
Chapter 15

Lazy Data Structures

In ML all variables are bound by value, which means that the bindings of
variables are fully evaluated expressions, or values. This general principle
has several consequences:

1. The right-hand side of a val binding is evaluated before the binding
is effected. If the right-hand side has no value, the val binding does
not take effect.

2. In a function application the argument is evaluated before being passed
to the function by binding that value to the parameter of the func-
tion. If the argument does not have a value, then neither does the
application.

3. The arguments to value constructors are evaluated before the con-
structed value is created.

According to the by-value discipline, the bindings of variables are evalu-
ated, regardless of whether that variable is ever needed to complete ex-
ecution. For example, to compute the result of applying the function fn
x => 1 to an argument, we never actually need to evaluate the argument,
but we do anyway. For this reason ML is sometimes said to be an eager
language.

An alternative is to bind variables by name,1 which means that the bind-
ing of a variable is an unevaluated expression, known as a computation or a

1The terminology is historical, and not well-motivated. It is, however, firmly estab-
lished.

130

131

suspension or a thunk.2 This principle has several consequences:

1. The right-hand side of a val binding is not evaluated before the bind-
ing is effected. The variable is bound to a computation (unevaluated
expression), not a value.

2. In a function application the argument is passed to the function in
unevaluated form by binding it directly to the parameter of the func-
tion. This holds regardless of whether the argument has a value or
not.

3. The arguments to value constructor are left unevaluated when the
constructed value is created.

According to the by-name discipline, the bindings of variables are only
evaluated (if ever) when their values are required by a primitive operation.
For example, to evaluate the expression x+x, it is necessary to evaluate the
binding of x in order to perform the addition. Languages that adopt the
by-name discipline are, for this reason, said to be lazy.

This discussion glosses over another important aspect of lazy evalua-
tion, called memoization. In actual fact laziness is based on a refinement
of the by-name principle, called the by-need principle. According to the by-
name principle, variables are bound to unevaluated computations, and are
evaluated only as often as the value of that variable’s binding is required
to complete the computation. In particular, to evaluate the expression x+x
the value of the binding of x is needed twice, and hence it is evaluated
twice. According to the by-need principle, the binding of a variable is
evaluated at most once — not at all, if it is never needed, and exactly once if
it ever needed at all. Re-evaluation of the same computation is avoided by
memoization. Once a computation is evaluated, its value is saved for future
reference should that computation ever be needed again.

The advantages and disadvantages of lazy vs. eager languages have
been hotly debated. We will not enter into this debate here, but rather con-
tent ourselves with the observation that laziness is a special case of eagerness.
(Recent versions of) ML have lazy data types that allow us to treat uneval-
uated computations as values of such types, allowing us to incorporate
laziness into the language without disrupting its fundamental character

2For reasons that are lost in the mists of time.

AUGUST 25, 2006 WORKING DRAFT

15.1 Lazy Data Types 132

on which so much else depends. This affords the benefits of laziness, but
on a controlled basis — we can use it when it is appropriate, and ignore it
when it is not.

The main benefit of laziness is that it supports demand-driven computa-
tion. This is useful for representing on-line data structures that are created
only insofar as we examine them. Infinite data structures, such as the se-
quence of all prime numbers in order of magnitude, are one example of
an on-line data structure. Clearly we cannot ever “finish” creating the se-
quence of all prime numbers, but we can create as much of this sequence
as we need for a given run of a program. Interactive data structures, such
as the sequence of inputs provided by the user of an interactive system,
are another example of on-line data structures. In such a system the user’s
inputs are not pre-determined at the start of execution, but rather are cre-
ated “on demand” in response to the progress of computation up to that
point. The demand-driven nature of on-line data structures is precisely
what is needed to model this behavior.

Note: Lazy evaluation is a non-standard feature of ML that is supported
only by the SML/NJ compiler. The lazy evaluation features must be en-
abled by executing the following at top level:

Compiler.Control.lazysml := true;
open Lazy;

15.1 Lazy Data Types
SML/NJ provides a general mechanism for introducing lazy data types by
simply attaching the keyword lazy to an ordinary datatype declaration.
The ideas are best illustrated by example. We will focus attention on the
type of infinite streams, which may be declared as follows:

datatype lazy ’a stream = Cons of ’a * ’a stream

Notice that this type definition has no “base case”! Had we omitted the
keyword lazy, such a datatype would not be very useful, since there
would be no way to create a value of that type!

Adding the keyword lazy makes all the difference. Doing so specifies
that the values of type typ stream are computations of values of the form

Cons (val, val′),

AUGUST 25, 2006 WORKING DRAFT

15.2 Lazy Function Definitions 133

where val is of type typ, and val′ is another such computation. Notice how
this description captures the “incremental” nature of lazy data structures.
The computation is not evaluated until we examine it. When we do, its
structure is revealed as consisting of an element val together with another
suspended computation of the same type. Should we inspect that compu-
tation, it will again have this form, and so on ad infinitum.

Values of type typ stream are created using a val rec lazy declara-
tion that provides a means for building a “circular” data structure. Here
is a declaration of the infinite stream of 1’s as a value of type int stream:

val rec lazy ones = Cons (1, ones)

The keyword lazy indicates that we are binding ones to a computation,
rather than a value. The keyword rec indicates that the computation is
recursive (or self-referential or circular). It is the computation whose under-
lying value is constructed using Cons (the only possibility) from the integer
1 and the very same computation itself.

We can inspect the underlying value of a computation by pattern match-
ing. For example, the binding

val Cons (h, t) = ones

extracts the “head” and “tail” of the stream ones. This is performed by
evaluating the computation bound to ones, yielding Cons (1, ones), then
performing ordinary pattern matching to bind h to 1 and t to ones.

Had the pattern been “deeper”, further evaluation would be required,
as in the following binding:

val Cons (h, (Cons (h’, t’)) = ones

To evaluate this binding, we evaluate ones to Cons (1, ones), binding h
to 1 in the process, then evaluate ones again to Cons (1, ones), binding
h’ to 1 and t’ to ones. The general rule is pattern matching forces evaluation
of a computation to the extent required by the pattern. This is the means by
which lazy data structures are evaluated only insofar as required.

15.2 Lazy Function Definitions
The combination of (recursive) lazy function definitions and decomposi-
tion by pattern matching are the core mechanisms required to support lazy

AUGUST 25, 2006 WORKING DRAFT

15.2 Lazy Function Definitions 134

evaluation. However, there is a subtlety about function definitions that re-
quires careful consideration, and a third new mechanism, the lazy function
declaration.

Using pattern matching we may easily define functions over lazy data
structures in a familiar manner. For example, we may define two functions
to extract the head and tail of a stream as follows:

fun shd (Cons (h,)) = h
fun stl (Cons (, s)) = s

These are functions that, when applied to a stream, evaluate it, and match
it against the given patterns to extract the head and tail, respectively.

While these functions are surely very natural, there is a subtle issue that
deserves careful discussion. The issue is whether these functions are “lazy
enough”. From one point of view, what we are doing is decomposing a
computation by evaluating it and retrieving its components. In the case
of the shd function there is no other interpretation — we are extracting a
value of type typ from a value of type typ stream, which is a computation
of a value of the form Cons (exph, expt). We can adopt a similar view-
point about stl, namely that it is simply extracting a component value
from a computation of a value of the form Cons (exph, expt).

However, in the case of stl, another point of view is also possible.
Rather than think of stl as extracting a value from a stream, we may in-
stead think of it as creating a stream out of another stream. Since streams
are computations, the stream created by stl (according to this view) should
also be suspended until its value is required. Under this interpretation the
argument to stl should not be evaluated until its result is required, rather
than at the time stl is applied. This leads to a variant notion of “tail” that
may be defined as follows:

fun lazy lstl (Cons (, s)) = s

The keyword lazy indicates that an application of lstl to a stream does
not immediately perform pattern matching on its argument, but rather sets
up a stream computation that, when forced, forces the argument and ex-
tracts the tail of the stream.

The behavior of the two forms of tail function can be distinguished
using print statements as follows:

AUGUST 25, 2006 WORKING DRAFT

15.3 Programming with Streams 135

val rec lazy s = (print "."; Cons (1, s))
val = stl s (* prints "." *)
val = stl s (* silent *)

val rec lazy s = (print "."; Cons (1, s));
val = lstl s (* silent *)
val = stl s (* prints "." *)

Since stl evaluates its argument when applied, the “.” is printed when it
is first called, but not if it is called again. However, since lstl only sets
up a computation, its argument is not evaluated when it is called, but only
when its result is evaluated.

15.3 Programming with Streams
Let’s define a function smap that applies a function to every element of a
stream, yielding another stream. The type of smap should be (’a -> ’b)
-> ’a stream -> ’b stream. The thing to keep in mind is that the appli-
cation of smap to a function and a stream should set up (but not compute)
another stream that, when forced, forces the argument stream to obtain
the head element, applies the given function to it, and yields this as the
head of the result.

Here’s the code:

fun smap f =
let

fun lazy loop (Cons (x, s)) =
Cons (f x, loop s)

in
loop

end

We have “staged” the computation so that the partial application of smap
to a function yields a function that loops over a given stream, applying
the given function to each element. This loop is a lazy function to en-
sure that it merely sets up a stream computation, rather than evaluating
its argument when it is called. Had we dropped the keyword lazy from
the definition of the loop, then an application of smap to a function and a
stream would immediately force the computation of the head element of

AUGUST 25, 2006 WORKING DRAFT

15.3 Programming with Streams 136

the stream, rather than merely set up a future computation of the same
result.

To illustrate the use of smap, here’s a definition of the infinite stream
of natural numbers:

val one plus = smap (fn n => n+1)
val rec lazy nats = Cons (0, one plus nats)

Now let’s define a function sfilter of type

(’a -> bool) -> ’a stream -> ’a stream

that filters out all elements of a stream that do not satisfy a given predicate.

fun sfilter pred =
let

fun lazy loop (Cons (x, s)) =
if pred x then

Cons (x, loop s)
else

loop s
in

loop
end

We can use sfilter to define a function sieve that, when applied to a
stream of numbers, retains only those numbers that are not divisible by a
preceding number in the stream:

fun m mod n = m - n * (m div n)
fun divides m n = n mod m = 0
fun lazy sieve (Cons (x, s)) =

Cons (x, sieve (sfilter (not o (divides x)) s))

(This example uses o for function composition.)
We may now define the infinite stream of primes by applying sieve to

the natural numbers greater than or equal to 2:

val nats2 = stl (stl nats)
val primes = sieve nats2

AUGUST 25, 2006 WORKING DRAFT

15.4 Sample Code 137

To inspect the values of a stream it is often useful to use the following
function that takes n ≥ 0 elements from a stream and builds a list of those
n values:

fun take 0 = nil
| take n (Cons (x, s)) = x :: take (n-1) s

Here’s an example to illustrate the effects of memoization:

val rec lazy s = Cons ((print "."; 1), s)
val Cons (h,) = s;
(* prints ".", binds h to 1 *)
val Cons (h,) = s;
(* silent, binds h to 1 *)

Replace print ".";1 by a time-consuming operation yielding 1 as result,
and you will see that the second time we force s the result is returned
instantly, taking advantage of the effort expended on the time-consuming
operation induced by the first force of s.

15.4 Sample Code
Here is the code for this chapter.

AUGUST 25, 2006 WORKING DRAFT

