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Classification of Physical Storage MediaClassification of Physical Storage Media

Speed with which data can be accessed
Cost per unit of data
Reliability

data loss on power failure or system crash
physical failure of the storage device

Can differentiate storage into:
volatile storage: loses contents when power is switched off
non-volatile storage: 

Contents persist even when power is switched off. 
Includes secondary and tertiary storage, as well as 
battery-backed up main-memory.
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Physical Storage MediaPhysical Storage Media

Cache – fastest and most costly form of storage; volatile; managed 
by the computer system hardware

(Note: “Cache” is pronounced as “cash”)
Main memory:

fast access (10s to 100s of nanoseconds; 1 nanosecond = 10–9

seconds)
generally too small (or too expensive) to store the entire 
database

capacities of up to a few Gigabytes widely used currently
Capacities have gone up and per-byte costs have 
decreased steadily and rapidly  (roughly factor of 2 every 2 
to 3 years)

Volatile — contents of main memory are usually lost if a power 
failure or system crash occurs.
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Physical Storage Media (Cont.)Physical Storage Media (Cont.)

Flash memory
Data survives power failure
Data can be written at a location only once, but location can be erased and 
written to again 

Can support only a limited number (10K – 1M) of write/erase cycles.
Erasing of memory has to be done to an entire  bank of memory 

Reads are roughly as fast as main memory
But writes are slow (few microseconds), erase is slower
NOR Flash

Fast reads, very slow erase, lower capacity
Used to store program code in many embedded devices

NAND Flash
Page-at-a-time read/write, multi-page erase
High capacity (several GB)
Widely used as data storage mechanism in portable devices



©Silberschatz, Korth and Sudarshan11.6Database System Concepts - 5th Edition

Physical Storage Media (Cont.)Physical Storage Media (Cont.)

Magnetic-disk
Data is stored on spinning disk, and read/written magnetically
Primary medium for the long-term storage of data; typically stores 
entire database.
Data must be moved from disk to main memory for access, and 
written back for storage
direct-access – possible to read data on disk in any order, 
unlike magnetic tape
Capacities range up to roughly 750 GB currently (mid 2006)

Much larger capacity and cost/byte than main memory/flash 
memory
Growing constantly and rapidly with technology improvements 
(factor of 2 to 3 every 2 years)

Survives power failures and system crashes
disk failure can destroy data: is rare but does happen
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Physical Storage Media (Cont.)Physical Storage Media (Cont.)

Optical storage
non-volatile, data is read optically from a spinning disk using a laser 
CD-ROM (640 MB) and DVD (4.7 to 17 GB) most popular forms
Write-one, read-many (WORM) optical disks used for archival 
storage (CD-R, DVD-R, DVD+R)
Multiple write versions also available (CD-RW, DVD-RW, DVD+RW, 
and DVD-RAM)
Reads and writes are slower than with magnetic disk 
Juke-box systems, with large numbers of removable disks, a few 
drives, and a mechanism for automatic loading/unloading of disks
available for storing large volumes of data
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Physical Storage Media (Cont.)Physical Storage Media (Cont.)

Tape storage
non-volatile, used primarily for backup (to recover from disk 
failure), and for archival data
sequential-access – much slower than disk 
very high capacity (40 to 300 GB tapes available)
tape can be removed from drive ⇒ storage costs much cheaper 
than disk, but drives are expensive
Tape jukeboxes available for storing massive amounts of data 

hundreds of terabytes (1 terabyte = 109 bytes) to even a 
petabyte (1 petabyte = 1012 bytes)
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Storage HierarchyStorage Hierarchy
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Storage Hierarchy (Cont.)Storage Hierarchy (Cont.)

primary storage: Fastest media but volatile (cache, main memory).
secondary storage: next level in hierarchy, non-volatile, moderately 
fast access time

also called on-line storage
E.g. flash memory, magnetic disks

tertiary storage: lowest level in hierarchy, non-volatile, slow access 
time

also called off-line storage
E.g. magnetic tape, optical storage
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Magnetic Hard Disk MechanismMagnetic Hard Disk Mechanism

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives
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Magnetic DisksMagnetic Disks

Read-write head
Positioned very close to the platter surface (almost touching it)
Reads or writes magnetically encoded information.

Surface of platter divided into circular tracks
Over 50K-100K tracks per platter on typical hard disks

Each track is divided into sectors.
Sector size typically 512 bytes
Typical sectors per track: 500 (on inner tracks) to 1000 (on outer 
tracks)

To read/write a sector
disk arm swings to position head on right track
platter spins continually; data is read/written as sector passes under 
head
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Magnetic Disks (Cont.)Magnetic Disks (Cont.)

Head-disk assemblies 
multiple disk platters on a single spindle (1 to 5 usually)
one head per platter, mounted on a common arm.

Cylinder i consists of ith track of all the platters 
Earlier generation disks were susceptible to “head-crashes” leading to 
loss of all data on disk

Current generation disks are less susceptible to such disastrous
failures, but individual sectors may get corrupted
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Disk ControllerDisk Controller

Disk controller – interfaces between the computer system and the disk 
drive hardware.

accepts high-level commands to read or write a sector
initiates actions such as moving the disk arm to the right track and 
actually reading or writing the data
Computes and attaches checksums to each sector to verify that data 
is read back correctly

If data is corrupted, with very high probability stored checksum
won’t match recomputed checksum

Ensures successful writing by reading back sector after writing it
Performs remapping of bad sectors
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Disk SubsystemDisk Subsystem

Multiple disks connected to a computer system through a controller
Controllers functionality (checksum, bad sector remapping) often
carried out by individual disks; reduces load on controller

Disk interface standards families
ATA (AT adaptor) range of standards
SATA (Serial ATA)
SCSI (Small Computer System Interconnect) range of standards
Several variants of each standard (different speeds and capabilities)



©Silberschatz, Korth and Sudarshan11.16Database System Concepts - 5th Edition

Performance Measures of DisksPerformance Measures of Disks
Access time – the time it takes from when a read or write request is issued 
to when data transfer begins.  Consists of: 

Seek time – time it takes to reposition the arm over the correct track. 
Average seek time is 1/2 the worst case seek time.
– Would be 1/3 if all tracks had the same number of sectors, and 

we ignore the time to start and stop arm movement
4 to 10 milliseconds on typical disks

Rotational latency – time it takes for the sector to be accessed to 
appear under the head. 

Average latency is 1/2 of the worst case latency.
4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)
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Performance Measures (Cont.)Performance Measures (Cont.)

Data-transfer rate – the rate at which data can be retrieved from or stored 
to the disk.

25 to 100 MB per second max rate, lower for inner tracks
Multiple disks may share a controller, so rate that controller can handle 
is also important

E.g. ATA-5: 66 MB/sec, SATA: 150 MB/sec, Ultra 320 SCSI: 320 
MB/s
Fiber Channel (FC2Gb): 256 MB/s

Mean time to failure (MTTF) – the average time the disk is expected to 
run continuously without any failure.

Typically 3 to 5 years
Probability of failure of new disks is quite low, corresponding to a
“theoretical MTTF” of 500,000 to 1,200,000 hours for a new disk

E.g., an MTTF of 1,200,000 hours for a new disk means that given
1000 relatively new disks, on an average one will fail every 1200 
hours

MTTF decreases as disk ages
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Optimization of DiskOptimization of Disk--Block AccessBlock Access

Block – a contiguous sequence of sectors from a single track 
data is transferred between disk and main memory in blocks 
sizes range from 512 bytes to several kilobytes

Smaller blocks: more transfers from disk
Larger blocks:  more space wasted due to partially filled blocks
Typical block sizes today range from 4 to 16 kilobytes

Disk-arm-scheduling algorithms order pending accesses to tracks so 
that disk arm movement is minimized 

elevator algorithm : move disk arm in one direction (from outer to 
inner tracks or vice versa), processing next request in that 
direction, till no more requests in that direction, then reverse
direction and repeat
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Optimization of Disk Block Access (Cont.)Optimization of Disk Block Access (Cont.)

File organization – optimize block access time by organizing the 
blocks to correspond to how data will be accessed

E.g.  Store related information on the same or nearby 
blocks/cylinders.

File systems attempt to allocate contiguous chunks of blocks 
(e.g. 8 or 16 blocks) to a file

Files may get fragmented over time
E.g. if data is inserted to/deleted from the file
Or free blocks on disk are scattered, and newly created file has
its blocks scattered over the disk
Sequential access to a fragmented file results in increased disk
arm movement

Some systems have utilities to defragment the file system, in order 
to speed up file access



©Silberschatz, Korth and Sudarshan11.20Database System Concepts - 5th Edition

Nonvolatile write buffers speed up disk writes by writing blocks to a non-volatile 
RAM buffer immediately

Non-volatile RAM:  battery backed up RAM or flash memory
Even if power fails, the data is safe and will be written to disk when power 
returns

Controller then writes to disk whenever the disk has no other requests or 
request has been pending for some time
Database operations that require data to be safely stored before continuing can 
continue without waiting for data to be written to disk
Writes can be reordered to minimize disk arm movement

Log disk – a disk devoted to writing a sequential log of block updates
Used exactly like nonvolatile RAM

Write to log disk is very fast since no seeks are required
No need for special hardware (NV-RAM)

File systems typically reorder writes to disk to improve performance
Journaling file systems write data in safe order to NV-RAM or log disk
Reordering without journaling: risk of corruption of file system data

Optimization of Disk Block Access (Cont.)Optimization of Disk Block Access (Cont.)
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RAIDRAID

RAID: Redundant Arrays of Independent Disks
disk organization techniques that manage a large numbers of disks, 
providing a view of a single disk of

high capacity and high speed by using multiple disks in parallel, 
and
high reliability by storing data redundantly, so that data can be 
recovered even if  a disk fails

The chance that some disk out of a set of N disks will fail is much higher 
than the chance that a specific single disk will fail.

E.g., a system with 100 disks, each with MTTF of 100,000 hours
(approx.  11 years), will have a system MTTF of 1000 hours (approx. 
41 days)

Originally a cost-effective alternative to large, expensive disks
I in RAID originally stood for ``inexpensive’’
Today RAIDs are used for their higher reliability and bandwidth.

The “I” is interpreted as independent
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Improvement of Reliability via RedundancyImprovement of Reliability via Redundancy

Redundancy – store extra information that can be used to rebuild 
information lost in a disk failure
E.g., Mirroring (or shadowing)

Duplicate every disk.  Logical disk consists of two physical disks.
Every write is carried out on both disks

Reads can take place from either disk
If one disk in a pair fails, data still available in the other

Data loss would occur only if a disk fails, and its mirror disk also 
fails before the system is repaired
– Probability of combined event is very small

» Except for dependent failure modes such as fire or 
building collapse or electrical power surges

Mean time to data loss depends on mean time to failure, 
and mean time to repair

E.g. MTTF of 100,000 hours, mean time to repair of 10 hours gives 
mean time to data loss of 500*106 hours (or 57,000 years) for a 
mirrored pair of disks (ignoring dependent failure modes)
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Improvement in Performance via ParallelismImprovement in Performance via Parallelism

Two main goals of parallelism in a disk system:
1. Load balance multiple small accesses to increase throughput
2. Parallelize large accesses to reduce response time.

Improve transfer rate by striping data across multiple disks.
Bit-level striping – split the bits of each byte across multiple disks

In an array of eight disks, write bit i of each byte to disk i.
Each access can read data at eight times the rate of a single disk.
But seek/access time worse than for a single disk

Bit level striping is not used much any more
Block-level striping – with n disks, block i of a file goes to disk (i mod 
n) + 1

Requests for different blocks can run in parallel if the blocks reside 
on different disks
A request for a long sequence of blocks can utilize all disks in
parallel
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RAID LevelsRAID Levels

Schemes to provide redundancy at lower cost by using disk striping 
combined with parity bits

Different RAID organizations, or RAID levels, have differing cost, 
performance and reliability characteristics

RAID Level 1:  Mirrored disks with block striping
Offers best write performance.
Popular for applications such as storing log files in a database system.

RAID Level 0:  Block striping; non-redundant.
Used in high-performance applications where data lost is not critical.
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RAID Levels (Cont.)RAID Levels (Cont.)

RAID Level 2:  Memory-Style Error-Correcting-Codes (ECC) with bit 
striping.
RAID Level 3: Bit-Interleaved Parity

a single parity bit is enough for error correction, not just detection, since 
we know which disk has failed

When writing data, corresponding parity bits must also be computed 
and written to a parity bit disk
To recover data in a damaged disk, compute XOR of bits from other 
disks (including parity bit disk)
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RAID Levels (Cont.)RAID Levels (Cont.)

RAID Level 3 (Cont.)
Faster data transfer than with a single disk, but fewer I/Os per
second since every disk has to participate in every I/O.
Subsumes Level 2 (provides all its benefits, at lower cost).

RAID Level 4: Block-Interleaved Parity; uses block-level striping, and 
keeps a parity block on a separate disk for corresponding blocks from N
other disks.

When writing data block, corresponding block of parity bits must
also be computed and written to parity disk
To find value of a damaged block, compute XOR of bits from 
corresponding blocks (including parity block) from other disks.
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RAID Levels (Cont.)RAID Levels (Cont.)

RAID Level 4 (Cont.)
Provides higher I/O rates for independent block reads than Level 3

block read goes to a single disk, so blocks stored on different 
disks can be read in parallel

Provides high transfer rates for reads of multiple blocks than no-
striping
Before writing a block, parity data must be computed

Can be done by using old parity block, old value of current 
block and new value of current block (2 block reads + 2 block 
writes)
Or by recomputing the parity value using the new values of 
blocks corresponding to the parity block
– More efficient for writing large amounts of data sequentially

Parity block becomes a bottleneck for independent block writes 
since every block write also writes to parity disk
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RAID Levels (Cont.)RAID Levels (Cont.)

RAID Level 5: Block-Interleaved Distributed Parity; partitions data 
and parity among all N + 1 disks, rather than storing data in N disks 
and parity in 1 disk.

E.g., with 5 disks, parity block for nth set of blocks is stored on 
disk (n mod 5) + 1, with the data blocks stored on the other 4 
disks.
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RAID Levels (Cont.)RAID Levels (Cont.)

RAID Level 5 (Cont.)
Higher I/O rates than Level 4.  

Block writes occur in parallel if the blocks and their parity 
blocks are on different disks.

Subsumes Level 4: provides same benefits, but avoids bottleneck 
of parity disk.

RAID Level 6: P+Q Redundancy scheme; similar to Level 5, but 
stores extra redundant information to guard against multiple disk 
failures. 

Better reliability than Level 5 at a higher cost; not used as widely. 
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Choice of RAID LevelChoice of RAID Level

Factors in choosing RAID level
Monetary cost
Performance: Number of I/O operations per second, and 
bandwidth during normal operation
Performance during failure
Performance during rebuild of failed disk

Including time taken to rebuild failed disk
RAID 0 is used only when data safety is not important

E.g. data can be recovered quickly from other sources
Level 2 and 4 never used since they are subsumed by 3 and 5
Level 3 is not used since bit-striping forces single block reads to 
access all disks, wasting disk arm movement, which block striping 
(level 5) avoids
Level 6 is rarely used since levels 1 and 5 offer adequate safety for 
almost all applications
So competition is between 1 and 5 only
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Choice of RAID Level (Cont.)Choice of RAID Level (Cont.)

Level 1 provides much better write performance than level 5
Level 5 requires at least 2 block reads and 2 block writes to write a 
single block, whereas Level 1 only requires 2 block writes
Level 1 preferred for high update environments such as log disks

Level 1 had higher storage cost than level 5
disk drive capacities increasing rapidly (50%/year) whereas disk
access times have decreased much less (x 3 in 10 years)
I/O requirements have increased greatly, e.g. for Web servers
When enough disks have been bought to satisfy required rate of I/O, 
they often have spare storage capacity

so there is often no extra monetary cost for Level 1!
Level 5 is preferred for applications with low update rate,
and large amounts of data
Level 1 is preferred for all other applications
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Hardware IssuesHardware Issues

Software RAID:  RAID implementations done entirely in software, with 
no special hardware support
Hardware RAID:  RAID implementations with special hardware

Use non-volatile RAM to record writes that are being executed
Beware:  power failure during write can result in corrupted disk

E.g. failure after writing one block but before writing the second 
in a mirrored system
Such corrupted data must be detected when power is restored
– Recovery from corruption is similar to recovery from failed 

disk
– NV-RAM helps to efficiently detected potentially corrupted 

blocks
» Otherwise all blocks of disk must be read and compared 

with mirror/parity block
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Hardware Issues (Cont.)Hardware Issues (Cont.)

Hot swapping: replacement of disk while system is running, without 
power down

Supported by some hardware RAID systems, 
reduces time to recovery, and improves availability greatly

Many systems maintain spare disks which are kept online, and used 
as replacements for failed disks immediately on detection of failure

Reduces time to recovery greatly
Many hardware RAID systems ensure that a single point of failure will 
not stop the functioning of the system by using 

Redundant power supplies with battery backup
Multiple controllers and multiple interconnections to guard against 
controller/interconnection failures
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RAID Terminology in the IndustryRAID Terminology in the Industry

RAID terminology not very standard in the industry
E.g. Many vendors use

RAID 1:  for mirroring without striping
RAID 10 or RAID 1+0:  for mirroring with striping

“Hardware RAID” implementations often just offload RAID 
processing onto a separate subsystem, but don’t offer NVRAM. 

Read the specs carefully!
Software RAID supported directly in most operating systems today
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Optical DisksOptical Disks
Compact disk-read only memory (CD-ROM)

Removable disks, 640 MB per disk
Seek time about 100 msec (optical read head is heavier and slower)
Higher latency (3000 RPM) and lower data-transfer rates (3-6 MB/s) 
compared to magnetic disks

Digital Video Disk (DVD)
DVD-5  holds 4.7 GB , and DVD-9 holds 8.5 GB
DVD-10 and DVD-18 are double sided formats with capacities of 9.4 
GB and 17 GB
Slow seek time, for same reasons as CD-ROM

Record once versions (CD-R and DVD-R) are popular
data can only be written once, and cannot be erased.
high capacity and long lifetime; used for archival storage
Multi-write versions (CD-RW, DVD-RW, DVD+RW and DVD-RAM) 
also available
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Magnetic TapesMagnetic Tapes

Hold large volumes of data and provide high transfer rates
Few GB for DAT (Digital Audio Tape) format, 10-40 GB with DLT 
(Digital Linear Tape) format, 100 – 400 GB+ with Ultrium format, 
and 330 GB with Ampex helical scan format
Transfer rates from few to 10s of MB/s

Currently the cheapest storage medium
Tapes are cheap, but cost of drives is very high

Very slow access time in comparison to magnetic disks and optical 
disks

limited to sequential access.
Some formats (Accelis) provide faster seek (10s of seconds) at 
cost of lower capacity

Used mainly for backup, for storage of infrequently used information, 
and as an off-line medium for transferring information from one system 
to another.
Tape jukeboxes used for very large capacity storage

(terabyte (1012 bytes) to petabye (1015 bytes)
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Storage AccessStorage Access

A database file is partitioned into fixed-length storage units called 
blocks.  Blocks are units of both storage allocation and data transfer.
Database system seeks to minimize the number of block transfers 
between the disk and memory.  We can reduce the number of disk 
accesses by keeping as many blocks as possible in main memory.
Buffer – portion of main memory available to store copies of disk 
blocks.
Buffer manager – subsystem responsible for allocating buffer space 
in main memory.
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Buffer ManagerBuffer Manager

Programs call on the buffer manager when they need a block from disk. 
Buffer manager does the following:

If the block is already in the buffer, return the address of the block in 
main memory

1. If the block is not in the buffer
1. Allocate space in the buffer for the block

1. Replacing (throwing out) some other block, if required, to 
make space for the new block.

2. Replaced block written back to disk only if it was modified 
since the most recent time that it was written to/fetched from 
the disk.

2. Read the block from the disk to the buffer, and return the 
address of the block in main memory to requester. 
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BufferBuffer--Replacement PoliciesReplacement Policies

Most operating systems replace the block least recently used (LRU 
strategy)
Idea behind LRU – use past pattern of block references as a predictor of 
future references
Queries have well-defined access patterns (such as sequential scans), and 
a database system can use the information in a user’s query to predict future 
references

LRU can be a bad strategy for certain access patterns involving 
repeated scans of data

e.g. when computing the join of 2 relations r and s by a nested loops 
for each tuple tr of r do 

for each tuple ts of s do 
if the tuples tr and ts match …

Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable
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BufferBuffer--Replacement Policies (Cont.)Replacement Policies (Cont.)

Pinned block – memory block that is not allowed to be written back 
to disk.
Toss-immediate strategy – frees the space occupied by a block as 
soon as the final tuple of that block has been processed
Most recently used (MRU) strategy – system must pin the block 
currently being processed.  After the final tuple of that block has 
been processed, the block is unpinned, and it becomes the most 
recently used block.
Buffer manager can use statistical information regarding the 
probability that a request will reference a particular relation

E.g., the data dictionary is frequently accessed.  Heuristic:  keep 
data-dictionary blocks in main memory buffer

Buffer managers also support forced output of blocks for the 
purpose of recovery (more in Chapter 17)
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File OrganizationFile Organization

The database is stored as a collection of files.  Each file is a sequence 
of records.  A record is a sequence of fields.
One approach:

assume record size is fixed
each file has records of one particular type only 
different files are used for different relations

This case is easiest to implement; will consider variable length
records later.
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FixedFixed--Length RecordsLength Records

Simple approach:
Store record i starting from byte n ∗ (i – 1), where n is the size of 
each record.
Record access is simple but records may cross blocks

Modification: do not allow records to cross block boundaries
Deletion of record i: 
alternatives:

move records i + 1, . . ., n
to i, . . . , n – 1
move record n to i
do not move records, but 
link all free records on a
free list
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Free ListsFree Lists

Store the address of the first deleted record in the file header.
Use this first record to store the address of the second deleted record, 
and so on
Can think of these stored addresses as pointers since they “point” to 
the location of a record.
More space efficient representation:  reuse space for normal attributes 
of free records to store pointers.  (No pointers stored in in-use records.)
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VariableVariable--Length RecordsLength Records

Variable-length records arise in database systems in several 
ways:

Storage of multiple record types in a file.
Record types that allow variable lengths for one or more fields.
Record types that allow repeating fields (used in some older 
data models).
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VariableVariable--Length Records: Slotted Page Length Records: Slotted Page 
StructureStructure

Slotted page header contains:
number of record entries
end of free space in the block
location and size of each record

Records can be moved around within a page to keep them contiguous 
with no empty space between them; entry in the header must be 
updated.
Pointers should not point directly to record — instead they should 
point to the entry for the record in header.
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Organization of Records in FilesOrganization of Records in Files

Heap – a record can be placed anywhere in the file where there is 
space
Sequential – store records in sequential order, based on the value of 
the search key of each record
Hashing – a hash function computed on some attribute of each 
record; the result specifies in which block of the file the record should 
be placed
Records of each relation may be stored in a separate file. In a 
multitable clustering file organization records of several different 
relations can be stored in the same file

Motivation: store related records on the same block to minimize 
I/O
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Sequential File OrganizationSequential File Organization

Suitable for applications that require sequential processing of 
the entire file 
The records in the file are ordered by a search-key
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Sequential File Organization (Cont.)Sequential File Organization (Cont.)

Deletion – use pointer chains
Insertion –locate the position where the record is to be inserted

if there is free space insert there 
if no free space, insert the record in an overflow block
In either case, pointer chain must be updated

Need to reorganize the file
from time to time to restore
sequential order
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MultitableMultitable Clustering File OrganizationClustering File Organization

Store several relations in one file using a multitable clustering
file organization
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MultitableMultitable Clustering File Organization (cont.)Clustering File Organization (cont.)

Multitable clustering organization of customer and depositor:

good for queries involving depositor customer, and for 
queries involving one single customer and his accounts
bad for queries involving only customer
results in variable size records
Can add pointer chains to link records of a particular relation
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Data Dictionary StorageData Dictionary Storage

Information about relations
names of relations
names and types of attributes of each relation
names and definitions of views
integrity constraints

User and accounting information, including passwords
Statistical and descriptive data

number of tuples in each relation
Physical file organization information

How relation is stored (sequential/hash/…)
Physical location of relation 

Information about indices (Chapter 12) 

Data dictionary (also called system catalog) stores metadata: 
that is, data about data, such as
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Data Dictionary Storage (Cont.)Data Dictionary Storage (Cont.)

Catalog structure
Relational representation on disk
specialized data structures designed for efficient access, in 
memory

A possible catalog representation:

Relation_metadata =  (relation_name, number_of_attributes, 
storage_organization, location)

Attribute_metadata =  (attribute_name, relation_name, domain_type, 
position, length)

User_metadata =        (user_name, encrypted_password, group)
Index_metadata =      (index_name, relation_name, index_type, 

index_attributes)
View_metadata =       (view_name, definition)
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Record RepresentationRecord Representation

Records with fixed length fields are easy to represent
Similar to records (structs) in programming languages
Extensions to represent  null values

E.g. a bitmap indicating which attributes are null
Variable length fields can be represented by a pair

(offset,length) 
where offset is the location within the record and length is field length. 

All fields start at predefined location, but extra indirection required 
for variable length fields

Example record structure of account record

account_number
branch_name

balance

PerryridgeA-102 40010 000

null-bitmap
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File Containing File Containing account account RecordsRecords
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File of Figure 11.6, with Record 2 Deleted and File of Figure 11.6, with Record 2 Deleted and 
All Records MovedAll Records Moved
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File of Figure 11.6, With Record 2 deleted and File of Figure 11.6, With Record 2 deleted and 
Final Record MovedFinal Record Moved
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ByteByte--String Representation of VariableString Representation of Variable--Length Length 
RecordsRecords
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Clustering File StructureClustering File Structure
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Clustering File Structure With Pointer ChainsClustering File Structure With Pointer Chains
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The The depositordepositor RelationRelation
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The The customer customer RelationRelation
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Clustering File StructureClustering File Structure
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Figure 11.4Figure 11.4
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Figure 11.7Figure 11.7
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Figure 11.8Figure 11.8
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Figure 11.20Figure 11.20
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ByteByte--String Representation of VariableString Representation of Variable--Length RecordsLength Records

Byte string representation
Attach an end-of-record (⊥) control character to the end of each record
Difficulty with deletion
Difficulty with growth
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FixedFixed--Length RepresentationLength Representation

Use one or more fixed length records: 
reserved space
pointers

Reserved space – can use fixed-length records of a known 
maximum length; unused space in shorter records filled with a null 
or end-of-record symbol.
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Pointer MethodPointer Method

Pointer method
A variable-length record is represented by a list of fixed-length 
records, chained together via pointers.
Can be used even if the maximum record length is not known
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Pointer Method (Cont.)Pointer Method (Cont.)

Disadvantage to pointer structure; space is wasted in all 
records except the first in a a chain.
Solution is to allow two kinds of block in file:

Anchor block – contains the first records of chain
Overflow block – contains records other than those that 
are the first records of chairs.
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Mapping of Objects to FilesMapping of Objects to Files

Mapping objects to files is similar to mapping tuples to files in a 
relational system; object data can be stored using file structures.
Objects in O-O databases may lack uniformity and may be very large; 
such objects have to managed differently from records in a relational 
system.

Set fields with a small number of elements may be implemented 
using data structures such as linked lists.  
Set fields with a larger number of elements may be implemented as 
separate relations in the database.
Set fields can also be eliminated at the storage level by 
normalization.

Similar to conversion of multivalued attributes of E-R diagrams to 
relations
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Mapping of Objects to Files (Cont.)Mapping of Objects to Files (Cont.)

Objects are identified by an object identifier (OID); the storage system 
needs a mechanism to locate an object given its OID (this action is 
called dereferencing).

logical identifiers do not directly specify an object’s physical 
location; must maintain an index that maps an OID to the object’s 
actual location.
physical identifiers encode the location of the object so the 
object can be found directly.  Physical OIDs typically have the 
following parts:
1.  a volume or file identifier
2.  a page identifier within the volume or file
3.  an offset within the page
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Management of Persistent PointersManagement of Persistent Pointers

Physical OIDs may be a unique identifier.  This identifier is 
stored in the object also and is used to detect references via 
dangling pointers. 
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Management of Persistent Pointers Management of Persistent Pointers 
(Cont.)(Cont.)

Implement persistent pointers using OIDs; persistent pointers are 
substantially longer than are in-memory pointers 
Pointer swizzling cuts down on cost of locating persistent objects 
already in-memory.
Software swizzling (swizzling on pointer deference)

When a persistent pointer is first dereferenced, the pointer is 
swizzled (replaced by an in-memory pointer) after the object is 
located in memory.
Subsequent dereferences of of the same pointer become cheap.
The physical location of an object in memory must not change if 
swizzled pointers pont to it; the solution is to pin pages in memory
When an object is written back to disk, any swizzled pointers it
contains need to be unswizzled.
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Hardware SwizzlingHardware Swizzling

With hardware swizzling, persistent pointers in objects need the 
same amount of space as in-memory pointers — extra storage 
external to the object is used to store rest of pointer information.
Uses virtual memory translation mechanism to efficiently and 
transparently convert between persistent pointers and in-memory 
pointers.
All persistent pointers in a page are swizzled when the page is 
first read in. 

thus programmers have to work with just one type of pointer, 
i.e., in-memory pointer.
some of the swizzled pointers may point to virtual memory 
addresses that are currently not allocated any real memory 
(and do not contain valid data) 
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Hardware SwizzlingHardware Swizzling

Persistent pointer is conceptually split into two parts:  a page identifier, 
and an offset within the page.

The page identifier in a pointer is a short indirect pointer: Each 
page has a translation table that provides a mapping from the 
short page identifiers to full database page identifiers.
Translation table for a page is small (at most 1024 pointers in a 
4096 byte page with 4 byte pointer)
Multiple pointers in page to the same page share same entry in 
the translation table.
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Hardware Swizzling (Cont.)Hardware Swizzling (Cont.)

Page image before swizzling (page located on disk)
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Hardware Hardware SwizzlingSwizzling (Cont.)(Cont.)

When system loads a page into memory the persistent pointers in the page 
are swizzled as described below
1. Persistent pointers in each object in the page are located using object 

type information
2. For each persistent pointer (pi, oi)  find its full page ID Pi 

1. If Pi does not already have a virtual memory page allocated to it, 
allocate a virtual memory page to Pi and read-protect the page

Note: there need not be any physical space (whether in memory 
or on disk swap-space) allocated for the virtual memory page at 
this point.  Space can be allocated later if (and when) Pi is 
accessed.  In this case read-protection is not required.
Accessing a memory location in the page in the will result in a 
segmentation violation, which is handled as described later 

2. Let vi be the virtual page allocated to Pi (either earlier or above)
3. Replace (pi, oi) by (vi, oi) 

3. Replace each entry (pi, Pi) in the translation table, by (vi, Pi) 
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Hardware Swizzling (Cont.)Hardware Swizzling (Cont.)

When an in-memory pointer is dereferenced, if the operating 
system detects the page it points to has not yet been allocated 
storage, or is read-protected, a segmentation violation occurs.
The mmap() call in Unix is used to specify a function to be invoked 
on segmentation violation
The function does the following when it is invoked
1. Allocate storage (swap-space) for the page containing the 

referenced address, if storage has not been allocated earlier.  
Turn off read-protection

2. Read in the page from disk
3. Perform pointer swizzling for each persistent pointer in the 

page, as described earlier
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Hardware Swizzling (Cont.)Hardware Swizzling (Cont.)

Page with short page identifier 2395 was allocated address 5001.
Observe change in pointers and translation table.
Page with short page identifier 4867 has been allocated address 
4867.  No change in pointer and translation table.

Page image after swizzling
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Hardware Swizzling (Cont.)Hardware Swizzling (Cont.)

After swizzling, all short page identifiers point to virtual memory addresses 
allocated for the corresponding pages

functions accessing the objects are not even aware that it has 
persistent pointers, and do not need to be changed in any way!
can reuse existing code and libraries that use in-memory pointers

After this, the pointer dereference that triggered the swizzling can continue
Optimizations:

If all pages are allocated the same address as in the short page
identifier, no changes required in the page!
No need for deswizzling — swizzled page can be saved as-is to disk
A set of pages (segment) can share one translation table. Pages can 
still be swizzled as and when fetched (old copy of translation table is 
needed).

A process should not access more pages than size of virtual memory —
reuse of virtual memory addresses for other pages is expensive
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Disk versus Memory Structure of ObjectsDisk versus Memory Structure of Objects

The format in which objects are stored in memory may be different from 
the formal in which they are stored on disk in the database.  Reasons 
are:

software swizzling – structure of persistent and in-memory pointers 
are different
database accessible from different machines, with different data
representations
Make the physical representation of objects in the database 
independent of the machine and the compiler.
Can transparently convert from disk representation to form required 
on the specific machine, language, and compiler, when the object
(or page) is brought into memory. 
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Large ObjectsLarge Objects

Large objects : binary large objects (blobs) and character large 
objects (clobs)

Examples include: 
text documents
graphical data such as images and computer aided designs 
audio and video data

Large objects may need to be stored in a contiguous sequence of 
bytes when brought into memory.

If an object is bigger than a page, contiguous pages of the buffer 
pool must be allocated to store it.
May be preferable to disallow direct access to data, and only allow 
access through a file-system-like API, to remove need for 
contiguous storage.
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Modifying Large ObjectsModifying Large Objects

If the application requires insert/delete of bytes from specified regions of 
an object:

B+-tree file organization (described later in Chapter 12) can be 
modified to represent large objects
Each leaf page of the tree stores between half and 1 page worth of 
data from the object

Special-purpose application programs outside the database are used to 
manipulate large objects:

Text data treated as a byte string manipulated by editors and 
formatters.
Graphical data and audio/video data is typically created and displayed 
by separate application
checkout/checkin method for concurrency control and creation of 
versions
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