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Today’s lecture

Three technologies for handling big data:
— MapReduce (Hadoop)
— BigTable (and descendants)
— Data stream algorithms

Alternatives to (some uses of) DBMSs.

Part of larger trend — Not Only SQL.
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Big Data Landscape
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NO-SQL

e Silly to indentify technologies with what
they are not.

e Better: Not Only SQL.

But what is it?

e Lemire: Programmer’s revolt against
database administrators.

e Common reason: Independence from
very expensive large DBMSs.
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MapReduce

e Google system for distributed queries
on line-based data.

e Runs on a cluster of networked
machines (can be 1000s).

e Open source version: Hadoop
e Builds on distributed file system.
e Does not deal with transactions.
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Mapreduce programming model
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MapReduce execution

Données

Données

<k,v>
Paire

Reduce

Données

Results

Données en entrée

Données

<k,v>
Paire

Reduce

.’_é IT University of Copenhagen Introduction to Database Design 7




MapReduce examples

1. Word count

Mapper: Transform text lines into pairs (w,1).

Reducer: Add the occurrences of each word.

2. SQL aggregation
Can implement queries of the form:
SELECT myReducer
FROM myMapper (R)
GROUP BY key
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Example: Inverted lists
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Example: Listing triangles
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Problem session

Suppose you want to compute a join of
R,(a,b) and R,(b,c), on attribute b.

1. How could the input be represented to
fit the MapReduce framework?

2. How can the join be computed?
— Specify a mapper
— Specify a reducer
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BigTable

e Google system for storing and
accessing data persistently in a
distributed system.

e Highly scalable on clusters of cheap
machines - add machines to scale up.

e Highly fault tolerant (replication).

e Like other distributed storage systems
offers relaxed consistency compared to
a DBMS (“eventual consistency”).
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Bigtable in a nutshell

e Small subset of DBMS functionality
("meet 7 out of 8 demands”).

e Data model generalizes relational one:

(column:string,rowId:string,time:int) — string

Stored sorted lexicographically by key.

e Only simple queries and transactions:
— Lookup string using rowld and column.
— Transaction: Modify a single row.
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More BigTable

e Many similar systems have followed
(distributed hash tables, Cassandra,
DynamoDB, Hbase...).

e The course page links to a nice
presentation by Jeff Dean, one the the
system’s main engineers.

— The first 17 minutes give a good overview.

— The rest is technical details outside the
scope of this class.
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Data streams

e In some applications (networks,
sensors) data is produces so fast that

normal techniques cannot keep up.
e Data model: Stream of data items
- e.qg. tuples, numbers, graph edges,...

e Processing model:
— One pass over data (cannot go back).

- Memory only large enough to store tiny
part of data.

- Instead, we store a “"sketch” or “summary”
that encodes enough information.

S T University of Copenhagen Introduction to Database Design 15



Things easy on a stream

e Count the number of data items.

e Compute aggregates of numbers
- Sum
- Average
- Maximum, minimum, top-k
— Variance
e Select tuples satisfying a condition.
e Select sample with 1% of data items.

e Split into several streams.

e More?

S T University of Copenhagen Introduction to Database Design 16



Primitive: Heavy hitters

e Find frequency of each data item with
error at most f.
— Can say “‘frequency zero” if frequency < f.
— Space usage is around 1/f.
— Extension to allow a “weight” for each item.

e Example:

— Stream consists of (country,amount) pairs.

- Want to report the countries that account
for a fraction f of the total amount.
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Primitive: Distinct elements

e Number of distinct elements in stream?

— Answer should be correct within k% error.

- Amazing: Space usage does not depend on
the length of the stream!

e Examples:
— Estimating result size in a DBMS.

—_ ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh
igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg
hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif
fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

FIGURE 1. The LoGLOG Algorithm with m = 256 condenses the
whole of Shakespeare’s works to a table of 256 “small bytes™ of 4
bits each. The estimate of the number of distinct words in this run
is n° = 30897 (the true answer is n = 28239), which represents a
relative error of +9.4%.
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Primitive: Euclidian distance

e Given two data streams of humbers,
how similar are they?

- View each stream as a point in n-
dimensional space.

— Want to know the distance between points,
again with k% error allowed.

e Possible in space that depends only on
the precision k and log(n)
- For large n, log n is a constant in practice.
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Data stream differences

e Many data stream algorithms lets you
look at the difference of two streams.

e Examples:

— Which items have significantly higher
frequency in s1 than in s27?

— If each item occurs only once in a stream:
How many items were in s1 but not in s2?

e Application: Anomaly detection.

S T University of Copenhagen Introduction to Database Design 20



Putting primitives together

e Can build data stream algorithms by
combining or pipelining primitives.

e Examples:

- Number of distinct customers per shop
(split stream, distinct elements).

- Average number of times an item occurs
(count total length, distinct elements).

— Countries where the sales have increased
by > 1 million compared to last month
(store last month’s sketch, take diff).
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Where are the stream systems?

e Prototype systems such as Stanford
Stream Data Manager (CQL)

e Gigascope: System used at AT&T.

e "Real-time” databases may work on
data streams, but are typically update-
optimized DBMSs.
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Course goals

o After the course the students should be
able to:

— formulate an analytics task as a sequence
of operations on a stream, or in the
MapReduce framework.
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Next steps

e This afternoon: Last exercise session
- Exam-type exercise.

e Midnight: Deadline for hand-in 4, and
re-submission of hand-in 3.

e Next week:

— I encourage you to sit down and do
problems 1, 3, 4, and 5 of the exam from
January 2012. This should take (at most)
about 3 hours.

— At the lecture I will go through the exam
and how it is graded.
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