
Introduction to Database Design 1

On-Line Analytical Processing

Rasmus Pagh

Reading: RG25, [WOS04, sec. 1+2]

Introduction to Database Design 2

Today’s lecture

• Multi-dimensional data and OLAP.
• Bitmap indexing.
• Pre-aggregation and materialized views.

Introduction to Database Design 3

Background

• Data = gold mine!
– Data can identify useful patterns that can

be used to form a proper business strategy.

• Two main approaches:
– Data mining: Automated ”mining” of

patterns. (In two weeks.)
– OLAP: Interactive investigation of data.

(This lecture.)

• OLAP = On-Line Analytic Processing
OLTP = On-Line Transaction Processing

Introduction to Database Design

Data Warehouse

• Data warehouse: Integrated collection
of data used in support of decision-
making processes.

• Typical characteristics:
– Records data over time (not just “current”).
– Snapshot of the operational data.
– Can be organized as collection of ”data

marts”.

• Challenges: Data integration, cleaning…
• Much more about this next week!

4

Introduction to Database Design 5

Multi-dimensional data model

• Tuples with d attributes can be viewed
as points in a d-dimensional ”cube”.

 Value of
 attrib. 1

 Value of
 attrib. 2 Value of
 attrib. 3

Introduction to Database Design 6

Multi-dimensional data model

• Example: (BIDD,’John Doe’,12) can be
viewed as the point with coordinates
– BIDD
– John Doe
– 12

 along the dimensions
– Course
– Name
– Grade

• Dimensions often have granularities
(e.g. study line BSWU, class of 2013)

Introduction to Database Design

Terminology

• Fact = point in the cube
• Measure = number associated with

facts, can be aggregated
– Examples: Sales price, customer debit,

time to next click.

• Dimension = feature that can be used
to select subset of facts.
– Examples: ID of sales person, name of

shop, state of shop,…

7

Introduction to Database Design

Typical OLAP query

• Selection on one or more dimensions
– e.g. select sales of one customer group.

• Grouping by one or more dimensions
– e.g., group sales by quarter.

• Aggregation over each group
– e.g. total sales revenue.

• Terminology for ”navigating” data by
modifying the query:
– Roll-up, drill-down, slicing, dicing, pivoting.

8

Introduction to Database Design

Drill-down / roll-up

9

Introduction to Database Design

Dicing

10

Introduction to Database Design

Slicing

11

Introduction to Database Design

Pivoting

12

Introduction to Database Design 13

Relational set-up of OLAP

• Star schema: A ”fact table”, plus a
number of ”dimension tables” whose
keys are foreign keys of the fact table.

• Example from RG’s slides:

price category pname pid country state city locid

sales locid timeid pid

holiday_flag week date timeid month quarter year

(Fact table) SALES

TIMES

PRODUCTS LOCATIONS

Introduction to Database Design

Normalization in OLAP

• To limit redundancy, the fact table
should not have any avoidable FDs,
e.g. salespersonID → shop state

• The information corresponding to FDs
are stored in dimension tables.

• Normalize dimension tables?
Usually not.
– Unnormalized dim. tables: star schema.
– Normalized dim. tables: snowflake schema.

14

Introduction to Database Design 15

Sample OLAP query (in SQL)

SELECT SUM(S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
GROUP BY T.year, L.state

SELECT SUM(S.sales)
FROM Sales S, Times T
WHERE S.timeid=T.timeid
GROUP BY T.year

SELECT SUM(S.sales)
FROM Sales S, Location L
WHERE S.timeid=L.timeid
GROUP BY L.state

Get dimension
”coordinates”
+aggregates

Get fine-grained
aggregate data

Introduction to Database Design

Special SQL OLAP syntax

• Some DBMSs support special syntax for
computing many aggregates.

• SELECT a,b,… GROUP BY CUBE (a,b)
produces a table that contains the
aggregate grouped by all subets of
{a,b}.

• Essentially the union of
– SELECT a,b … GROUP BY a,b !
– SELECT a,null,… GROUP BY a !
– SELECT null,b … GROUP BY b !
– SELECT null,null, …

16

Introduction to Database Design

OLAP challenge

• Support queries fast enough to allow
interactive “on-line” analytics.

• Two main techniques for achieving this:
– Indexing
– Pre-aggregation

17

Introduction to Database Design 18

Problem session

• How would you efficiently answer the
query: ”Find the total sales of raincoats
for each location last year.”

• You may assume suitable indexes, and
that timeids are ordered by time.

price category pname pid country state city locid

sales locid timeid pid

holiday_flag week date timeid month quarter year

(Fact table) SALES

TIMES

PRODUCTS LOCATIONS

Introduction to Database Design 19

Indexing low cardinality attributes

• Suppose there are only 4 different
years in our previous example.

• Then we may represent the locations of
N fact table tuples using only 2N bits.

• However, an (unclustered) index on
location seems to require at least
N log N bits.

• Can we get by reading less data?

Introduction to Database Design 20

Basic bitmap index

• For each possible value (of ”year”) and
each tuple, store a bit that is 1 iff the
tuple contains the given value.

• Store these bits ordered
by column (with no RID).

• The bitmap index works
as a join index that can
be used to compute joins
using RID intersection.

Y1? Y2? Y3? Y4? RID

0 0 1 0 1

1 0 0 0 2

1 0 0 0 3

0 1 0 0 4

0 0 0 1 5

Introduction to Database Design 21

Gain of bitmap indexes

• Assume bottleneck is reading data.
• How much can at most be gained by

using bitmap indexes to do a star join
(with a selection on each dimension
table), compared to using a B-tree?
•  Theoretically 1 bit/tuple vs log N bits/tuple.
•  Typically 1 bit/tuple vs 32 bits/tuple.

• Main case where there is no gain:
– A single dimension is very selective.
– (Usually only the case for high cardinality

attributes.)

Introduction to Database Design 22

Compressed bitmap indexes

•  If there are many possible values for an
attribute (it has ”high cardinality”),
basic bitmap indexing is not space
efficient (nor time efficient).

• Observation: A column will have few
1s, on average. It should be possible to
”compress” long sequences of 0s.

• How to compress? Usual compression
algorithms consume too much
computation time. Need simpler
approach.

Introduction to Database Design 23

Word-aligned hybrid (WAH) coding

•  In a nutshell:
– Split the bitmap B into pieces of 31 bits.
– A 32-bit word in the encoding contains one

of the following, depending on the value of
its first bit:
• A number specifying the length of an interval of

bits where all bits of B are zeros.
• A piece of B (31 bits).

– The conjunction (”AND”) or disjunction
(”OR”) of two compressed bitmaps can be
computed in linear time (O(1) ops/word).

[WOS04]

Introduction to Database Design 24

WAH analysis

• Let N be the number of rows of the
indexed relation, and c the cardinality
of the indexed attribute.

• At most N WAH words will encode a
piece of the bitmap.

• Reasonable assumption:
– All (or most) gaps between consecutive 1s

can be encoded using 31 bits.
– Thus, at most N+c gaps.

• Total space usage: 2N+c words.
• Compares favorably to B-trees.

Introduction to Database Design

Bitmap index support

• MySQL: Not supported – analytics is
not an important market segment.
– However, supports index intersection.

• Oracle:
CREATE BITMAP INDEX ON sales(pid)!
– Internal representation is another

compressed bitmap format (BBC).

• Some non-relational systems like
FastBit work entirely with compressed
bitmap representations of sets.

25

Introduction to Database Design

Pre-aggregation

• Idea: Precompute certain aggregates
that can be used to answer queries
quickly.

• Example:
– Precompute the number of sales and

average sales price for each dealer.
– Allows us to quickly find e.g. the number of

sales for each country.

• Wanted:
Database support for keeping track of
suitable preaggregated values.

26

Introduction to Database Design 27

Materialized views

• Recall: A view is similar to a macro.

CREATE VIEW MyView AS
SELECT *
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND
 S.locid=L.locid

•  In contrast, a materialized view
physically stores the query result.
– Can be updated automatically
– Can be indexed!

Introduction to Database Design 28

Preaggregation with materialized view

1. Materialized view is created:
CREATE MATERIALIZED VIEW SalaryByLocation AS
SELECT location_id, country_id, SUM(salary) AS s
FROM Employees NATURAL JOIN Departments
 NATURAL JOIN Locations
GROUP BY location_id, country_id

2. Materialized view is used:
SELECT country_id, SUM(salary) AS salary
FROM SalaryByLocation
GROUP BY country_id

Factor 10 faster than direct query on
Oracle XEs example DB.

Introduction to Database Design 29

Automatically using mat. views

• Suppose a user does not know about the
materialized view and writes directly
SELECT location_id, country_id, SUM(salary) AS s
FROM Employees NATURAL JOIN Departments
 NATURAL JOIN Locations
GROUP BY country_id

• A smart (expensive) DBMS will realize
that this can be rewritten to a query on
the materialized view.

• Rewrite capability is a key technique in
relational OLAP systems.

Introduction to Database Design

Materialized views in MySQL

• Not supported...
• However, can be emulated by creating

tables, i.e., CREATE MATERIALIZED VIEW
becomes CREATE TABLE.

• Main differences:
– No automatic updates.
– No automatic query rewrite.

30

Introduction to Database Design 31

”Refreshing” a materialized view

• Any change to the underlying tables
may give rise to a change in the
materialized view. There are at least
three options:
– Update for every change (”ON COMMIT”)
– Update only on request (”ON DEMAND”)
– Update when the view is accessed (”lazy”)

• RG describes a way of refreshing where
recomputing the defining query is often
not necessary (”FAST”).

Introduction to Database Design 32

On-line aggregation

• For aggregates like sums and averages,
the result on a sample can be used to
estimate the result on all data.
– Same principle as used in opinion polls!

• Can give statistical guarantees on an
answer, e.g. ”Answer is 3200±180 with
95% probability”.
– The longer the query runs, the smaller the

uncertainty gets.
– Possibly ok to terminate before precise

answer is known.
• Research area: Do on stream of data.

Introduction to Database Design

Next steps

• Did you fill out the course evaluation?
• Exercises:

– Work on hand-in 3 (individual), and/or
– Work on hand-in 4 (groups)

• Next week: Guest lecture by Kennie
Nybo Pontoppidan from Rehfeld.
–  Abstract: How do you design a data warehouse for the handling

of management information in seven subject areas for all 98
municipalities in Denmark? Especially when there exists up to five
different IT systems per field, and that the municipalities can use
the systems differently. Add to this a requirement to change the
business rules for each municipality, and the ability to report on
one municipality, while data for another municipality is updated.
The size of the data warehouse will be in the order of 8TB in
production.

33

