
In this lecture we will be starting to work on the problem how to migrate data
from one table to the other, and how to do it in a sound way. We have already
seen something about database normalization, but what we will be seeing today
is slightly different, more basic if you want.

As a homework assignment you have seen the database for all of the Lufthansa
Cargo flights. Let’s concentrate on the projection of the large table that only
contained flight numbers FNR, air plane types ACTYPE and the corresponding full
name ACTYPEFULLNAME.

1 Worlds

Recall from many lectures ago, I said, that the database could be seen as a
list of facts, and some rules that define the valid operations. We also named
the facts. For example, we would use the following judgments to describe the
database: FNR, ACTYPE, ACTYPEFULLNAME and FLIGHT for the relation that we
are actually interested in. We can then look at the following list of facts,

LH101 : FNR, LH102 : FNR,

319 : ACTYPE, Airbus_319 : ACTTYPEFULLNAME,

t1 : FLIGHT LH101 319 Airbus_319,

t2 : FLIGHT LH102 319 Airbus_319

More abstractly. Let us refer to an arbitrary list of facts of this kind as ∆
(pronounced delta), and we call it a world, because the facts listed in ∆ simply
describe what we know about a world and what we do not.

2 Operations

The worlds are not really static, they evolve over time. New facts are being
added, old ones removed. Because we work with digital artifacts, it should be
easy for us to define what operations we would like to support on a database.
For example, consider the situation that we would like to schedule another flight,
for example, LH103 to our world ∆, but LH103 does not fly an Airbus 319, but
a Boing 737. Depending if the Boing 737 has already been introduced, we need
to add a declaration of ACTYPE and a new declaration of ACTYPEFULLNAME.

We give operations names, such as insert f a b or delete f . Note the
lower case syntax.

We use inference rules to describe the operational behavior of these oper-
ations. An inference rule consists of a line with multiple premisses above the
line, and multiple conclusions below the line. We say that an inference rule
fires, if all of the facts in the premiss list can be found in the database. When
an inference rules fires, it removes all of the premisses and replaces them by
the conclusions of the firing rule. We say ∆ is valid, if all operations, such as
insert and delete have been resolved.
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The first inference rule describes how we add a new flight number using
equipment that is already used on another flight. Let’s say we need to add
a flight f using an aircraft of type a. Furthermore, let’s assume that in the
database, there is already a flight f ′ that uses an aircraft of type a for which we
know the name. Then the result is that the database needs to contain to items
one for flight f and one for flight f ′.

FLIGHT f ′ a b insert f a b
insert1

FLIGHT f ′ a b FLIGHT f a b

Another rule says that it is perfectly legal to add a declaration FLIGHT f a b
as long the world does not contain other declarations FLIGHT ? a ? that mention
an aircraft of type a.

insert f a b
insert2

FLIGHT f a b

Similarly, we can imagine a delete operation.

FLIGHT f a b delete f
delete

Depending on how complicated we would like to make things, these opera-
tions can get more and more complicated. For example, the insert operation
may actually check for duplicates. Flight numbers should be unique. A delete

only deletes one flight of a particular flight number, but if the database allows
duplicate flights with the same number, we would actually have to iterate to
remove all occurrences.

3 Functional Dependencies

Let’s revisit the idea of functional dependencies. Without any additional knowl-
edge about ∆, there is nothing we can do. If we know, whoever that there is
a functional dependency in play, such as ACTYPE ⇒ ACTYPEFULLNAME then we
could try to decompose the judgment FLIGHT into two other judgments, let’s
call then FLIGHT’ and AIRCRAFT, and we can then rewrite the ∆ into another
list of facts, let’s call that Γ, staying in the Greek tradition.

A functional dependency is a good example of something that we can explain
with our operations. Instead of saying that the current state of the database
fulfills a functional dependency, it is a better thing to prove that with the given
operations, starting from the empty world, all database states that are reachable
with the operations will satisfy the functional dependencies. We use the history
traces of the database to argue for its logical properties.

Now we can formally prove that the all possible database states reachable
by our rules imply functional dependencies.

Theorem 3.1 Let ∆ valid and be derived according to the rules above. Then if
FLIGHT f a b ∈ ∆ and FLIGHT f ′ a b′ ∈ ∆ then b = b′.
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The proof goes by induction on the length of the rewriting steps.

4 Translation

Next, we will be looking into splitting FLIGHT into FLIGHT’ and AIRCRAFT,
where FLIGHT′ f a is relation between f :FNR and a : ACTYPE and AIRCRAFT is
a relation between a : ACTYPE and ACTYPEFULLNAME. We write Γ for the new
world to contrast it against ∆ from above.

AIRCRAFT a b insert f a b
insert′1

AIRCRAFT a b FLIGHT′ f a

Here, assuming that AIRCRAFT a b′ and b 6= b′, then then the above rule simply
doesn’t fire, and the world will never be valid.

The side condition for the next rule is that the world does not contain other
declarations AIRCRAFT a ? that mention an aircraft of type a.

insert f a b
insert′2

AIRCRAFT a b, insert f a b

Similarly, we can imagine a delete operation.

FLIGHT′ f a delete f
delete1

Finally, we can define a relation between between ∆ and Γ, which just tells
us how to map declarations in ∆ into declarations in Γ:

[∆, FLIGHT f a b] = [∆], FLIGHT′ f a if AIRCRAFT a b ∈ [∆]
[∆, FLIGHT f a b] = [∆], FLIGHT′ f a, AIRCRAFT a b if AIRCRAFT a b 6∈ [∆]

With this mapping we can show that

Theorem 4.1 For all derivation D of ∆ from the first set of rules above, we
can translate it into a derivation D′ of [∆] with the second rules above.

Proof: The proof again is a simple structural induction over the derivation of
D. We distinguish three cases.

Case: Last applied rule is insert1: ∆ = ∆0, FLIGHT f ′ a b, FLIGHT f a b and
in the previous world, we have ∆′ = ∆0, FLIGHT f ′ a b, where we inserted
operation insert f a b. By induction hypothesis, we have that there
is a derivation D′ of [∆′] = [∆0, FLIGHT f ′ a b]. No matter if there is
another flight FLIGHT f ′′ a b ∈ ∆0 or not, AIRCRAFT a b ∈ [∆′]. Thus after
reinserting the insert operation into the world Γ′ = [∆′], insert f a b
we may apply of insert′1 and end up in the world Γ = [∆′], FLIGHT f a.
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All that remains to show is that that [∆] = Γ:

[∆] = [∆0, FLIGHT f ′ a b, FLIGHT f a b]

= [∆′], FLIGHT f a

= Γ

Cases: Last applied rule is insert2 or delete. Analogous to the previous case.

�

What we have shown here, is that our operations are somehow compatible.
Furthermore, we have shown that we can convince ourselves by checking the few
operations, case by case, that no matter what the old database schema allowed
us to derive, the new one will allow us to do exactly the same. Therefore, we
can sleep tight at night.

5 Migration

The idea to change the operations while preserving meaning, e.g. related worlds
are being mapped to related worlds, is the central idea to help us do data
migration. When we look carefully at the proof of the previous theorem, we can
actually read out how the different operations are translated. For example, the
rule insert1 is simply replaced by rule insert2 (case 1), and similarly, insert2
is replaced by rule insert′2 followed by insert′1 and delete is replaced by
delete′. This observation helps us to formulate migration SQL expressions.

Assuming that all FLIGHT f a b declarations in a world are stored in a table
that was created as follows,

create table FLIGHT

(FNR varchar (5),

ACTYPE varchar(3),

ACTYPEFULLNAME varchar(30)

);

we can do the transformation by splitting this relation into FLIGHT′ f a and
AIRCRAFT a b:

create table FLIGHT’

( FNR varchar (5),

ACTYPE varchar(3)

);

insert into FLIGHT’

select FNR, ACTYPE from FLIGHT;

and
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create table AIRCRAFT

( ACTYPE varchar(3),

ACTYPEFULLNAME varchar(30)

);

insert into AIRCRAFT

select DISTINCT ACTYPE, ACTYPEFULLNAME from FLIGHT;

We see that while ∆ was stored in table FLIGHT, we can convince ourselves
that [∆] is now appropriately stored in tables FLIGHT’ and AIRCRAFT. What we
have done is to use the knowledge that we have gained about how to relate ∆
and Γ and simply expressed this relationship as SQL expressions.

In principle we can now handle any kind of migration. I would like to point
out a few examples though.

Example 5.1 (Factoring) Under factoring, we understand the operation that
we have described in this section. If we notice that redundant information is
contained in a database (i.e. the database is neither in BCNF or 3NF), we
can split a table in two smaller (just as we have learned it when we discussed
normalization theory earlier this semester.

Example 5.2 (Finite expansion) Under finite expansion, we refer to the fact
that that there is a field that can only take finitely many values, for example
a record that includes a date interval, such as 12.12.2010 – 15.12.2010. Finite
expansion may be applied, if a field can only take finitely many valued, such as
{12.12, 13.12, 14.12, 15.12}, which means that that we need to duplicate record
finitely many times (here four times, for every date in the interval).

Example 5.3 (Finite contraction) This situation is the opposite of finite
expansion. The world can be partioned into several (possibly infinitely many)
groups, where each group differs only in finitely many attributes. If it is possible
to identify the groups (for example in form of an interval), then replace each
partition by a unique representative in the world.
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