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Hand-in 2, general feedback 

• Generally very good answers on the 
SQL part. 

• Sensible choice of indexes. 
• However, most groups neglected a real 

discussions of why/how the indexes 
work: 
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SQL in applications 

• Most SQL databases are at the back 
end of applications 
– important to know how this works. 

• On the surface, a very boring subject 
– How to move data from A to B doing 

suitable translation, etc. 
• Also a very interesting topic! 

– Focus of a lot of research and development. 

•  In this course we will stay pretty much 
at the surface… 
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JDBC connection 
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Database operations 
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JDBC dynamic SQL 
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Use caution when creating 
SQL based on user input! 
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xkcd.com 
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JDBC static SQL 
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Efficiency issues 

• Connection takes time to establish – 
use 1 connection for many operations. 

•  It takes time to parse dynamic SQL – 
prepared statements start executing 
faster. 

• ORDER BY may force creation of full 
result within the DBMS before any 
output reaches the application. 
•  Why is this not just usual? (Answer in next slide.) 
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Cursors 

• Common to not generate full results of 
queries, but provide a ”cursor” that 
allows the result to be traversed. 

•  JDBC examples: 
– Statement s = con.createStatement  
  (ResultSet.TYPE_FORWARD_ONLY,  
   ResultSet.CONCUR_READ_ONLY)"

– Statement s = con.createStatement  
  (ResultSet.TYPE_SCROLL_INSENSITIVE,  
   ResultSet.CONCUR_UPDATABLE)"
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Four examples 

1. Movies by year – imperative way 
2. Movies by year – SQL centric way 
3.  Iterating through a large result set 
4.  Iterating through a filtered result set 
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Automatic code generation 

•  Instead of dealing directly with JDBC, 
one can automatically generate code to 
make objects “persistent” in a 
database. 
– E.g. Nhibernate 

• Advantage: Tedious code made with 
very little effort. 

• Disadvantage: Little and indirect 
control over efficiency issues. 
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Language integration 

•  ”Little languages” with tight database 
integration. 
– E.g. ”Ruby on Rails”,  
http://en.wikipedia.org/wiki/Ruby_on_Rails  

• New query sublanguages for 
mainstream languages such as C#. 
– E.g. LINQ, http://en.wikipedia.org/wiki/
Language_Integrated_Query "

– If used with conventional DBMS: 
Automatically translated to SQL. "
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Part II: Transactions 
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Why transactions? 

15 



Introduction to Database Design 

Transactions in JDBC 

• conn.setAutoCommit(false);  
// Disable automatic commit after 
each statement"

• conn.commit();  
// Commit all pending updates"

• conn.rollback();  
// Abort all pending updates"
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Course goals 

 After the course the students should 
be able to: 
– identify possible problems in transaction 

handling, related to consistency,  
atomicity, and isolation. 
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ACID Properties 

Atomicity: Each transaction runs to 
completion or has no effect at all. 

Consistency: After a transaction 
completes, the integrity constraints are 
satisfied. 

Isolation: Transactions executed in 
parallel have the same effect as if they 
were executed sequentially. 

Durability: The effect of a committed 
transaction remains in the database 
even if the computer crashes. 
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Durability in a nutshell 

• There exist disk systems that are highly 
reliable (e.g. still functions if one or two 
disks fail). 
– Trade-off: Redundancy vs reliability 

• A database transaction is only really 
committed when the actions made by 
the transaction have all been written to 
the log on disk. 
– In case of crash, the log is used to reverse 

the state to the one implied by committed 
transactions. 
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Today: Atomicity and isolation 

• This lecture is mainly concerned with 
atomicity and isolation. 

• Consistency is a consequence of 
atomicity and isolation + maintaining 
any declared DB constraint (not 
discussed in this course). 
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Isolation and serializability 

• Want transactions to satisfy serializability: 
– The state of the database should always look 

as if the committed transactions ran in a serial 
schedule. 

• The scheduler of the DBMS is allowed to 
choose the order of transactions: 
– It is not necessarily the transaction that is 

started first, which is first in the serial 
schedule. 

– The order may even look different from the 
viewpoint of different users. 
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A simple scheduler  

• A simple scheduler would maintain a 
queue of transactions, and carry them 
out in order. 

• Problems: 
– Transactions have to wait for each other, 

even if unrelated (e.g. requesting data on 
different disks). 

– Possibly smaller throughput. (Why?) 
– Some transactions may take very long, e.g. 

when external input or remote data is 
needed during the transaction. 
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A simple scheduler  

• A simple scheduler would maintain a 
queue of transactions, and carry them 
out in order. 

• Some believe this is fine for transaction 
processing: 
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Interleaving schedulers 

• Most DBMSs have schedulers that allow 
the actions of transactions to 
interleave. 

• However, the result should be as if 
some serial schedule was used. 

• We will now study a mechanism that 
enforces ”serializability”: Locking. 

• Other methods exist: Time stamping / 
optimistic concurrency control. 
– Out of scope for this course. 
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Locks 

•  In its simplest form, a lock is a right to 
perform operations on a database 
element. 

• Only one transaction may hold a lock 
on an element at any time. 

• Locks must be requested by 
transactions and granted by the locking 
scheduler. 
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Two-phase locking 

• Commercial DBMSs widely use two-
phase locking, satisfying the condition: 
– In a transaction, all requests for locks 

precede all unlock requests. 

• 2PL ensures serializability: 
From the point of view of other 
transactions, each transaction will 
appear to have run at the time of the 
first unlock request. 
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Strict two-phase locking 

•  In strict 2PL all locks are released 
when the transaction completes. 

• This is commonly implemented in 
commercial systems, since: 
– it makes transaction rollback easier to 

implement, and 
– avoids so-called cascading aborts (this 

happens if another transaction reads a 
value by a transaction that is later rolled 
back) 
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Lock modes 

• The simple locking scheme we saw is 
too restrictive, e.g., it does not allow 
different transactions to read the same 
DB element concurrently. 

• Idea: Have several kinds of locks, 
depending on what you want to do. 
Several locks on the same DB element 
may be ok (e.g. two read locks). 
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Lock requested 

Lock held 

S X 

S Yes No 

X No No 

Shared and exclusive locks 

• Locks for reading can be shared (S). 
• Locks needed for writing must be 

exclusive (X). 
• Compatibility matrix says which locks 

are granted: 
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Phantom tuples 

• Suppose we lock tuples where A=42 in 
a relation, and subsequently another 
tuple with A=42 is inserted. 

• For some transactions this may result 
in unserializable behaviour, i.e., it will 
be clear that the tuple was inserted 
during the course of a transaction. 

• Such tuples are called phantoms. 
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Avoiding phantoms 

• Phantoms can be avoided by putting an 
exclusive lock on a relation before 
adding tuples. 
– However, this gives poor concurrency. 

• A technique called “index locking” can 
be used to prevent other transactions 
from inserting phantom tuples, but 
allow most non-phantom insertions. 

•  In SQL, the programmer may choose to 
either allow phantoms in a transaction 
or insist they should not occur. 
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SQL isolation levels 

• A transaction in SQL may be chosen to 
have one of four isolation levels: 
– READ UNCOMMITTED: Dirty reads are possible. 
– READ COMMITTED: Dirty reads are not 

permitted (but nonrepeatable reads and 
phantoms are possible). 

– REPEATABLE READ: Nonrepeatable and dirty 
reads are not permitted (but phantoms are 
possible). 

– SERIALIZABLE: Transaction execution must be 
serializable (above anomalies not allowed). 
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SQL isolation levels 

• Possible implementations: 
– READ UNCOMMITTED:  

”No locks are obtained.” 
– READ COMMITTED:  

”Read locks are immediately released - 
read values may change during the 
transaction.” 

– REPEATABLE READ: 
”2PL but no lock when adding new tuples.” 

– SERIALIZABLE: 
”2PL with lock when adding new tuples.” 
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Isolation level syntax 

• Begin transaction with: 

SET TRANSACTION ISOLATION LEVEL  
{ READ UNCOMMITTED |  
  READ COMMITTED |  
  REPEATABLE READ |  
  SERIALIZABLE } "
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ACID testing MySQL 

• Most storage engines are made with 
only very simple concurrency control in 
mind. 

•  InnoDB (default engine) supports the 
standard SQL isolation concurrency 
control features, and more. 

• Beware: Using SQL isolation levels with 
another storage engine may have no 
effect (except perhaps a warning). 
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Be careful with SERIALIZABLE 

• Some common implementations of 
”SERIALIZABLE” allows, e.g., the 
following: 
– Suppose we have a relation R with a tuple 

for each reserved seat in a plane. 
– Transactions A and B simultaneously read R 

and find that seat 13A is free. 
– Transaction A and B both insert a tuple 

indicating that seat 13A has been booked. 
• Such conflicts can be stopped by a lock 

or by a database constraint. 
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Explicit row locking 

• Many DBMSs allow transactions to 
explicitly lock a set of tuples. 

• Example: 
SELECT * FROM seats  
WHERE seat = ’13A’  
FOR UPDATE;"

• Can be used to control a resource, e.g. 
the right to insert a reservation tuple 
for seat 13A in another table. 
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Snapshot isolation 

• Some DBMSs implement snapshot 
isolation, an isolation level that gives 
a stronger guarantee than READ 
COMMITTED. 

• MySQL/InnoDB:  
START TRANSACTION WITH CONSISTENT SNAPSHOT;"

• Each transaction T executes against 
the version of the data items that was 
committed “when the T started”. 

• Possible implementation: 
– No locks for read, locks for writes. 
– Store old versions of data (costs 

space). 
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Lock granularity in MySQL 

• So far we did not discuss what DB 
elements to lock: Atomic values, 
tuples, blocks, relations? 

•  InnoDB uses row-level locking by 
default. 
– No ”lock escalation”. 

• Table locking can be done manually: 
– LOCK TABLES T1 READ, T2 WRITE,…  
– UNLOCK TABLES 
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Locks and deadlocks 

• The DBMS sometimes must make a 
transaction wait for another transaction 
to release a lock. 

• This can lead to deadlock if e.g. A waits 
for B, and B waits for A. 

•  In general, we have a deadlock exactly 
when there is a cycle in the waits-for 
graph. 

• Deadlocks are resolved by aborting 
some transaction involved in the cycle. 
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Simple deadlock prevention 
• 2001 MySQL manual: 

• 2008 MySQL manual: 

– Explanation? Why use InnoDB and BDB? 

• Question: Why does ”always locking 
tables in the same order” never lead to 
deadlock? 
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Summary 

• Concurrency control mechanisms give 
various trade-offs between isolation 
and performance. 
– Safe choice is SERIALIZABLE (well…) 
– Sometimes lower SQL isolation levels 

suffice – difficult to analyze in general 
– Manual efforts may sometimes be better: 

Table locking, explicit row locking,… 
– Deadlocks happen. A simple (but brutal) 

cure is lock acquisition in fixed order. 
• Better summary: A song! 
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Next steps 

•  Exercises on JDBC, and torturing your 
DBMS, at 12.30. 

•  You now have all the background to start 
working on hand-in 3, due 11/11. 

•  It is allowed to discuss the hand-in, but 
you should write your own answer 
individually without help! 

• Next Friday: Lecture break. 
• Ninh is available for questions 10-11.30 in 

room 4D27. 
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