
Introduction to Database Design

Introduction to database design

2

Some figures are taken from the ppt slides from the book
Database systems by Kiefer, Bernstein, Lewis
Copyright © 2006 Pearson, Addison-Wesley, all rights reserved.

First lecture: RG 3.6, 3.7, [4], most of 5
Second lecture: Rest of RG 5

Rasmus Pagh

Introduction to Database Design

Announcements

• 270 movie ratings received so far
– would like at least 400

• Kulturnatten: If you are interested,
please talk to me after the lecture.

• Hand-in 1:
– Feedback in writing and/or orally (today?).
– Generally good, though many groups need

to polish their E-R diagrams.
– Many groups uncertain on normalization,

e.g. candidate key vs superkey.

3

Introduction to Database Design

Today’s lecture

This week and next week we cover
• SQL (RG chapter 5), and
•  relational algebra (RG chapter 4).

Both are relational query languages.
– SQL is declarative:

Describe what you want.
– Relational algebra is procedural:

Describe how to get what you want.
– Complementary views can improve

understanding.

4

Introduction to Database Design

Relational algebra expression

5

(formatted as a tree)

Introduction to Database Design

Greek letters, runes?

6

Introduction to Database Design

Query tree

7

SELECT P.Name!
FROM PROFESSOR P, TEACHING T!
WHERE P.Id=T.ProfId AND T.Semester=‘F1994’ !
! AND P.DeptId=‘CS’!

Introduction to Database Design

Relational algebra

• Relations are considered a set of tuples,
whose components have names.

• Operators operate on 1 or 2 relations
and produce a relation as a result

• An algebra with 5 basic operators:
– Select
– Project
– Union
– Set difference
– Cartesian product

8

E. F. Codd, 1970

Introduction to Database Design

Project

•  Projection chooses a subset of attributes.
•  The result of a projection is a relation with

the attributes given in attribute list.
By default the result is a set, i.e., contains
no duplicates.

9

SELECT DISTINCT year!
FROM movie!

⇡attributelist(relation)

⇡year(movie)

Introduction to Database Design

Select

• Selection of a subset of the tuples in a
relation fulfilling a condition

• Denoted
• Operates on one relation

10

select * !
from person !
where height > 210;!

�
condition

(relation)

�height>210(person)

Introduction to Database Design

Expressions in SELECT

You can define new attributes using
expressions:

SELECT 10*floor(year/10)  
FROM danishMovies;!

You can give attributes new names:

SELECT year(birthdate) AS birthyear  
FROM person;!

11

Introduction to Database Design

Cartesian product
(aka. cross product)

12

R×S for relations R and S is the
relation containing all tuples
that can be formed by
concatenation of a tuple from
R and a tuple from S.

In SQL: SELECT * FROM R,S;

Introduction to Database Design

Join

is equivalent to

13

�
condition

(R⇥ S)

R ./
condition

S

Cartesian product is almost always used
together with a condition on what tuples
should be “joined”. Special notation:

Introduction to Database Design

Join example

14

SELECT *!
FROM movie, person, involved!
WHERE movie.id=movieId AND  
 person.id=personId!

(equi-join)

(movie ./
movie.id=movieId

involved) ./
person.id=personId

person

movie ./
movie.id=movieId

(involved ./
person.id=personId

person)

Two equivalent relational algebra expressions:

Introduction to Database Design

Natural join

• A join where all attributes with the
same name in the two relations are
included in the join condition as
equalities is called natural join.

• The resulting relation only includes one
copy of each attribute.

• Natural join is denoted:

15

R ./ S

Introduction to Database Design

Semantics of SELECT statement

16

Algorithm for evaluating:
1.  FROM clause is evaluated. Cartesian

product of relations is computed.
2.  WHERE clause is evaluated. Rows not

fulfilling condition are deleted.
3.  SELECT clause is evaluated. All columns

not mentioned are removed.
A way to think about evaluation, but in practice
more efficient evaluation algorithms are used.

SELECT A1,A2,…!
FROM R1,R2,…!
WHERE <condition>!

Introduction to Database Design

Self-join via tuple variables

17

SELECT m1.title,m1.year,m2.year !
FROM mov m1, mov m2 !
WHERE m1.title=m2.title AND !
 m1.id>m2.id;!

Conceptually, the tuple variables
m1 and m2 act as “copies” of mov.

Introduction to Database Design

String operations

• Expressions can involve string ops:
– Comparisons of strings using =, <,…

Strings are compared according to
lexicographical order, e.g., ‘green’>’blue’.

– MySQL: Not case sensitive! ‘Green’=‘green’
– Concatenation: ‘Data’ || ‘base’ = ‘Database’
– LIKE, ‘Dat_b%’ LIKE ‘Database’

• _ matches any single character
• % matches any string of 0 or more characters
• title=‘%green%’ is true for all titles with ‘green’

as a substring, e.g. ‘The Green Mile’

– Details needed for project: See MySQL
documentation. (http://dev.mysql.com/doc/refman/5.5/en/string-functions.html)

18

Introduction to Database Design

Date operations

• You will probably need them in the
second hand-in.

• See MySQL documentation for details.
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html

19

Introduction to Database Design

Set operations

Set operations are union (R∪S), set
difference (R-S), and intersection (R∩S).

20

Note that two relations have to be
union-compatible for set operations to
make sense, meaning that they have the
same set of attributes.

R-S

R∪S

R∩S
S R

Introduction to Database Design

Set operations - examples

21

All birth years and death years of a person

All years with both a birth and a death.

�birthyear(person) [�deathyear(person)

�birthyear(person) \ �deathyear(person)

Introduction to Database Design

Set operations

• UNION (∪), INTERSECT(∩), and
EXCEPT(-).

22

(SELECT *!
FROM Car C!
WHERE C.Color=‘green’)!
UNION!
(SELECT *!
FROM Car C!
WHERE C.Color=‘blue’)!

(SELECT C.Regnr, C.Color!
FROM Car C!
WHERE C.Color=‘green’)!
EXCEPT!
(SELECT *!
FROM Car C!
WHERE C.Regnr=1234)!

MySQL supports UNION, but requires
relations to be ”encapsulated” in SELECT.

Introduction to Database Design

Aggregation by example

23

SELECT AVG(height) FROM person!

SELECT COUNT(DISTINCT country)!
FROM movie!

NULL values: Not taken into account,
except in COUNT(*)!

Introduction to Database Design

Aggregation functions

24

Functions:
•  COUNT ([DISTINCT] attr): Number of rows
•  SUM ([DISTINCT] attr): Sum of attr values
•  AVG ([DISTINCT] attr): Average over attr
•  MAX (attr): Maximum value of attr
•  MIN (attr): Minumum value of attr

•  DISTINCT: only one unique value for attr is used

More functions: See MySQL manual
http://dev.mysql.com/doc/refman/5.5/en/group-by-functions.html

Introduction to Database Design

Grouping

25

When more than one value should be
computed, use grouping with aggregation:

SELECT year,count(*) FROM movie !
GROUP BY year;!

SELECT country,avg(imdbRank)r  
FROM movie !
GROUP BY country ORDER BY r;!

The columns returned can only be the
aggregate or columns mentioned in the
GROUP BY clause. (Why?)

Introduction to Database Design

HAVING

26

SELECT director,COUNT(*)  
FROM danishMovies  
GROUP BY director!
HAVING COUNT(*)>5;!

HAVING is a condition on the group.
Use any condition that makes sense:
•  Aggregates over tuples in group
•  Conditions on tuple attributes

Introduction to Database Design

Evaluation algorithm

27

Algorithm for evaluating a SELECT-FROM-WHERE:
1.  FROM: Cartesian product of tables is computed.

Subqueries are computed recursively.
2.  WHERE: Rows not fulfilling condition are deleted.

Note that aggregation is evaluated after WHERE, i.e.
aggregate values can’t be in the condition.

3.  GROUP BY: Table is split into groups.
4.  HAVING: Eliminates groups that don’t fulfill the

condition.
5.  SELECT: Aggregate function is computed and all

columns not mentioned are removed. One row for
each group is produced.

6.  ORDER BY: Rows are ordered.

Introduction to Database Design

In a figure…

28

Introduction to Database Design

Subqueries 1: In FROM clause

29

A relation in the FROM clause can be
defined by a subquery. Example:

SELECT country, MAX(c)!
FROM (SELECT country, language, COUNT(*) c!
 FROM movie !
 GROUP BY country,language) cl !
GROUP BY country;!

Introduction to Database Design

A larger example

30

SELECT movie.country, language!
FROM(SELECT country, MAX(c) AS ma!
 FROM (SELECT country, language, count(*) c !
 FROM movie !
 GROUP BY country,language) cl !
 GROUP BY country) cm,!
 movie!
WHERE cm.country = movie.country!
GROUP BY movie.country, movie.language, cm.ma!
HAVING COUNT(*)=cm.ma;!

What does this compute?

Introduction to Database Design

Alternative syntax

• Some DBMSs (e.g. Oracle) give this
alternative to subqueries in FROM:

31

WITH cl AS (SELECT country, language, count(*) c !
 FROM movie !
 GROUP BY country,language),!
 cm AS (SELECT country, MAX(c) AS ma  
 FROM cl  
 GROUP BY country)!
SELECT movie.country, language!
FROM cm, movie!
WHERE cm.country = movie.country!
GROUP BY movie.country, movie.language, cm.ma!
HAVING COUNT(*)=cm.ma;!

Introduction to Database Design 32

SELECT director,title,year !
FROM danishMovies d1!
WHERE year =!
! (SELECT MAX(year)!
! FROM danishMovies d2!
! WHERE d1.director=d2.director);!

The newest movie(s) for each director.

Subqueries 2: In WHERE

Introduction to Database Design 33

Subquery with negation

SELECT director,title,year !
FROM danishMovies d1!
WHERE year NOT IN!
! (SELECT MAX(year)!
! FROM danishMovies d2!
! WHERE d1.director=d2.director);!

Not expressible as a SELECT-FROM-WHERE
without a subquery in WHERE.

Introduction to Database Design

Views are used to define queries that are used
several times as part of other queries:

CREATE VIEW imdb AS !
(SELECT title,year,name,birthdate,height!
FROM movie, involved, person!
WHERE movie.id=movieId and personId=person.id);!

The view can be used in different queries:

SELECT * FROM imdb WHERE name=‘Tom Cruise’;  

SELECT name,COUNT(*) FROM imdb  
GROUP BY name HAVING COUNT(*)>200!

Subroutines in SQL

34

Introduction to Database Design

Views

35

•  A view defines a subquery.
•  Defining a view does not execute any query.
•  When a view is used, the query definition is
copied into the query (as a subquery).

Views can be used for:
1.  Defining queries used as subqueries, making

code more modular.
2.  Logical data independence.
3.  Customizing views for different users.
4.  Access control.

Introduction to Database Design

Views and access control

36

Views can be used to limit the access to data, the
right to update data, etc.

Example: GRANT SELECT ON imdb TO ALL!

Meaning: All users can see the table imdb,
but not the underlying relations.

Other options:
•  GRANT INSERT, GRANT ALL, and more
•  TO ALL, TO user, TO group!

Introduction to Database Design

(Full) outer join, by example

37

Introduction to Database Design

Outer join in SQL

• Syntax:
R FULL OUTER JOIN S ON <condition>.

• Semantics:
Output the normal (inner) join result
SELECT * FROM R,S WHERE <condition>,
plus tuples from R and S that were not
output (padded with NULLs).

• Variants: Left and right outer joins
(supported in MySQL).

38

Introduction to Database Design

Problem session

• Suppose you have a DBMS that does
not support:
– INTERSECT
– EXCEPT
– FULL OUTER JOIN

• How can you simulate the above using
the following joins?
– LEFT JOIN
– RIGHT JOIN
– SELECT-FROM-WHERE

39

Introduction to Database Design

Runtime errors

40

If the subquery returns more than one tuple
in a place where a single value is expected,
a runtime error results.

SELECT director,title,year !
FROM danishMovies d1!
WHERE d1.title =!
 (SELECT title!
 FROM danishMovies d2!
 WHERE d1.director=d2.director and!
 d1.year=d2.year);!

Introduction to Database Design

Beware of NULLs!

• Things are not always what they appear.
– Aggregates treat NULLs differently
– Logic is different. (x IS NULL vs x=NULL)
– Different DBMSs handle NULLs differently…

• Example:
SELECT * FROM BestMovies  
WHERE ((country="Canada") or  
 (country!="Canada" and imdbRank>9.5));!

Different behavior for NULL /empty string…

41

Introduction to Database Design

Beware of NULLs, cont.

42

Introduction to Database Design

NULLs and boolean logic

43

Introduction to Database Design

Updating the database

44

INSERT INTO TableName(a1,…,an)!
VALUES (v1,…,vn)!

INSERT INTO TableName(a1,…,an)!
SelectStatement!

DELETE FROM TableName!
WHERE Condition!

UPDATE TableName!
SET a1=v1,…ai=vi!
WHERE Condition!

Introduction to Database Design

Updating a view!?

45

CREATE VIEW movietitles AS  
(SELECT title FROM movie);!

What are the effects of each of these updates:

INSERT INTO movietitles values
('Superrrrrman');!

DELETE FROM movietitles!
WHERE title=‘Superrrrrman’;

Introduction to Database Design

Updating using a view

46

Insertion: For unspecified attributes, use
NULL or default values if possible.
Deletion: May be unclear what to delete.
Several restrictions, e.g. exactly one table
can be mentioned in the FROM clause.

Not all views are updatable. Example:
CREATE VIEW uniqueMovieTitles AS  
(SELECT DISTINCT title FROM movie);!

Introduction to Database Design

Materialized views

47

Views are computed each time they are
accessed – possibly inefficient.

Materialized views are computed and stored
physically for faster access.

When the base tables are updated the view
changes and must be recomputed:
-  May be inefficient when many updates
-  Main issue – when and how to update the
stored view

(not available in MySQL)

Introduction to Database Design

Updating materialized views

48

When is the view updated
•  ON COMMIT – when the base table(s)
are updated
•  ON DEMAND – when the user decides,
typically when the view is accessed

How is the view updated
•  COMPLETE – the whole view is
recomputed
•  FAST – some method to update only the
changed parts.
•  For some views the incremental way is
not possible with the available
algorithms.)

Introduction to Database Design

Related course goal

Students should be able to:
• write SQL queries, involving multiple

relations, compound conditions,
grouping, aggregation, and subqueries.

49

Introduction to Database Design

Next steps

• We will cover the rest of the slides next
week.

• Exercises:
– 12.30: Another chance to look at

normalization exam problems posed two
weeks ago. (Or exercises on SQL.)

– 13.15: Presentation of solutions to two
exam problems.

– Ca. 13.30: Exercises on SQL.

• Hand-in 2 released early next week.

50

