
Chapter 9

Programming with Lists

9.1 List Primitives
In chapter 5 we noted that aggregate data structures are especially easy
to handle in ML. In this chapter we consider another important aggregate
type, the list type. In addition to being an important form of aggregate
type it also illustrates two other general features of the ML type system:

1. Type constructors, or parameterized types. The type of a list reveals the
type of its elements.

2. Recursive types. The set of values of a list type are given by an induc-
tive definition.

Informally, the values of type typ list are the finite lists of values of
type typ. More precisely, the values of type typ list are given by an in-
ductive definition, as follows:

1. nil is a value of type typ list.

2. if h is a value of type typ, and t is a value of type typ list, then h::t
is a value of type typ list.

3. Nothing else is a value of type typ list.

The type expression typ list is a postfix notation for the application
of the type constructor list to the type typ. Thus list is a kind of “func-
tion” mapping types to types: given a type typ, we may apply list to it
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to get another type, written typ list. The forms nil and :: are the value
constructors of type typ list. The nullary (no argument) constructor nil
may be thought of as the empty list. The binary (two argument) construc-
tor :: constructs a non-empty list from a value h of type typ and another
value t of type typ list; the resulting value, h::t, of type typ list, is pro-
nounced “h cons t” (for historical reasons). We say that “h is cons’d onto t”,
that h is the head of the list, and that t is its tail.

The definition of the values of type typ list given above is an example
of an inductive definition. The type is said to be recursive because this defi-
nition is “self-referential” in the sense that the values of type typ list are
defined in terms of (other) values of the same type. This is especially clear
if we examine the types of the value constructors for the type typ list:

val nil : typ list
val (op ::) : typ * typ list -> typ list

The notation op :: is used to refer to the :: operator as a function, rather
than to use it to form a list, which requires infix notation.

Two things are notable here:

1. The :: operation takes as its second argument a value of type typ
list, and yields a result of type typ list. This self-referential aspect
is characteristic of an inductive definition.

2. Both nil and op :: are polymorphic in the type of the underlying el-
ements of the list. Thus nil is the empty list of type typ list for
any element type typ, and op :: constructs a non-empty list inde-
pendently of the type of the elements of that list.

It is easy to see that a value val of type typ list has the form

val1::(val2:: (· · · ::(valn::nil)· · ·))

for some n ≥ 0, where vali is a value of type typi for each 1 ≤ i ≤ n.
For according to the inductive definition of the values of type typ list,
the value val must either be nil, which is of the above form, or val1::val′,
where val′ is a value of type typ list. By induction val′ has the form

(val2:: (· · · ::(valn::nil)· · ·))
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and hence val again has the specified form.
By convention the operator :: is right-associative, so we may omit the

parentheses and just write

val1::val2::· · ·::valn::nil

as the general form of val of type typ list. This may be further abbrevi-
ated using list notation, writing

[ val1, val2, ..., valn ]

for the same list. This notation emphasizes the interpretation of lists as
finite sequences of values, but it obscures the fundamental inductive char-
acter of lists as being built up from nil using the :: operation.

9.2 Computing With Lists
How do we compute with values of list type? Since the values are defined
inductively, it is natural that functions on lists be defined recursively, using
a clausal definition that analyzes the structure of a list. Here’s a definition
of the function length that computes the number of elements of a list:

fun length nil = 0
| length ( ::t) = 1 + length t

The definition is given by induction on the structure of the list argument.
The base case is the empty list, nil. The inductive step is the non-empty
list ::t (notice that we do not need to give a name to the head). Its defi-
nition is given in terms of the tail of the list t, which is “smaller” than the
list ::t. The type of length is ’a list -> int; it is defined for lists of
values of any type whatsoever.

We may define other functions following a similar pattern. Here’s the
function to append two lists:

fun append (nil, l) = l
| append (h::t, l) = h :: append (t, l)

This function is built into ML; it is written using infix notation as exp1 @
exp2. The running time of append is proportional to the length of the first
list, as should be obvious from its definition.

Here’s a function to reverse a list.
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fun rev nil = nil
| rev (h::t) = rev t @ [h]

Its running time is O(n2), where n is the length of the argument list. This
can be demonstrated by writing down a recurrence that defines the run-
ning time T(n) on a list of length n.

T(0) = O(1)
T(n + 1) = T(n) + O(n)

Solving the recurrence we obtain the result T(n) = O(n2).
Can we do better? Oddly, we can take advantage of the non-associativity

of :: to give a tail-recursive definition of rev.

local
fun helper (nil, a) = a
| helper (h::t, a) = helper (t, h::a)

in
fun rev’ l = helper (l, nil)

end

The general idea of introducing an accumulator is the same as before, ex-
cept that by re-ordering the applications of :: we reverse the list! The
helper function reverses its first argument and prepends it to its second
argument. That is, helper (l, a) evaluates to (rev l) @ a, where we
assume here an independent definition of rev for the sake of the specifica-
tion. Notice that helper runs in time proportional to the length of its first
argument, and hence rev’ runs in time proportional to the length of its
argument.

The correctness of functions defined on lists may be established using
the principle of structural induction. We illustrate this by establishing that
the function helper satisfies the following specification:

for every l and a of type typ list, helper(l, a) evaluates to
the result of appending a to the reversal of l.

That is, there are no pre-conditions on l and a, and we establish the post-
condition that helper (l, a) yields (rev l) @ a.

The proof is by structural induction on the list l. If l is nil, then helper
(l,a) evaluates to a, which fulfills the post-condition. If l is the list h::t,
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then the application helper (l, a) reduces to the value of helper (t,
(h::a)). By the inductive hypothesis this is just (rev t) @ (h :: a),
which is equivalent to (rev t) @ [h] @ a. But this is just rev (h::t) @
a, which was to be shown.

The principle of structural induction may be summarized as follows.
To show that a function works correctly for every list l, it suffices to show

1. The correctness of the function for the empty list, nil, and

2. The correctness of the function for h::t, assuming its correctness for
t.

As with mathematical induction over the natural numbers, structural in-
duction over lists allows us to focus on the basic and incremental behavior
of a function to establish its correctness for all lists.

9.3 Sample Code
Here is the code for this chapter.
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Chapter 10

Concrete Data Types

10.1 Datatype Declarations
Lists are one example of the general notion of a recursive type. ML provides
a general mechanism, the datatype declaration, for introducing programmer-
defined recursive types. Earlier we introduced type declarations as an ab-
breviation mechanism. Types are given names as documentation and as
a convenience to the programmer, but doing so is semantically inconse-
quential — one could replace all uses of the type name by its definition
and not affect the behavior of the program. In contrast the datatype dec-
laration provides a means of introducing a new type that is distinct from
all other types and that does not merely stand for some other type. It is the
means by which the ML type system may be extended by the programmer.

The datatype declaration in ML has a number of facets. A datatype
declaration introduces

1. One or more new type constructors. The type constructors intro-
duced may, or may not, be mutually recursive.

2. One or more new value constructors for each of the type constructors
introduced by the declaration.

The type constructors may take zero or more arguments; a zero-argument,
or nullary, type constructor is just a type. Each value constructor may
also take zero or more arguments; a nullary value constructor is just a
constant. The type and value constructors introduced by the declaration
are “new” in the sense that they are distinct from all other type and value
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10.2 Non-Recursive Datatypes 83

constructors previously introduced; if a datatype re-defines an “old” type
or value constructor, then the old definition is shadowed by the new one,
rendering the old ones inaccessible in the scope of the new definition.

10.2 Non-Recursive Datatypes
Here’s a simple example of a nullary type constructor with four nullary
value constructors.

datatype suit = Spades | Hearts | Diamonds | Clubs

This declaration introduces a new type suit with four nullary value con-
structors, Spades, Hearts, Diamonds, and Clubs. This declaration may be
read as introducing a type suit such that a value of type suit is either
Spades, or Hearts, or Diamonds, or Clubs. There is no significance to the
ordering of the constructors in the declaration; we could just as well have
written

datatype suit = Hearts | Diamonds | Spades | Clubs

(or any other ordering, for that matter). It is conventional to capitalize the
names of value constructors, but this is not required by the language.

Given the declaration of the type suit, we may define functions on it
by case analysis on the value constructors using a clausal function defini-
tion. For example, we may define the suit ordering in the card game of
bridge by the function

fun outranks (Spades, Spades) = false
| outranks (Spades, ) = true
| outranks (Hearts, Spades) = false
| outranks (Hearts, Hearts) = false
| outranks (Hearts, ) = true
| outranks (Diamonds, Clubs) = true
| outranks (Diamonds, ) = false
| outranks (Clubs, ) = false

This defines a function of type suit * suit -> bool that determines whether
or not the first suit outranks the second.

Data types may be parameterized by a type. For example, the declaration
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datatype ’a option = NONE | SOME of ’a

introduces the unary type constructor ’a option with two value construc-
tors, NONE, with no arguments, and SOME, with one. The values of type typ
option are

1. The constant NONE, and

2. Values of the form SOME val, where val is a value of type typ.

For example, some values of type string option are NONE, SOME "abc",
and SOME "def".

The option type constructor is pre-defined in Standard ML. One com-
mon use of option types is to handle functions with an optional argument.
For example, here is a function to compute the base-b exponential function
for natural number exponents that defaults to base 2:

fun expt (NONE, n) = expt (SOME 2, n)
| expt (SOME b, 0) = 1
| expt (SOME b, n) =
if n mod 2 = 0 then

expt (SOME (b*b), n div 2)
else

b * expt (SOME b, n-1)

The advantage of the option type in this sort of situation is that it avoids
the need to make a special case of a particular argument, e.g., using 0 as
first argument to mean “use the default exponent”.

A related use of option types is in aggregate data structures. For exam-
ple, an address book entry might have a record type with fields for various
bits of data about a person. But not all data is relevant to all people. For
example, someone may not have a spouse, but they all have a name. For
this we might use a type definition of the form

type entry = { name:string, spouse:string option }

so that one would create an entry for an unmarried person with a spouse
field of NONE.

Option types may also be used to represent an optional result. For
example, we may wish to define a function reciprocal that returns the
reciprocal of an integer, if it has one, and otherwise indicates that it has
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no reciprocal. This is achieve by defining reciprocal to have type int ->
int option as follows:

fun reciprocal 0 = NONE
| reciprocal n = SOME (1 div n)

To use the result of a call to reciprocal we must perform a case analysis of
the form

case (reciprocal exp
of NONE => exp1
| SOME r => exp2

where exp1 covers the case that exp has no reciprocal, and exp2 covers the
case that exp has reciprocal r.

10.3 Recursive Datatypes
The next level of generality is the recursive type definition. For example,
one may define a type typ tree of binary trees with values of type typ at
the nodes using the following declaration:

datatype ’a tree =
Empty |
Node of ’a tree * ’a * ’a tree

This declaration corresponds to the informal definition of binary trees with
values of type typ at the nodes:

1. The empty tree Empty is a binary tree.

2. If tree 1 and tree 2 are binary trees, and val is a value of type typ, then
Node (tree 1, val, tree 2) is a binary tree.

3. Nothing else is a binary tree.

The distinguishing feature of this definition is that it is recursive in the
sense that binary trees are constructed out of other binary trees, with the
empty tree serving as the base case.
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(Incidentally, a leaf in a binary tree is here represented as a node both of
whose children are the empty tree. This definition of binary trees is analo-
gous to starting the natural numbers with zero, rather than one. One can
think of the children of a node in a binary tree as the “predecessors” of that
node, the only difference compared to the usual definition of predecessor
being that a node has two, rather than one, predecessors.)

To compute with a recursive type, use a recursive function. For exam-
ple, here is the function to compute the height of a binary tree:

fun height Empty = 0
| height (Node (lft, , rht)) =
1 + max (height lft, height rht)

Notice that height is called recursively on the children of a node, and is
defined outright on the empty tree. This pattern of definition is another
instance of structural induction (on the tree type). The function height
is said to be defined by induction on the structure of a tree. The general
idea is to define the function directly for the base cases of the recursive
type (i.e., value constructors with no arguments or whose arguments do
not involve values of the type being defined), and to define it for non-base
cases in terms of its definitions for the constituent values of that type. We
will see numerous examples of this as we go along.

Here’s another example. The size of a binary tree is the number of
nodes occurring in it. Here’s a straightforward definition in ML:

fun size Empty = 0
| size (Node (lft, , rht)) =
1 + size lft + size rht

The function size is defined by structural induction on trees.
A word of warning. One reason to capitalize value constructors is to

avoid a pitfall in the ML syntax that we mentioned in chapter 2. Suppose
we gave the following definition of size:

fun size empty = 0
| size (Node (lft, , rht)) =
1 + size lft + size rht

The compiler will warn us that the second clause of the definition is redun-
dant! Why? Because empty, spelled with a lower-case “e”, is a variable, not
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a constructor, and hence matches any tree whatsoever. Consequently the
second clause never applies. By capitalizing constructors we can hope to
make mistakes such as these more evident, but in practice you are bound
to run into this sort of mistake.

The tree data type is appropriate for binary trees: those for which each
node has exactly two children. (Of course, either or both children might
be the empty tree, so we may consider this to define the type of trees with
at most two children; it’s a matter of terminology which interpretation you
prefer.) It should be obvious how to define the type of ternary trees, whose
nodes have at most three children, and so on for other fixed arities. But
what if we wished to define a type of trees with a variable number of chil-
dren? In a so-called variadic tree some nodes might have three children,
some might have two, and so on. This can be achieved in at least two
ways. One way combines lists and trees, as follows:

datatype ’a tree =
Empty |
Node of ’a * ’a tree list

Each node has a list of children, so that distinct nodes may have different
numbers of children. Notice that the empty tree is distinct from the tree
with one node and no children because there is no data associated with
the empty tree, whereas there is a value of type ’a at each node.

Another approach is to simultaneously define trees and “forests”. A
variadic tree is either empty, or a node gathering a “forest” to form a tree;
a forest is either empty or a variadic tree together with another forest. This
leads to the following definition:

datatype ’a tree =
Empty |
Node of ’a * ’a forest

and ’a forest =
None |
Tree of ’a tree * ’a forest

This example illustrates the introduction of two mutually recursive datatypes.
Mutually recursive datatypes beget mutually recursive functions. Here’s

a definition of the size (number of nodes) of a variadic tree:
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fun size tree Empty = 0
| size tree (Node ( , f)) = 1 + size forest f

and size forest None = 0
| size forest (Tree (t, f’)) = size tree t + size forest f’

Notice that we define the size of a tree in terms of the size of a forest, and
vice versa, just as the type of trees is defined in terms of the type of forests.

Many other variations are possible. Suppose we wish to define a notion
of binary tree in which data items are associated with branches, rather than
nodes. Here’s a datatype declaration for such trees:

datatype ’a tree =
Empty |
Node of ’a branch * ’a branch

and ’a branch =
Branch of ’a * ’a tree

In contrast to our first definition of binary trees, in which the branches
from a node to its children were implicit, we now make the branches them-
selves explicit, since data is attached to them.

For example, we can collect into a list the data items labelling the branches
of such a tree using the following code:

fun collect Empty = nil
| collect (Node (Branch (ld, lt), Branch (rd, rt))) =
ld :: rd :: (collect lt) @ (collect rt)

10.4 Heterogeneous Data Structures
Returning to the original definition of binary trees (with data items at the
nodes), observe that the type of the data items at the nodes must be the
same for every node of the tree. For example, a value of type int tree
has an integer at every node, and a value of type string tree has a string at
every node. Therefore an expression such as

Node (Empty, 43, Node (Empty, "43", Empty))

is ill-typed. The type system insists that trees be homogeneous in the sense
that the type of the data items is the same at every node.
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It is quite rare to encounter heterogeneous data structures in real pro-
grams. For example, a dictionary with strings as keys might be repre-
sented as a binary search tree with strings at the nodes; there is no need
for heterogeneity to represent such a data structure. But occasionally one
might wish to work with a heterogeneous tree, whose data values at each
node are of different types. How would one represent such a thing in ML?

To discover the answer, first think about how one might manipulate
such a data structure. When accessing a node, we would need to check
at run-time whether the data item is an integer or a string; otherwise we
would not know whether to, say, add 1 to it, or concatenate "1" to the
end of it. This suggests that the data item must be labelled with sufficient
information so that we may determine the type of the item at run-time. We
must also be able to recover the underlying data item itself so that familiar
operations (such as addition or string concatenation) may be applied to it.

The required labelling and discrimination is neatly achieved using a
datatype declaration. Suppose we wish to represent the type of integer-
or-string trees. First, we define the type of values to be integers or strings,
marked with a constructor indicating which:

datatype int or string =
Int of int |
String of string

Then we define the type of interest as follows:

type int or string tree =
int or string tree

Voila! Perfectly natural and easy — heterogeneity is really a special case of
homogeneity!

10.5 Abstract Syntax
Datatype declarations and pattern matching are extremely useful for defin-
ing and manipulating the abstract syntax of a language. For example, we
may define a small language of arithmetic expressions using the following
declaration:
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datatype expr =
Numeral of int |
Plus of expr * expr |
Times of expr * expr

This definition has only three clauses, but one could readily imagine adding
others. Here is the definition of a function to evaluate expressions of the
language of arithmetic expressions written using pattern matching:

fun eval (Numeral n) = Numeral n
| eval (Plus (e1, e2)) =
let

val Numeral n1 = eval e1
val Numeral n2 = eval e2

in
Numeral (n1+n2)

end
| eval (Times (e1, e2)) =
let

val Numeral n1 = eval e1
val Numeral n2 = eval e2

in
Numeral (n1*n2)

end

The combination of datatype declarations and pattern matching con-
tributes enormously to the readability of programs written in ML. A less
obvious, but more important, benefit is the error checking that the com-
piler can perform for you if you use these mechanisms in tandem. As an
example, suppose that we extend the type expr with a new component for
the reciprocal of a number, yielding the following revised definition:

datatype expr =
Numeral of int |
Plus of expr * expr |
Times of expr * expr |
Recip of expr

First, observe that the “old” definition of eval is no longer applicable to
values of type expr! For example, the expression
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eval (Plus (Numeral 1, Numeral 2))

is ill-typed, even though it doesn’t use the Recip constructor. The reason is
that the re-declaration of expr introduces a “new” type that just happens
to have the same name as the “old” type, but is in fact distinct from it. This
is a boon because it reminds us to recompile the old code relative to the
new definition of the expr type.

Second, upon recompiling the definition of eval we encounter an inex-
haustive match warning: the old code no longer applies to every value of
type expr according to its new definition! We are of course lacking a case
for Recip, which we may provide as follows:

fun eval (Numeral n) = Numeral n
| eval (Plus (e1, e2)) = ... as before ...
| eval (Times (e1, e2)) = ... as before ...
| eval (Recip e) =
let

val Numeral n = eval e
in

Numeral (1 div n)
end

The value of the checks provided by the compiler in such cases cannot be
overestimated. When recompiling a large program after making a change
to a datatype declaration the compiler will automatically point out every
line of code that must be changed to conform to the new definition; it is
impossible to forget to attend to even a single case. This is a tremendous
help to the developer, especially if she is not the original author of the code
being modified and is another reason why the static type discipline of ML
is a positive benefit, rather than a hindrance, to programmers.

10.6 Sample Code
Here is the code for this chapter.
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