
Introduction to Database Design 1

Locks

Introduction to Database Design

SQL in applications; Transactions

Rasmus Pagh

2

Introduction to Database Design

Hand-in 2, general feedback

• Generally very good answers on the
SQL part.

• Sensible choice of indexes.
• However, most groups neglected a real

discussions of why/how the indexes
work:

3

Introduction to Database Design

SQL in applications

• Most SQL databases are at the back
end of applications
– important to know how this works.

• On the surface, a very boring subject
– How to move data from A to B doing

suitable translation, etc.
• Also a very interesting topic!

– Focus of a lot of research and development.

•  In this course we will stay pretty much
at the surface…

4

Introduction to Database Design

JDBC connection

5

Database operations

Introduction to Database Design

JDBC dynamic SQL

6

Use caution when creating
SQL based on user input!

Introduction to Database Design 7

xkcd.com

Introduction to Database Design

JDBC static SQL

8

Introduction to Database Design

Efficiency issues

• Connection takes time to establish –
use 1 connection for many operations.

•  It takes time to parse dynamic SQL –
prepared statements start executing
faster.

• ORDER BY may force creation of full
result within the DBMS before any
output reaches the application.
•  Why is this not just usual? (Answer in next slide.)

9

Introduction to Database Design

Cursors

• Common to not generate full results of
queries, but provide a ”cursor” that
allows the result to be traversed.

•  JDBC examples:
– Statement s = con.createStatement  
 (ResultSet.TYPE_FORWARD_ONLY,  
 ResultSet.CONCUR_READ_ONLY)"

– Statement s = con.createStatement  
 (ResultSet.TYPE_SCROLL_INSENSITIVE,  
 ResultSet.CONCUR_UPDATABLE)"

10

Introduction to Database Design

Four examples

1. Movies by year – imperative way
2. Movies by year – SQL centric way
3.  Iterating through a large result set
4.  Iterating through a filtered result set

11

Introduction to Database Design

Automatic code generation

•  Instead of dealing directly with JDBC,
one can automatically generate code to
make objects “persistent” in a
database.
– E.g. Nhibernate

• Advantage: Tedious code made with
very little effort.

• Disadvantage: Little and indirect
control over efficiency issues.

12

Introduction to Database Design

Language integration

•  ”Little languages” with tight database
integration.
– E.g. ”Ruby on Rails”,  
http://en.wikipedia.org/wiki/Ruby_on_Rails

• New query sublanguages for
mainstream languages such as C#.
– E.g. LINQ, http://en.wikipedia.org/wiki/
Language_Integrated_Query "

– If used with conventional DBMS:
Automatically translated to SQL. "

13

Introduction to Database Design 14

Part II: Transactions

Introduction to Database Design

Why transactions?

15

Introduction to Database Design

Transactions in JDBC

• conn.setAutoCommit(false);  
// Disable automatic commit after
each statement"

• conn.commit();  
// Commit all pending updates"

• conn.rollback();  
// Abort all pending updates"

16

Introduction to Database Design

Course goals

 After the course the students should
be able to:
– identify possible problems in transaction

handling, related to consistency,
atomicity, and isolation.

17

Introduction to Database Design

ACID Properties

Atomicity: Each transaction runs to
completion or has no effect at all.

Consistency: After a transaction
completes, the integrity constraints are
satisfied.

Isolation: Transactions executed in
parallel have the same effect as if they
were executed sequentially.

Durability: The effect of a committed
transaction remains in the database
even if the computer crashes.

18

Introduction to Database Design 19

Durability in a nutshell

• There exist disk systems that are highly
reliable (e.g. still functions if one or two
disks fail).
– Trade-off: Redundancy vs reliability

• A database transaction is only really
committed when the actions made by
the transaction have all been written to
the log on disk.
– In case of crash, the log is used to reverse

the state to the one implied by committed
transactions.

Introduction to Database Design 20

Today: Atomicity and isolation

• This lecture is mainly concerned with
atomicity and isolation.

• Consistency is a consequence of
atomicity and isolation + maintaining
any declared DB constraint (not
discussed in this course).

Introduction to Database Design 21

Isolation and serializability

• Want transactions to satisfy serializability:
– The state of the database should always look

as if the committed transactions ran in a serial
schedule.

• The scheduler of the DBMS is allowed to
choose the order of transactions:
– It is not necessarily the transaction that is

started first, which is first in the serial
schedule.

– The order may even look different from the
viewpoint of different users.

Introduction to Database Design 22

A simple scheduler

• A simple scheduler would maintain a
queue of transactions, and carry them
out in order.

• Problems:
– Transactions have to wait for each other,

even if unrelated (e.g. requesting data on
different disks).

– Possibly smaller throughput. (Why?)
– Some transactions may take very long, e.g.

when external input or remote data is
needed during the transaction.

Introduction to Database Design 23

A simple scheduler

• A simple scheduler would maintain a
queue of transactions, and carry them
out in order.

• Some believe this is fine for transaction
processing:

Introduction to Database Design 24

Interleaving schedulers

• Most DBMSs have schedulers that allow
the actions of transactions to
interleave.

• However, the result should be as if
some serial schedule was used.

• We will now study a mechanism that
enforces ”serializability”: Locking.

• Other methods exist: Time stamping /
optimistic concurrency control.
– Out of scope for this course.

Introduction to Database Design 25

Locks

•  In its simplest form, a lock is a right to
perform operations on a database
element.

• Only one transaction may hold a lock
on an element at any time.

• Locks must be requested by
transactions and granted by the locking
scheduler.

Introduction to Database Design 26

Two-phase locking

• Commercial DBMSs widely use two-
phase locking, satisfying the condition:
– In a transaction, all requests for locks

precede all unlock requests.

• 2PL ensures serializability:
From the point of view of other
transactions, each transaction will
appear to have run at the time of the
first unlock request.

Introduction to Database Design 27

Strict two-phase locking

•  In strict 2PL all locks are released
when the transaction completes.

• This is commonly implemented in
commercial systems, since:
– it makes transaction rollback easier to

implement, and
– avoids so-called cascading aborts (this

happens if another transaction reads a
value by a transaction that is later rolled
back)

Introduction to Database Design 28

Lock modes

• The simple locking scheme we saw is
too restrictive, e.g., it does not allow
different transactions to read the same
DB element concurrently.

• Idea: Have several kinds of locks,
depending on what you want to do.
Several locks on the same DB element
may be ok (e.g. two read locks).

Introduction to Database Design 29

Lock requested

Lock held

S X

S Yes No

X No No

Shared and exclusive locks

• Locks for reading can be shared (S).
• Locks needed for writing must be

exclusive (X).
• Compatibility matrix says which locks

are granted:

Introduction to Database Design 30

Phantom tuples

• Suppose we lock tuples where A=42 in
a relation, and subsequently another
tuple with A=42 is inserted.

• For some transactions this may result
in unserializable behaviour, i.e., it will
be clear that the tuple was inserted
during the course of a transaction.

• Such tuples are called phantoms.

Introduction to Database Design 31

Avoiding phantoms

• Phantoms can be avoided by putting an
exclusive lock on a relation before
adding tuples.
– However, this gives poor concurrency.

• A technique called “index locking” can
be used to prevent other transactions
from inserting phantom tuples, but
allow most non-phantom insertions.

•  In SQL, the programmer may choose to
either allow phantoms in a transaction
or insist they should not occur.

Introduction to Database Design 32

SQL isolation levels

• A transaction in SQL may be chosen to
have one of four isolation levels:
– READ UNCOMMITTED: Dirty reads are possible.
– READ COMMITTED: Dirty reads are not

permitted (but nonrepeatable reads and
phantoms are possible).

– REPEATABLE READ: Nonrepeatable and dirty
reads are not permitted (but phantoms are
possible).

– SERIALIZABLE: Transaction execution must be
serializable (above anomalies not allowed).

Introduction to Database Design 33

SQL isolation levels

• Possible implementations:
– READ UNCOMMITTED:

”No locks are obtained.”
– READ COMMITTED:

”Read locks are immediately released -
read values may change during the
transaction.”

– REPEATABLE READ:
”2PL but no lock when adding new tuples.”

– SERIALIZABLE:
”2PL with lock when adding new tuples.”

Introduction to Database Design

Isolation level syntax

• Begin transaction with:

SET TRANSACTION ISOLATION LEVEL
{ READ UNCOMMITTED |  
 READ COMMITTED |  
 REPEATABLE READ |  
 SERIALIZABLE } "

34

Introduction to Database Design

ACID testing MySQL

• Most storage engines are made with
only very simple concurrency control in
mind.

•  InnoDB (default engine) supports the
standard SQL isolation concurrency
control features, and more.

• Beware: Using SQL isolation levels with
another storage engine may have no
effect (except perhaps a warning).

35

Introduction to Database Design 36

Be careful with SERIALIZABLE

• Some common implementations of
”SERIALIZABLE” allows, e.g., the
following:
– Suppose we have a relation R with a tuple

for each reserved seat in a plane.
– Transactions A and B simultaneously read R

and find that seat 13A is free.
– Transaction A and B both insert a tuple

indicating that seat 13A has been booked.
• Such conflicts can be stopped by a lock

or by a database constraint.

Introduction to Database Design

Explicit row locking

• Many DBMSs allow transactions to
explicitly lock a set of tuples.

• Example:
SELECT * FROM seats  
WHERE seat = ’13A’  
FOR UPDATE;"

• Can be used to control a resource, e.g.
the right to insert a reservation tuple
for seat 13A in another table.

37

Introduction to Database Design 38

Snapshot isolation

• Some DBMSs implement snapshot
isolation, an isolation level that gives
a stronger guarantee than READ
COMMITTED.

• MySQL/InnoDB:
START TRANSACTION WITH CONSISTENT SNAPSHOT;"

• Each transaction T executes against
the version of the data items that was
committed “when the T started”.

• Possible implementation:
– No locks for read, locks for writes.
– Store old versions of data (costs

space).

Introduction to Database Design

Lock granularity in MySQL

• So far we did not discuss what DB
elements to lock: Atomic values,
tuples, blocks, relations?

•  InnoDB uses row-level locking by
default.
– No ”lock escalation”.

• Table locking can be done manually:
– LOCK TABLES T1 READ, T2 WRITE,…
– UNLOCK TABLES

39

Introduction to Database Design 40

Locks and deadlocks

• The DBMS sometimes must make a
transaction wait for another transaction
to release a lock.

• This can lead to deadlock if e.g. A waits
for B, and B waits for A.

•  In general, we have a deadlock exactly
when there is a cycle in the waits-for
graph.

• Deadlocks are resolved by aborting
some transaction involved in the cycle.

Introduction to Database Design

Simple deadlock prevention
• 2001 MySQL manual:

• 2008 MySQL manual:

– Explanation? Why use InnoDB and BDB?

• Question: Why does ”always locking
tables in the same order” never lead to
deadlock?

41

Introduction to Database Design

Summary

• Concurrency control mechanisms give
various trade-offs between isolation
and performance.
– Safe choice is SERIALIZABLE (well…)
– Sometimes lower SQL isolation levels

suffice – difficult to analyze in general
– Manual efforts may sometimes be better:

Table locking, explicit row locking,…
– Deadlocks happen. A simple (but brutal)

cure is lock acquisition in fixed order.
• Better summary: A song!

42

Introduction to Database Design

Next steps

•  Exercises on JDBC, and torturing your
DBMS, at 12.30.

•  You now have all the background to start
working on hand-in 3, due 11/11.

•  It is allowed to discuss the hand-in, but
you should write your own answer
individually without help!

• Next Friday: Lecture break.
• Ninh is available for questions 10-11.30 in

room 4D27.

43

