficiency. No function calls are required.

6. Call-by-name. They provide this (alternate) parameter mechanism and
code that is repeated over an over, yet with slight variations, can be written
once and reused indefinitely through a parameterized macro.

7. Syntaz. The macros can transparently extend the original language (see
for instance the invocation of the repeat-until construction in Figure 2.14).

Of course, the functions can mimic some of these characteristics depending
on the nature of the function abstractions.

If the original language was designed according to Tennent’s Principle of
Abstraction...

“Any semantically meaningful syntactic class can
in principle be used as the body of an abstraction.”

...the “function” concept would be able to dual the first point, and to some
degree the second. The third, however, cannot be mimicked by the functions,
as a function is itself a citizen of the language. If the original language is

60

polymorphic or dynamically typed, the fourth point is non-applicable. Function
in-lining can make the fifth point apply to non-recursive functions. Finally, the
sixth and seventh points may also be inherent to the original language.

For functional languages with only one syntactic category and several pa-
rameter mechanisms the macros may, appear rather unappealing. However, for
languages like C, it provides a comprehensive and intuitive extension with the
above benefits and without having to redesign the entire language.

2.4 Semantics

In this section we will look at the semantic properties of our macros. We will
look at how ambiguities are resolved and what to do about recursion. Also, the
scope aspects will be covered extensively, this includes alpha conversion and the
possibilities of introducing local scopes. Finally we shall look at the order in
which nested invocations take place, and its implications.

2.4.1 Resolving Ambiguities

When using the macros, some cases of ambiguity arise. For instance, it is not
clear how invocations of a macro defined to take, for instance, two consecutive
statement-lists should be parsed. As with the dangling else in C, we have
disambiguated by convention. We have chosen the macros to be greedy, again
because this seemed the most intuitive thing to do. Thus the macro mentioned
would parse as much as it could as the first argument, while leaving the second
empty.

As mentioned earlier one can write a lot of nonsense with the macros. In
fact, one can write macros for which there are no possible invocations. This is,
for instance, the case with the macro in Figure 2.18. Because of the production
exp — exp+ exp, the parser would never stop anywhere with a plus as the next
token while parsing the first expression argument. Of course, the compiler could
warn the programmer of such macros.

macro <ezp> add <exp E1> + <exp E2> 1= {
El + E2

}

Figure 2.18: A macro that has no possible invocations

2.4.2 Recursion

We have chosen to reject attempts to define macros in terms of themselves, for
the simple reason that their expansion will loop forever. Contrary to TEX, we

61

do not have a compile-time language interpreted during parsing that could halt
this expansion at some point. Also, we did not find Cpp’s solution with one
level expansion very intuitive.

2.4.3 Scope

We would like to ensure that the macros preserve lexical scope, so that no local
identifiers introduced by a macro inadvertedly clash with or shadow identifiers
from outside scopes. Furthermore, we would like to make sure that the body of
each macro constitutes a closed scope. That is, a scope that is inaccessible in
both directions. In this way the expansion of a macro becomes safe in the sense
that it will not cause any symbol clashes. In terms of Figure 2.1, no identifiers
from the white and gray areas clash with each other. The reason for this is that
macros in this way are independent of their immediate context unless through
their arguments. This will enable only macros with self-contained meanings to
be written.

Static Scope

Consider a new macro defined in terms of an old one. We want the invocation
of the old macro to take place once, namely when the new macro is defined, and
not each time the new macro is invoked. This will give us static macro scope.
We have chosen static scope, because it is by far the most intuitive and widely
used. Also, the scope rules of <bigwig>, for which we have implemented this
macro language, are all static.

Concatenating Identifiers

We provide a mechanism for transgressing these scope boundaries—the moti-
vation will be evident later. Because of this, we have introduced an operator
for concatenating identifiers: [~]. Our identifier concatenation operator thus
resembles the #+#t-operator in C, except that ours is explicit in the grammar as
a production on identifiers:

id = tIDENTIFIER
| id ~id

Two identifiers, x and y, will when concatenated be represented internally as
the string “x__y” (separated by two underscore characters). In order to assure
that such identifiers do not clash with normal ones, we have prohibited identifiers
beginning with, ending with, and having two consecutive underscores.
Without having introduced our alpha conversion rules, this operator may
seem worthless. The idea with this construction is that it provides a mechanism
for bypassing the scope boundaries. Another equally important motivation for
this construct is that it permits the generation of a lot of new identifiers param-
eterized by a single. This will be extensively exploited in examples to come.

62

Alpha Conversion

Without alpha conversion, the expansion of macros becomes dangerous (as with
x in the body of the macro swap from Figure 2.2). Of course, the programmer
could just rename x to xyz87 or something even more arbitrary. However, this
is not always a safe thing to do either, even if all introduced identifiers all have
different arbitrary names. Nesting such macros or using them twice could cause
errors—of course, this depends on the nature and scope rules of the “target”
language.

In any case, we do not want this to be left to the programmer. Instead, we
would like the compiler to alpha convert all such identifiers in a sensible way.
But exactly how to do this is not at all evident.

Determining which identifiers are locally introduced in the body of a macro
implies full-scale symbol checking. In order to avoid this expansion-time symbol
checking, we instead alpha convert all identifiers. The scope of a macro will
become closed. In fact, the scope of a macro body (the grey area in Figure 2.1)
will be packed into the immediately surrounding scope frame, yet it will not
clash with any of its identifiers. Thus, while expanding macros we have no
reason to be aware of any symbol or scope information and yet the macros will
behave exactly as if we were. Furthermore, the alpha conversion is done before
the symbol checking so that this phase need not be aware of the macros. Thus,
the two phases become independent.

We will suffix (using the identifier concatenation operator “~”) all identifiers
in the grey area (in the sense of Figure 2.1) of the macro with a number. This
can never clash with normal identifiers because they can never be constructed—
an identifier cannot begin with a cipher. This number will enumerate the macro
invocation taking place so that the number will be “fresh” for each macro in-
vocation. In this way, all declarations and corresponding usages in the same
macro body will refer to the same identifier as before alpha conversion.

Consider Figure 2.19. The dummy code contains three macro invocations,
two of the macro repeat as defined in Figure 2.15 and one to a macro swap,
defined in the figure. Both of the macros introduce local variables that will
automatically be alpha converted, which is evident from the macro expanded
output in Figure 2.20.

As previously mentioned, the identifier concatenation is for bypassing the
alpha converter. We shall thus use the following function « : Id — {true, false}
to determine whether an identifier should be alpha converted or not.

false, if I € amaenv,
a(l) = .
true, otherwise.

a(l) Na(l')

a(l ~ I
As one can see, identifiers being part of arguments through the identifier con-

catenation, are never converted, and thus provide access to the macro. We shall
see why this is so interesting later.

63

macro <stm> swap <type T> <id X> <id Y>

{

}
}

I e

Y;
t;

<X 4
I

service {
session S() {

int first;
int t;

repeat {
first++;
repeat t++; until (t>10);
swap int t first;

} until (t>42);
t=t*2;

n={

Figure 2.19: A dummy service: alpha

64

service {
session S() {
int first;
int t;

{

bool first~1 = true;

while (first~1 && 1t>42) {
{

first++;

{

bool first~2 = true;

while (first~2 && 1t>10) {
t++;
first~2 = false;

}

e

int t~3;

t~3 =1t
t = first;
first = t~3;
}
}

first~1 = false;

Figure 2.20: The alpha converted expanded code for alpha

65

Suppressing Alpha Conversion

We have also considered making it possible for the programmer to suppress the
alpha conversion. This could for instance be done by prefixing an identifier with
a D (which in Scheme and many other languages has the semantics that what
is written subsequently is to be taken literally—which is basically what would
be done). The quote could then be applied to the name of the macro in the
definition header with the result that no identifiers in the macro would be alpha
converted. Or, the quote could be applied to individual identifiers in the body
of the macro, suppressing alpha conversion.

All this provides a means for a macro to access its surrounding scope. Thus,
such macros would be context dependent and situation specific, jeopardizing
the self-contained meaning property. For this reason we have not included the
alpha-suppression operator in our macro language.

Nesting Macro Definitions

Sometimes it would be nice to introduce a local macro, the usages of which
are restricted to a certain area (or scope) in the program. This will also help
reduce name-space pollution. Since we have static macro scope, we only need
to provide and maintain a stacking mechanism for the definitions in order to
obtain a scoped solution.

To this end, we have introduced two macro stacking meta directives #re-
quire and #end. The directive #£require acts as an inclusion directive taking
a file as a constant argument (much like that of #include), but only macros
are allowed within the file. All #require directives will give rise to a new
macro stack frame in which all macro definitions from the specified file will be
mentioned (with a pointer to the actual definition, kept in a global macro set).
Whenever requiring a file that has already been required, #require will not
re-parse the file, only add a dummy frame to the macro stack, stating that the
appropriate file has been re-required. The corresponding popping mechanism is
supplied by #end. The two directives are entirely independent, in that we do
not require them to balance, nor do we require an equal number of them. When
we meet a #end directive, we pop the top frame from the macro stack. If this
frame is a dummy re-requisition element, we throw it away. If, on the other,
hand it is a “real” macro stack frame, with macro definition pointers, we follow
all the pointers and mark the appropriate macros as dead. Macro definitions in
the global macro set are completely ignored by the macro parser.

This simple mechanism will avoid multiple inclusions and break circular
inclusion, as any re-inclusions will not be re-parsed.

Encapsulation

At some point, we considered adding the concept of encapsulation, called pack-
age, comprising a set of macros and a sequence of local toplevel syntax. The
idea was to alpha convert the local syntax inside the package in order for it to
constitute a closed scope, only available to the macros within the package that in

66

turn were visible from the outside. As with the macros, the packages should be
specifiable in flexible syntax that also allows for parameterization. This would
permit the programmer to present to the user, for instance a statistics package
like the one in Figure 2.21.

package normal (<ezp M> , <exp S>) {
float my = M;
float sigma = sqrt(S);

macro <id> mean = {

my
}

macro <id> variance ::= {
sigma
}

macro <ezp> observe ::= {
®~1((random()-my)/sigma)
}

}

Figure 2.21: A macro package: normal

In order to be able to use multiple distinct instances of this package, clearly
the programmer would have to give each such instance a name. For each subse-
quent invocation, the programmer would have to explicitly state which instance
he is referring to. Since identifiers are our atomic entity for providing links in
the source program, the naming and instance referencing should be specified by
means of identifiers.

Instead of supplying this additional package concept, we shall present a way
of achieving this, but using the basic macro concept as it is. The normal
package and its three macros can instead be written as four separate macros
linked together through concatenated identifiers as in Figure 2.22. One of these
macros will serve as a declaration macro, simulating the package instantiation.

As one can see, a normal can be “declared” as an identifier, seemingly much
like that of declaring for instance an integer, invoking the first macro. The
identifier will be used to construct the “local” data needed (my and sigma in
the example above). Henceforth the other macros are available through this
identifier. That is, the “local” data on which to operate is again constructed
from the supplied identifier. This way one can have multiple normal’s working
on distinct “local” data. We repeat the phrase previously stated: “identifiers are
our atomic entity for providing links in the source program”. Indeed, this is true

67

macro <toplevel list> normal ~ N
(<exp M> , <exp S>) <id X> ; :={
float X~my = M;
float X~sigma = sqrt(S);

}

macro <id> E [<id X>] = {

}

macro <id> Var (<id X>) = {

}

macro <erp> observe (<id X>) = {
)

}

X~my

X~usigma

&~ 1((random/()-X~my)/X~sigma

Figure 2.22: The normal package in terms of regular macros

for the above.
This technique shall be employed several times in the next Chapter.

2.4.4 Order of Expansion

In the presence of nested macro calls, we expand the innermost first, yielding
AOR or call-by-value because we thought this was the most intuitive. Since
we do not have any compile-time language interpreted during parsing, there
are only two issues for which this choice matters. Namely, efficiency and alpha
conversion.

Clearly, if the outermost macro threw its arguments away it would be more
efficient to expand this one first, ignoring the second completely. On the other
hand, if it replicated its argument several times, it would be better to expand the
innermost call once and not once for every newly generated invocation. Thus,
efficiency does not dictate a clear choice.

Since alpha conversion may side-effect identifiers in a macro invocation, it is
not independent of the order of expansion, which is illustrated by the example
in Figure 2.23.

As can be seen in the figure, the order of expansion does matter with respect
to alpha conversion. The program resulting from using AOR will fail symbol
checking as an identifier clash will be discovered. The NOR version, however,
has two distinct identifiers in it and is indeed valid. Nonetheless, we shall still

68

macro <decl> declare ::= {
int x;
}

macro <decl_list> double (<decl D>) 1= {
DD
}

double (declare)
—a0r double (int x~87;)
—A0R int x~87; int x~87;

double (declare)
—n~NoR declare declare
—NOR int x~87; declare
—NOR int x~87; int x~88;

Figure 2.23: Alpha Conversion and the Order of Expansion

go by the call-by-value strategy, because we claim it is the most intuitive. One
would expect any legal invocation of the macro double to give an error. The
alpha conversion should be a property of the declare macro alone and have
nothing to do with the macro double.

2.5 Implementation

In the following we will look at the implementation of the macros (as they are
in <bigwig>).

2.5.1 Parsing

Often a compiler front-end is written with the parser generators Yacc/Bison
and Lex/Flex. However, since we need to direct parsing according to the macro
definitions and the tools above provide no direct way of doing so, we have written
our own parser for the <bigwig> language.

Fortunately, the <bigwig> grammar on which our macros are based is
LL(1). This is mainly due to the fact that it resembles C, which is basically
LL(1). However, a few syntax revisions have taken place in order for it to comply
with the LL(1) demands. In this way we could straightforwardly construct
a predictive top-down recursive descent parser on which to base the parsing
of macros. For this reason, we have not considered the possibility of parsing
bottom-up.

69

However, instead of making one big static first table, we have made a first
function (first : TOKEN — {true,false}) for each non-terminal that will
given a token tell us whether the token can be reached from the non-terminal.
This choice will be elaborated and motivated later.

We see no reason, other than efficiency, why the macros could not support
trial-and-error parsing. However, for this precise reason, we have no intention
of doing backtracking.

2.5.2 Parsing Macro Definitions

The parsing of macro definitions can conceptually be separated into two tasks,
namely the parsing of the macro header and the body. We shall look at the two
tasks individually in the following. Of course, the two tasks are integrated so
as to support macro calls in macro definitions.

Parsing the Macro Header

The parsing of the macro header is straightforward. It amounts to parsing
according to the macro grammar presented in Section 2.3, while building an
appropriate structure. The structure built from the repeat-until macro defi-
nition from Figure 2.14, is illustrated in Figure 2.24. As one can see, all macro
definitions are placed in one global set (implemented as a hash-table) each map-
ping to a structure. Supporting local macro definitions amounts to maintaining
a stack of such definitions rather than a global table. The structure begins with
a macro definition node stating the name and resulting type of the macro at
hand. This is followed by a sequence of macro parameter nodes of various kinds
corresponding to the four macroparam productions in the macro grammar. The
last node in this structure is always guaranteed to be of kind body and will ap-
propriately contain a reference to the parse tree body of the macro. The type of
this parse tree will of course be the one specified in the beginning of the macro
(statement in the case of repeat-until). The reason why the line number and
filename information is placed here and not, as one would expect, in the initial
macro definition node, is due to the split feature that will be explained later.
While parsing the macro header, the macro parser will collect all formal macro
arguments in an environment to be used for recognizing the macro argument
usages in the body of the macro. This formal macro argument environment, is a
partial function from identifiers to non-terminal types: fmaenv : I'd — NTyyp..
However, it is implemented as a list of pairs: fmaenv : [(Id, NTiype)]. Since, we
treat one macro definition at a time, we only ever need one fmaenv. Naturally,
the compiler checks that no formal argument is defined twice or has the same
name as the macro itself. After having constructed the corresponding fmaenwv,
which becomes [(S,<stm>),(E,<exp>)] for the repeat-until example), we are
ready to parse the body of the macro.

70

MACRO
HASH <stm>

MACRO MACRO MACRO MACRO MACRO MACRO MACRO MACRO

DEFINITION ~ PARAM PARAM PARAM PARAM PARAM PARAM PARAM
argument] separ ator token argument token token body
"repeat" s E lineno
. b= wuntitr = ¢ P b | oy O
<stm> <stm> (<ap>) filename

Figure 2.24: A Macro Header: (repeat-until)

Parsing the Macro Body

In order to recognize the macro argument usages in the body of the macro, we
need to parse relatively to the constructed fmaenv. Each time we get the next
token from the lexer, we check to see if it is an identifier and whenever so, we
look it up in the fmaenwv. If it is not there, it is considered a normal identifier,
but if it is, the following happens.

If we are at the right spot—that is, the non-terminal we are about to parse is
the same as the type of the formal macro argument (registered in the fmaenv)—
we create a space in the parse tree for the future actual argument, after which
we continue usual parsing. If, however, we are not yet at the right spot—that
is, there exists a sequence of productions in the grammar that will take us
there—the first functions, that embody the structure of the grammar, will take
us there.

First Functions vs. A First Table

The first functions are constructed directly from the grammar in an obvious
manner. Each non-terminal A will give rise to a first function depending on its
productions. This function will take the next token and answer true or false
depending on whether there exists a derivation from the non-terminal A having
the next token as its first terminal.

There are two reasons why we have not optimized this using a statically
computed first table (given by a fixed-point computation), instead of first func-
tions. First of all, it is very easy to modify the functions when modifying the
grammar, since only the affected productions need modification. This is un-
true for the tables that would need to be totally recomputed since they may
be completely altered from even minor modification. Secondly, whether a given
terminal can be derived as the first terminal from a non-terminal, depends not
only on static information, but also on dynamic information, namely the defined
macros. Of course, this could be split into a static part and some dynamic data
structure, but we have not looked any further at this.

The result of parsing the macro header and body should be a parse tree
with a number of holes in it for each formal macro argument. Now, the macro
is ready to be invoked.

71

2.5.3 Parsing Macro Invocations

As with macro argument usages above, whenever the lexer returns an identifier,
we look it up in the global macro set to see if it is the name of a macro. If this is
the case, the first functions will direct parsing to the appropriate non-terminal
(the resulting type of the macro). Once this is done, the parsing of the macro
invocation begins. This amounts to running through the macro parameter chain
doing one of two things depending on the kind of the macroparam node.

If the macroparam node specifies either a separator or a token, corresponding
to the second and third cases in the syntax of macros definitions, the compiler
checks to see if the lexer returns such an identifier or token. If not, an error
is issued. If however, it is a macroparam node specifying an argument (the
first macroparam production), the compiler will parse as much as it can of
the syntactic category specified in this node (recall that the macro parser was
greedy by definition). The resulting parse tree will be stored in something we
have called an actual macro argument environment (amaenv : Id — AST),
which is basically a partial function from identifiers to parse trees, holding the
actual macro arguments for each formal macro argument of the macro.

Once the chain has been successfully traversed, the compiler has filled up
the amaenv and the construction of the resulting parse tree can begin. The
compiler retrieves the parse tree corresponding to the body of the macro at
the end of the macroparam chain. The job is now, given a macro body and
an amaenv, to produce a resulting parse-tree (as depicted in Figure 2.1). The
compiler now begins copying this parse tree since we do not want any DAGs. We
will not allow DAGs because of simplicity and the fact that the analysis phases
want to attach information specific to the individual points in the program such
as type, symbol and error information. Each time a macro argument usage
is encountered, the compiler initiates copying of the argument’s corresponding
parse tree, which it finds in the amaenv, onto the macro argument usage (recall
that these had space left in them for this purpose). Also, the fact that the
argument has been expanded is added to the macro argument usage. During all
this copying, some identifiers will get alpha-substituted, but the details of this
is deferred to the section on scope.

The parsing of macro invocations, of course, occurs simultaneously with the
parsing of macro definitions as we want to be able to construct new macros in
terms of old ones. Recall, from the discussion of static scope, that the call to
the old macro in the body of the new one would be generated once, namely
during parsing of the body of the new macro and not each time the new macro
is invoked. The expansion of the invocation of the old macro call would thus
be stored inside the body of the new one at the end of its macroparam chain,
copied along whenever the new macro is invoked.

2.5.4 Representation

The representation of macros can be put in two categories: implicit and explicit.
In the following, we shall look at both. Consider the macro and invocation

72

in Figure 2.25. The invocation of the macro IDxy with the actual argument
B,C will, along with the A and D before and after, construct the identifier-
list A, X,B,C,Y,D. We shall now utilize this example to see how the invocation
is represented internally in the parse tree employing each of the two different
schemes.

All the macro representations we have considered, however, have one in-
herent flaw. Once you have constructed the parse tree, it contains all macro
information, hence you cannot rearrange it and expect to be able to pretty
print it correctly. To this end, if some rearranging is to be done (for instance,
desugaring or parse tree optimization), one has to go about it differently—we
present a few possibilities.

One could add information to the existing parse tree that can be useful to
subsequent phases, add the information externally in the form of separate parse
trees, or simply do the optimizations once it has been established that there are
no more errors (and the pretty printer has done its job).

macro <id_list> IDxy (<id_list 1>) = {

}

... AIDxy(B,C),D ...

XY

Figure 2.25: A macro and an invocation

Implicit Representation

The first representation we shall consider is one in which the macros are almost
completely transparent. All nodes are augmented with macro specific informa-
tion that states whether the given node contains a call or an argument and if
so, what the definition of the macro is and where it is defined. Also, all nodes
contain information in the form of a pointer, a prev-pointer, which is a pointer
to the nearest macro call or argument. This way, when an error is discovered
one can follow the prev-pointers and write out the trail of macro calls and ar-
guments along with the error. The prev-pointers are depicted as dotted arrows
in Figure 2.26 that shows the example from Figure 2.25 represented using this
implicit representation scheme. The normal arrows symbolize next-pointers (a
sequence of any category has been represented as a list, linked together through
the use of next-pointers).

Since there are no explicit macro nodes, all information regarding macros
has to be packed into parse tree nodes. That is, the macro information has
to be written in the parse tree node following the point where the macro call
or argument reside. As one can see, the macros impose no new nodes on the

73

Figure 2.26: Implicit Macro Representation

parse tree. It has exactly the same nodes as if one had written the identifier list
AX,B,C.Y,D directly.

However, having only one piece of macro information in each node is not
enough. If two macro calls are made without any parse tree nodes in between
(as is for instance with forever in Figure 2.16 where the calls to forever and
repeat-until occur in the same place, so to speak), a single macro information
entity is not enough. The two calls thus have to be packed into the same parse
tree node which requires us to generalize the scheme so that we instead speak
of sequences of macro information. The same problem will also arise when
having two arguments or even a call and an argument that are not separated
by something that will give rise to a parse tree node.

In order for the pretty printer to be able to print the source code without
macro expansions, it has to be able to recognize which nodes are part of a macro
call or argument—that is, where the macro call or argument ends. Thus, parse
tree nodes that are not a call or an argument themselves, but are part of the
body of a macro or part of an actual argument, have to be tagged with appro-
priate information. This is what is meant by CALL and ARG in parentheses in
Figure 2.26.

As one can imagine, the construction of parse trees respecting this scheme
is somewhat tedious and error prone—but it gets worse. There are scenarios
we would like to be able to handle, that cannot be represented employing this
representation. This is the case if we supplied no identifiers to the argument of
the IDxy macro. Nothing is a valid identifier-list and the construction A,IDxy(),D
would yield a valid identifier-list, namely A ,X,Y,D. The problem we are faced
with here is that, unlike the scenario above, we have no obvious place to put the
macro invocation and (empty) actual macro argument information. An even
worse example is the identity macro on for instance identifier-lists that takes
the empty identifier-list.

At the time of writing, identifier-lists cannot be empty. However, we plan
to make this possible and then extend the weeder to check that such lists are
not empty whenever they should not be. Only because a macro returns an
empty lists does not mean that the overall result is empty, as in the example
above. The above argument applies equally to, for instance, sesarg lists that
can indeed be empty.

Because of this, we looked for alternative representation schemes.

74

Explicit Representation

Instead of trying to make the macros transparent by packing all related in-
formation into usual parse tree nodes, we considered representing the macros
explicitly. For each macro call we insert a special parse tree node that tells us
if we are faced with a macro call, how the macro is defined, and where (see
Figure 2.27). This special node has two pointers, a standard next-pointer to
designate what follows the macro call, and a special macro-pointer (depicted by
dashed arrows) that points to the body of the macro. This way, the parse tree
has much more structure. Pretty printing without macro expansions is easy, the
pretty printer simply does not follow the special macro-pointers and prints out
appropriate information supplied by the special macro call nodes.

Figure 2.27: Explicit Macro Representation

Since the parse tree for each syntactic list category now is a tree, we can
no longer do a fast iterative traversal (that is, without recursion). However, if
we stack a pointer to a special node explicitly whenever we meet one, we can
continue iteration through the body and retrieve where we are to resume on the
top of the stack when we encounter a special end node inserted for this purpose.
The reason for the special end-node, as opposed to a null-pointer termination,
is that a body of a macro could contain lots of other lists that had nothing to
do with macros and were terminated by a null-pointer. In this way, we do not
have to be aware of where we are in the parse tree, we just pop from the stack
whenever we meet an end node.

All that has been said here for macro calls is of course equally valid for macro
arguments.

Of course, this representation requires all subsequent phases to be aware
of macros in order for them to traverse them using the explicit stacking as
described above. However, there is a way around this drawback.

75

2.5.5 Weaving

In order for the macros to appear transparent to subsequent phases, we have
inserted a separate phase, namely a weaving phase. However, conceptually it
should be thought of as a part of the parsing phase.

We have extended all the parse tree nodes so that they all have two pointers
to other parse tree nodes. This will give us two distinct ways of traversing the
parse tree. One is the one constructed during parsing. The other is constructed
by the weaver. The weaver will traverse the parse tree, using an explicit stack
for efficiency, and chain all non-macro nodes together as depicted in Figure 2.28.
This way, the phases can chose whether they want to see the macro explicitly
or not at all. For instance, the pretty printer can take can take the route where
the macros are explicit so that it can pretty print them easily. While an analysis
phase can take the weaved route ignoring the macros completely.

The weaver will thus give us transparency, of course, for the price of extra
memory consumption.

Figure 2.28: Weaving the parse tree

2.5.6 File Inclusion over the Internet

Like most languages we have made a way to lexically include files. This is done
through the #include directive that will take a string constant designating a
file with the effect that the lexer will open and read it. As a special feature,
we have extended this so that the programmer may specify an URL (beginning
with “http”) in which case the lexer will automatically fetch the file over the
Internet at the designated location.

In C the preprocessor taking care of lexical inclusion, distinguishes between
strings specified in quotes and angled braces. The former will cause the lexer to
find the file in the current working directory, while the latter will correspond to
some predefined location. Similarly, we have included the two variants of lexical

76

inclusion. However, we have chosen the latter to be individually definable, de-
faulting to “<bigwig> macro central” (http://www.brics.dk/bigwig/macro/).
We use the humorous extension “bigmac” for <bigwig> macro (library) files.

2.6 Communicating Macro Information

In this section we will look at how the compiler handles and communicates in-
formation on macros to the programmer. This will happen in two cases. First of
all when the compiler reports errors. Secondly, when the compiler pretty prints
the code. Recall that these were our initial demands on the implementation.

If we did not have to communicate macros to the programmer, we could
simplify the entire implementation a lot. We would not need any internal rep-
resentation of macros in the sense that once expanded as plain sub-parse-trees
they could be completely ignored. After the parsing, we would thus have a
completely normal parse-tree. But since we do, we shall look at how this can be
extensively simplified, so that the fewest possible phases have to worry about
them.

2.6.1 Error Reporting

Usually, error reporting is done “on the spot” in a compiler, meaning that the
compiler signals any such precisely when they are determined.

Recall that we wanted the compiler to report along with the error, the com-
plete trail of macro invocations and arguments corresponding to the erroneous
point in order to aid debugging. Since a lot of phases will potentially be report-
ing errors, using the above scheme, would imply that a lot of phases needed to
be aware of the macros.

One idea, however, entails macro transparency for these phases. We shall
attach an error field to all the nodes in the parse tree. Whenever the compiler
discovers an error, it will report nothing, only assign this field an appropriate
error message. We can then see the reporting of errors as a special case of
pretty printing, where we silence the pretty printer except for when it reaches
non-empty error-fields.

This way, the analysis phases (that may want to report errors) can take the
weaved route around the parse tree, ignoring all macros.

Thus, the pretty printer is the only phase that needs to be aware of the
macros in order to print out the macro trail of calls and arguments. The pretty
printing of errors will be elaborated below.

Recall the dummy service “alpha” from before. If we change the “t++;” to
“x++;”, we have an undeclared identifier within two macro invocations. The
error printer, will report this appropriately:

**% alpha.wig:28:
Identifier ‘x’ not declared
in macroargument ¢S’

7

in macrocall ‘repeat’ (alpha.wig:28) defined in [alpha.wig:2]
in macroargument ¢S’
in macrocall ‘repeat’ (alpha.wig:26) defined in [alpha.wig:2]

2.6.2 Pretty Printing

Pretty printing the source code with all macros expanded is straightforward.
It basically amount to a recursive traversal of the parse tree according to the
non-terminals of the grammar while printing out appropriately the terminals.

However, as initially mentioned, we want to be able to pretty print the
source code with as well as without macro expansions. Without macros would,
of course, correspond to what the programmer wrote. To this end, the pretty
printer phase, unlike all the other phases, needs to be aware of how the macros
are represented internally in order to print them out correctly.

Fortunately, the internal representation of macros is explicit so that we can
take the route in the parse tree that allows us to see and thus stack all the
macrocalls and arguments. The explicit stacking of macro calls and arguments
is done completely as in the weaver in order to let us continue from where we
descended into a body or an actual argument in order to print it.

The reason why we use an explicit stack, and not just the (implicit) call stack
using recursion, is that it will be available at any point during pretty printing.
This has the nice property that whenever we encounter an error, we can run
through this stack and see the precise history of macro calls and arguments.
This is required in order to print out sensible error messages and it is precisely
because of this we can perceive the error reporting as an instance of pretty
printing. This way, the programmer and especially the macro programmer can
easily trail the error which will facilitate debugging.

Using this scheme we have made a very general pretty printer. It has two
parts pretty and print corresponding to non-terminals and terminals. The pretty
part will recursively descend the parse tree according to the grammar. Whenever
it needs to print out a terminal or to change the current indentation, it will
instruct the “printer” to do so.

The “printer” is a domain specific terminal printer meaning that it is capable
of printing out information for various domains. Currently, the <bigwig>
terminal printer supports four domains: ascii-text, IWTEX, <HTML> and
the special error mode.

Actually, the “printer” is implemented by means of function pointers pointing
to domain specific functions that will print out information tailored for the
particular domain. In order to pretty print for a given domain, all that needs to
be done is to set the function pointers to the routines for printing that domain
and call the pretty printer with the parse tree.

The terminals have been categorized, so that the printer can print the cate-
gories out differently, for instance, emphasizing keywords. The categories are:

e keyword;

e identifier;

78

e constant entity (bool, int, float, and string);
e macro entity (call, formal, argument use, separator, non-terminal);
e indention (nextline, indent, unindent); and

e whatever (the rest).

Since the pretty printing is done from the parse tree, the output thus does not
necessarily include of all the delimiting characters the programmer wrote. For
instance, the macro in Figure 2.25 invoked with the empty identifier-list would
give us A, X,Y,D and not A X,.Y,D when printed with all macros expanded.

Pretty Printing HTML

Our most sophisticated output is clearly that of the HTML domain. Here,
keywords are printed out in bold face and with a hyperlink to the appropriate
documentation page for the particular keyword.

Macro identifiers are by default printed out in blue and with a link to a
page containing the definition of the macro. Similarly, all non-terminals in the
macro definition header contain a hyperlink to the particular non-terminal in
the grammar.

In order to fully utilize the possibilities of HTML, we have augmented the set
of function pointers with two pairs, one for identifiers and one for expressions.
One will be called before, the other after having printing out the corresponding
syntactic category.

Thus, we can make an entire identifier a hyperlink which is exactly what has
been done. After symbol-checking we have made sure that all associated identi-
fiers contain unique numbers with the (arbitrary) convention that declarations
are positive and usages are the same, only negative. This has been exploited to
visualize use/def-chains with hyperlinks from identifier usages to definitions.

Similarly, the type of an expression can be obtained by clicking on it, in
which case it will be highlighted (in green) and its type will appear in the
browser’s status bar. Incidently, this will also explicitly reveal precedences of
operators, as one can easily see the extent of an expression.

Finally, we have done the exact same thing with errors so that they will
be highlighted in an appropriate red color and with the convention that when
clicked on, a small alert-window will pop up stating the error along with of
course the trail of macro calls and arguments, if any.

In order for the pretty printer to visualize symbol, type, and error informa-
tion in these ways, it will necessarily have to print information that has been
symbol-type- and otherwise checked. To this end, when printing without ex-
pansions, we do not let the pretty printer print information from the amaenwv.
Rather, we make sure, during parsing, to keep a pointer from the amaenv to
the copy of the actual macro argument, if there is exactly one such, so that we
can follow this one when printing macro actual arguments. Unlike the ones in
the amaenv, these are part of the parse tree and have been through the various

79

checking phases and thus contain the relevant information. Clearly, we can only
do this if the macro argument has exactly one macro usage. If there are no
usages, the actual will never get analyzed, and if there are more than one, the
different usages may contain different type, symbol, and error information.

However, maintaining such a pointer to the actual argument by assigning it
when the macro call is constructed is not enough. It does not work with nested
macro calls. A correctly handled macro call might later get copied because
of an outer macro call, messing up the last usage pointer. To this end, we—
much like stop-and-copy garbage collection—install a forward pointer in the
argument back to the copied amaenv that points to the argument. Whenever
we subsequently copy the argument and establish its location, we can go back
and update the call’s amaenv so that it will point to the copied argument.

For this reason, there is a small difference between the two repeat macros
presented in Figures 2.14 and 2.15. Since the first one has two usages of its
statement argument S, we cannot visualize it, whereas for the second we are
able to visualize the actual with type, symbol, and error information. Because
of this (and the fact that there is no blow-up in the size of the parse-tree), we
prefer the second.

To aid service development, we have made a useful feature in the compiler.
If so instructed, it will upon compilation cause the browser to autoload the
pretty printed HTML source code. In this way, the programmer can easily find
the errors—especially if there are macros involved as the body of a such is no
further than a click away.

Also, when a service is installed, the compiler can be made to pop up a (web
interfaced) service management page in the programmers browser.

2.7 The Split Feature

We have generalized the definition of macros, so as to allow multiple macros
bearing the same name, but under certain conditions. Clearly, we cannot cope
with two macros that are identical except for the body. They need to agree on
the result type and on all arguments, both the name and type, up until the point
where they eventually differ, and this must be on either a separator or a token—
that is, one of them has a separator or a token the other does not have. This is
for instance the case with the two macros si/si-sinon (French for if/if-else) in
Figure 2.29, that split on the identifier sinon. Incidently, it is in this way pos-
sible to “redefine” the entire syntax so as to permit the programmer to program
in, for instance, French (see http://www.brics.dk/bigwig/macro/le.bigmac for
an example of this).

We cannot have two macros that are identical up until a point where they
differ on the types of an argument as is the case with the two first macros in
Figure 2.30. The parser would not in general be able to guess which one to
parse without back-tracking. The exact same thing goes for two macros, one of
which was terminated while the other had a formal, as with the first and third
macros in Figure 2.30.

80

macro <stm> si (<exp E>) <stm S> :={

}

macro <stm> si (<exp E>) <stm S> sinon <stm S2> ::= {

}

if (E) S

if (E) S else S2

Figure 2.29: Macro Split Example: si/si-sinon

macro <stm> si (<exp E>) <stm S> 1= {
if (E) S

¥

macro <stm> si (<exp E>) <exp E> = {

¥

macro <stm> si (<ezp E>) = {

}

Figure 2.30: Illegal Splitting

81

While parsing a macro header, the parser will now see if another macro by
that name already existed. If so, it will move along the macroparam chain
and continually verify that the new macro complies with the arguments of the
one already defined. When they eventually split (on a separator or a token),
it will begin construction of a new macroparam chain corresponding to the
differing part of the new macro. This chain will be added to the separator /token
macroparam node on which they differed in the form of a split-pointer to the
new macroparam chain.

Whenever the parser reaches a macro invocation, it will continue as usual
through the macroparam chain while collecting the actual macro arguments.
Once it reaches a macroparam node where it has two possibilities (this can
only be a separator or a token), it will check the next token to see if it is
the specified separator or token. If this is the case, it will continue along the
macroparam chain, otherwise it will follow the split-pointer and thus proceed
along the alternate macroparam chain.

This split feature is exactly the reason why the line number and filename
information is placed in the last node in the macroparam chain and not in the
macro definition node (see Figure 2.24). The parser does not know which macro
it is parsing until it has actually reached the end node.

The split feature can thus be exploited to make a set of macros with different
arities as in Figure 2.31. However, this can only make macros with bounded
arities.

macro <ezp> and () = {
true

}

macro <ezp> and (<ezp E1>) = {
El

}

macro <ezp> and (<ezp E1> , <exp E2>) == {
(E1 && E2)

}

macro <exp> and (<ezp E1>, <exp E2> , <exp E3>) == {
(E1 && E2 && E3)

}

Figure 2.31: A Group of Macros with varying arities

82

2.8 Future Work

HTML macros

There are many ideas for future work. First of all, it would be useful if the
macros were extended to cope with html-macros. Such macros should probably
be invoked in a begin/end tag-style as would thus allow the programmer to define
his own html-tags. For instance, the programmer could define a macro mystyle
that would cause anything written between <mystyle> and </mystyle> to
appear in bold, italic, and blue.

Flexible Functions Syntax

Functions could be given the same flexible syntax, where all arguments are as-
sumed to be expressions and instead hold type information about the argument
(as in <int>). Similarly, the result type would be specified where the macro
holds its result non-terminal type. The body of such a function would of course
still be a statement. The next step in the generalization of functions would
perhaps be to support different parameter mechanisms like <*int>, <“int”>,
and <‘int’> for call-by-reference, call-by-name, and call-by-need, respectively.
Being a completely orthogonal augmentation, this really has nothing to do with
Macros.

Type Annotations

Another idea has to do with type annotations to the macro definition header.
One could allow the programmer to place type restrictions on expression ar-
guments that in turn would be verified by the type checker. In this way, the
programmer would get even more sensible errors, when attempting to use a
macro in an unfortunate way.

Macros with Requirements on Usage

This could be generalized even further. One could extend our work, allowing
constraints of perhaps varying nature to be defined along with the macros.
The compiler would, in turn, check (or rather analyze) the utilizations during
compilation accepting only usages that comply with the specified demands.

A Front-end Generator— MetaFront

By far the most prominent idea is the construction of a meta parser that would
take the specification of a grammar as input and produce an entire compiler
front end. We have seriously considered constructing such a tool, MetaFront,
that should inherently support macros on all specified non-terminals, pretty
printing for various domains, and all the other ideas presented in this chapter.
We would also like for the tool to support the ideas presented in YakYak [2]—
that is, the possibility of adding logical side-constraints to all productions in

83

the grammar that, in turn, would be enforced by the parser. Clearly some work
also needs to be done with regards to classifying exactly which grammars we
are able to embed with macros.

2.9 Conclusion

We have seen how a general macro language could be designed and implemented.
Also, we have seen how the macros provide a means for extending the language
and how the syntactic flexibilities allowed for such extensions to be transparent.

Additionally, we have seen how various design choices, have impacted on
the overall behavior of our macro language. For instance, how the immediate
treatment of macro calls in macro definitions yielded static macro scope rules.

Furthermore, we have seen how to error printing can be expressed as a special
case of pretty printing, enabling us to ignore the macros in all phases but this
one. And how to aid macro debugging by providing along with the complete
trail of macro calls and arguments.

Once again, we state that the ideas from the macro language presented are in
no respect specific to <bigwig> and can be incorporated into the vast majority
of other programming languages.

We are now ready to see how the two independent language introduced can
be combined to produce highly sophisticated concurrency control abstractions.

84

Chapter 3

Synthesis

3.1 Introduction

Both the constraint language and the macro language are interesting in their
own right, but when put together they form something perhaps even more so.
This will allow for complex concurrency control mechanisms to be defined and
used as if they were already in the language itself. Thus, programmers that are
unexperienced with concurrent aspects, will be able to handle them through the
use of various macro libraries. The synthesis of such mechanisms will be the
topic of investigation in this chapter.

Instead of presenting one big example, we shall exhibit a couple of small
but illustrative ones. It should be clear that all of these easily scale to large
scenarios.

3.2 A Chain of Development

In this section we will develop several well-known concurrency abstractions.
They will constructed so as to gradually increase in sophistication and all of
them will be constructed in terms of the ones previously introduced. This will
thus also constitute an intriguing example of how a language can be “evolved”
through the use of macros.

All examples have different flavors. Some will appear as they were primitives,
others as predicates, and others still will seem as if they were entire concepts.

3.2.1 Allow/Forbid-when

As previously promised, we were going to introduce the allow-when and forbid-
when constructs through the use of macros. As in Section 1.4.2, the first one
could be defined in terms of the restrict-by construct and the latter in terms
of the first (see Figure 3.1).

85

macro <formula> allow <id L> when <formula F> := {
all now: L(now) => restrict F by now

}

macro <formula> forbid <id L> when <formula F> ::= {
allow L when IF

}

Figure 3.1: Adding two primitives: allow-when and forbid-when

3.2.2 Mutex

Now the time has come to add another interesting macro, namely mutex as
considered in Figure 1.13. As shown in this figure, it can easily be constructed
using forbid-when. See Figure 3.2 for the definition of the macro.

macro <jformula> mutex (<id A> , <id B>) :={
forbid A when is t: A(t) &&

(all tt: t<tt => IB(tt))

Figure 3.2: mutex in terms of forbid-when

An Example Service

With this new construct, we are now ready to synthesize our first interactive web
service from the macros and constraints. We have placed all the macros intro-
duced so far in the library: “http://www.brics.dk/bigwig/macro/thesis.bigmac”,
which will be included by the service. The service (in Figure 3.3) uses two macros
directly, the invocations of which we have underlined. Thes service consists of
four constituents at top level: a constraint part, a document declaration, and
two sessions. The constraint part declares two labels A and B which are con-
strained by the macro mutex. The next part is a global variable declaration
of a constant html variable called Doc. The document has two holes lab and
no that can be plugged with various information. This is followed by two ses-
sions sesA and sesB, that will be repeating a simple task until the client checks
a quit-now radio button. The session sesA will repeatedly ask the controller
for permission to pass label A. When permission to continue is granted, it will
increase its local counter variable i to count the number of iterations and show

86

the document, with “A” and the value of i plugged into the appropriate holes.
The other session, sesB, will do the same thing, only for B.

Due to the mutex(A,B) safety requirement, this service, will never be able
to pass two A labels without having passed a B in between. The second request
to pass the label A will be delayed until this is a legal thing to do—that is, until
someone has passed a B.

3.2.3 Region

The idea of separating two mutex-related wait statements as above, hence ren-
dering them independent, although doable, it is perhaps not the most repre-
sentative usage. For real services, such two wait statements are more likely
to occur around critical regions, implementing exclusive access. Clearly, the
programmer does not want to explicitly add the mutex requirement and the
related wait statements each time he require exclusive access. Instead, it would
be nice if we were able to lift this so as to provide a higher level of abstraction
for the programmer. A level of abstraction that would hide away all the details
of labels and constraints. Once again we put the macros to work.

We shall employ the package simulation ideas described in Section 2.4.3,
defining a declaration macro and a usage macro (see Figure 3.4).

Clearly, this is useful to programmers that do not want to deal with con-
currency aspects themselves. The programmer only needs to “declare” a region,
invoking the macro region. Subsequent exclusive statements with the same
“declared” identifier will operate on the same region, granting exclusive access
to their statements within, so to speak.

The flavor of these two macros is perhaps somewhat different from what we
have seen thus far. This is really as if we have extended the <bigwig> language
with a whole new concept that was not there before—the concept of regions.

Assume, for instance, we were to protect a global variable, say x, using the
region concept. The identifier supplied to the region, declaring it, could very
well be x itself. Since the macros operate on concatenations of x and A or B,
there is no clash with the declaration of x, regardless of how it is defined.

3.2.4 Resource

In this section, we shall look at an even more sophisticated example. Recall
the Reader/Writer problem from Section 1.5 and the solution to the simplified
case without priorities in Figure 3.5. Using both the ideas and the macros
presented above, we shall define the concept of resources. There are two ways
of accessing a resource, namely that of reading and writing—corresponding to
the reader-writer problem. Giving the writers priority is handled by introducing
yet another trigger, this time counting the number of sessions that would like
to write but not yet have. The readers are thus only allowed when the label
R~P has never been taken or when this new trigger has fired at some point
after which no one has transgressed R~P. This will give the writers permission

87

#include <thesis.bigmac>

service {
constraint {
label A,B;
mutex(A,B);

}

const html Doc = <html>
<hl><Jlab]><[no]></h1><hr>
Quit Now? (
Yes <input type=radio name=quit value=true> /
No <input type=radio name=quit value=false checked>

)
</html>;

session sesA() {
int i;
bool quit;

repeat {

wait A;

i++;

show plug Doc[lab = “A”, no = i] receive [quit = quit];
} until (quit);

}

session sesB() {
int i;
bool quit;

repeat {

wait B;

i++;

show plug Doc[lab = “B", no = i] receive [quit = quit];
} until (quit);

Figure 3.3: A Service Example: mutex

88

macro <toplevel> region <id R> ; == {
constraint {
label R~A, R~B;
mutex(R~A, R~B);
}

macro <stm> exclusive (<id R>) <stm S> 1= {
{
wait R~A;
S
wait R~B;

}

}

Figure 3.4: region in terms of mutex

over the readers, as no new readers are allowed when someone wants to write.
Readers are of course still blocked while someone is in the process of writing.

3.2.5 Protected

Now we have reached the final example in this gradual language evolution chain.
We shall now make a minor extension to the resource macro above, providing
us with a declaration modifier. As can be seen in Figure 3.6, we have now
made it possible to transparently get the reader/writer functionality as if it
was a direct property of the variable declared, simply by sticking the “keyword”
protected in front. This is completely as, for instance, one does with the const
modifier when declaring constant variables. All this protected macro does is,
upon invocation to declare the associated variable using the specified name and
type and invoke the resource macro.

One might want to consider using the split feature here, adding a similar yet
slightly longer macro to support initialization expressions also.

3.3 An Example Service: RW

The example service presented in Figure 3.7 uses the protected macro and will
when run nicely illustrate the reader-writer problem. As one can see x is (trans-
parently) declared as a protected integer, meaning that we can use the reader
and writer macros on it, protecting it accordingly.

When the reader session R is run, it will flash a message saying that it is
waiting onto its associated html reply file (see Section 4 for further details).
This way, if it is blocked by writers, the client will see this appropriate message

89

macro <toplevel list> resource <id R>; = {
region R;

constraint {
label R~venterR, R~exitR;
label R~P;

trigger R~noR when #R~enterR == #R~exitR;
trigger R~noW when #R~P == #R~B;

allow R~enterR when never (R~P) ||
(is t: R~noW(t) && (all tt: t<tt => IR~P(tt)));
allow R~A when never (R~enterR) ||
(is t: R~noR(t) && (all tt: t<tt => !R~enterR(tt)));
}

}

macro <stm> reader (<id R>) <stm S> 1= {

{

wait R~enterR;
S
wait R~exitR;
¥
¥

macro <stm> writer (<id R>) <stm S> 1= {

{

wait R~P;
exclusive (R) S

}

}

Figure 3.5: resource in terms of region

macro <toplevel> protected <type T> <id V> ; == {
TV;

resource V;

}

Figure 3.6: protected in terms of resource

90

F#include <thesis.bigmac>

service {
protected int x;
int y;

session R() {
flash <html>Waiting to Read...</html>;
reader (x) {
y=x
show <html>Reading...</html>;

}

exit <html>Done Reading!</html>;
}

session W() {
flash <html>Waiting to Write...</html>;
writer (x) {
x=y+ 1
show <html>Writing...</html>;

¥
exit <html>Done Writing!</html>;

}

}

Figure 3.7: A Service Example: RW

91

(in the browser). If, however, it is not blocked, the session will enter the reader
part, thus blocking writers, read x and show a message stating that it is busy
reading. We intend this message to simulate the actual reading and thus give
the client time to experiment, starting new sessions before letting the session
terminate ‘reading”. Similarly for the writing session W.

Please note, that this is a highly dangerous example! The reason being, that
the client might decide to “leave” the session when it is occupying a resource,
blocking the entire service. An even worse thing to do, would be to exit or
break computation while blocking such a resouce. In general one should never
place shows or exits within the reader- or writer-statement. The example
above is intended only for illustrating the reader-writer problem only. The idea
of placing shows within reader-writer statements should not be copied, unless
fully intended.

3.4 Other Examples

3.4.1 Alternation

Before proceeding, we shall introduce a useful macro (see Figure 3.8), more-
recently-than, taking two identifiers (labels) and evaluating to true if and only
if the last of the two on the string seen so far is the first one. That is, if the
first is more recently seen than the second.

macro <formula> more - recently <id A> than <id B> 1= {
is t: A(t) && (all tt: t<tt => IB(tt))

}

Figure 3.8: more-recently

On session level this is not very interesing. On a global service level, however,
this has some concurrent aspects. To solve this, we shall introduce two labels,
A and B. Through the use of constraints we make sure that initially only A is
enabled and that passing an A, will enable B and disable A, and vice versa.
Clearly, at any point in time exactly one of them is enabled, the other not. We
alternate between the two statements by branching on the state of the controller,
using the generalized wait. The result can be seen in Figure 3.9.

3.4.2 Synchronization

The next example we shall look at is the task of synchronizing two sessions.
This can be done by letting both sessions pass two labels in sequence, a requst-
for-synchronization label and an acknowledge-synchronization label, whilst re-
stricting them appropriately.

92

macro <toplevel> alternation <id A> ; = {
constraint {
label A~first, A~second;
forbid A~first when
more-recently A~first than A~second;
forbid A~second when
more-recently A~second than A~first ||
never(A~first);

}

macro <stm> alternate (<id A>) <stm S1> and <stm 52> 1= {
wait {
case A~first:
S1
break;
case A~second:

S2

break;

Figure 3.9: Alternation

93

Before specifying the actual macros, we shall as with the alternation example,
introduce a macro second-latest (see Figure 3.10), that will help us. This time,
however, the macro introduced is somewhat specialized, in the sense that it is
probably not much useful, other than for building the synchronization macro.

macro <formula> second - latest of (<id A> , <id B>)
is <id C> == {
is tl: is t2: t1<t2 &&
C(t1) && (A(t2) || B(t2)) &&
(all t3: t1<t3 && t3 =12 =>
I(A(t3)] B(t3));

Figure 3.10: A rather specialized macro: second-latest

We are now ready to define the synchronization macros, however, we shall
refrain from giving a detailed explaination of the constraints involved.

macro <toplevel> synchronization <id S> ; ::= {
constraint {
label S~Req, S~Ack;
forbid S~Req when
second-latest of (S~Req, S~Ack) is S~Req;
forbid S~Ack when
second-latest of (S~Req, S~Ack) is S~Ack;
¥

macro <stm> synchronize (<id S>) ; = {
{
flash <html>Synchronizing, please wait...</html>;
wait S~Req;
wait S~Ack;

}

}

Figure 3.11: Synchronization

The above really only applies to cases where there are only two sessions, but
this is probably true for a wide varity of services. One could well imagine a whole
library dedicated to two-party communication, with lots of special constructions
and primitives that are relevant in such scenarios.

94

3.5 Conclusion

We have seen how the language could be gradually extended with new concepts.
In the end, the language evolution chain of macros developed, counted six levels:

restrict = allow — forbid - mutex — region — resource — protected

This can also be seen by clicking on these macros in the HTML pretty printed
source code for the example service above, RW.

Also, the macros introduced illustrate different “flavors”. The first macros,
allow-when and forbid-when are reminiscent of real language primitives,
whereas mutex seems more like a predicate. The region and resource macros
are more of the order of actual concepts, while the protected macro is used as
a declaration modifier.

More importantly, we have seen how various concurrency control mecha-
nisms could easily be synthesized. Similarly, lots of other mechanisms can be
constructed. We have from the macros and constraint language obtained highly
sophisticated mechanisms that can be used as if they were originally part of the
<bigwig> language.

95

Chapter 4

The Runtime System

96

Bibliography

[1] BrR1IAN W. KERNIGHAN, D. M. R. The (ansi) C Programming Language.
Prentice Hall, Inc., 1978.

[2] NIELS DAMGAARD, M. I. S.; AND KLARLUND, N. YakYak: Parsing with
Logical Side Constraints, 1998.

[3] SanpDHOLM, A. Decentralized Control of Discrete-Event Systems using
Monadic Second-Order Logic. ., August 1998.

[4] SANDHOLM, A., AND SCHWARTZBACH, M. I. Distributed Safety Controllers
for Web Services. In FASE 98 (1998), pp. 270-284.

[5] Tuomas H. CorMEN, C. E. L., aNnD RivesT, R. L. Introduction to
Algorithms. McGraw-Hill, Inc., 1989.

113

