Infrastructures for big data

Rasmus Pagh

é IT University of Copenhagen Introduction to Database Design

1

Today’s lecture

Three technologies for handling big data:
— MapReduce (Hadoop)
— BigTable (and descendants)
— Data stream algorithms

Alternatives to (some uses of) DBMSs.

Part of larger trend — Not Only SQL.

@ [T University of Copenhagen Introduction to Database Design 2

Big Data Landscape

Y4 N (
Vertical Apps Ad/Media Apps Business Analytics and
Y collectivel Intelligence Visualization
. e __ ORACLE' | Hvperion SER LI O Palantir
"~ - ~ 1N\ fin " »Recorded Future y) ' QPERA metalayer
Log Data APPS m Business Objects @NETAMARKETS
. Media@ Data XD Microsoft | Business Intelligence TERADATA ASTER ERRNe
¥ SumOIOQ'C) Science TYRM - ECOG?\:OS % birst Ssas PTIBCO | (xarmass s
~) MicroStrategy @ e200etice” p——
: Data AS A Sel"Vice Auton()m\' ~D Datameer —
_)) Knoema | QlikView m L platfora - CIRRO
NIP RN] e FNRIX. @ LexisNexise &7 0 LOQATi \ J Chart.io GoodData) kaLteryx “visually AyATA)
r \ [/ N\ N\ [g
Analytics Operational Infrastructure As Structured
Infr‘astructure Infrastructure A Service Databases
AN,
Hﬁo’*‘,',wo,k'ﬂ‘s VERTIC)N MAER| | Coucnsase 10gen |z -amazon ORACLE
INFOBRIGHT
cloudera [ERADATA HADAPT i SQL Server
EMC’ @snssmun T Vot 155 | DB2.
N)NETEZZA kognltlo " . _
\DFITFISTFIX % EXASOL j X MarkLoglc JAN Google BigQuery) ,me ;)
| Technologies
) % AP A }i ~
 ClEmbep ClEER. Wt EHSE Pcassanara

Copyright © 2012 Dave Feinleib dave@vcdave.com blogs.forbes.com/davefeinleib

NO-SQL

e Silly to indentify technologies with what
they are not.

e Better: Not Only SQL.

But what is it?

e Lemire: Programmer’s revolt against
database administrators.

e Common reason: Independence from
very expensive large DBMSs.

> [T University of Copenhagen Introduction to Database Design 4

MapReduce

e Google system for distributed queries
on line-based data.

e Runs on a cluster of networked
machines (can be 1000s).

e Open source version: Hadoop
e Builds on distributed file system.
e Does not deal with transactions.

@ [T University of Copenhagen Introduction to Database Design 5

Mapreduce programming model

‘"M‘_’—'_"ﬂ

:

INPUT:

yNorderd

ST 0% 1 sor
Ml VRG]~
(i'.-\ liN (‘NIE;\(TWN
(o T ?Wm@f
fer YRt Linky)

[

COCH Pate C
TTEt Propicss :i._% ;Ej
Soltg NOMEER _. C, - r:]
of (ot | Y T L—— G
‘ (J\ | ,' : [UT
PRIRS ‘(W ((K‘FQVAL%) W gﬂum
TRAEwvRY S SRS i AU

- ety ik

| N0 L

{

o A »} -

1 Bl \ .,,E;L -

SIRTING

é IT University of Copenhagen Introduction to Database Design 6

MapReduce execution

Données

Données

<k,v>
Paire

Reduce

Données

Results

Données en entrée

Données

<k,v>
Paire

Reduce

.’_é IT University of Copenhagen Introduction to Database Design 7

MapReduce examples

1. Word count

Mapper: Transform text lines into pairs (w,1).

Reducer: Add the occurrences of each word.

2. SQL aggregation
Can implement queries of the form:
SELECT myReducer
FROM myMapper (R)
GROUP BY key

x__Bu) University of Copenhagen Introduction to Database Design

8

Example: Inverted lists

TN SeT gr DOCUMENTS | A G # SEQUEVCE 0F Warkly
DUTPUT: - For sncd WORYD, # SEGU(AICL Ot THE ppeuntiis

T YT
T AlPEARS H\) | Efg“‘\‘f g‘(é%
\Zg 0_\ L lUCU

G (?amfle'doc.{rxq Sﬂmplﬁ l dod 1) (mv’npﬁea‘ doe«ftx\j. y
Sample: dOC\{.x{\ dod\{r&l doe At ..

:é IT University of Copenhagen Introduction to Database Design 9

Example: Listing triangles

INPUL: EyGes iV UWDiRECTEy GRAHL ample:
- ‘ RN | Facebook friend
OUTYUT: |aST 0t TRIANGEES (N GRAPH graph, lists all pairs

mutual
((Mlvi)[MM(Vd),‘) friends
Copy ot AL EYES tholt U AS
\e(s, NO ASSOCIATED DATA

MAPPER 2. Copits outAUT Tpoh |EST MAP RS pUASE
REDVCER 72 ()) () () s Con . ()

o)) (W) 5 hg ouTPUT,

£ THRIVGH {u,v} V_/here u and
MaveERd: wvi = (uv) (vu) e v ore friends
RUUCER 4. ¥ [u‘vz)_,_‘(u,vd) ~7 @iyz}l“) ((anz)lq) foe ((VMVO'JI“) § rhree

é IT University of Copenhagen Introduction to Database Design 10

Problem session

Suppose you want to compute a join of
R,(a,b) and R,(b,c), on attribute b.

1. How could the input be represented to
fit the MapReduce framework?

2. How can the join be computed?
— Specify a mapper
— Specify a reducer

S T University of Copenhagen Introduction to Database Design 11

BigTable

e Google system for storing and
accessing data persistently in a
distributed system.

e Highly scalable on clusters of cheap
machines - add machines to scale up.

e Highly fault tolerant (replication).

e Like other distributed storage systems
offers relaxed consistency compared to
a DBMS (“eventual consistency”).

> [T University of Copenhagen Introduction to Database Design 12

Bigtable in a nutshell

e Small subset of DBMS functionality
("meet 7 out of 8 demands”).

e Data model generalizes relational one:

(column:string,rowId:string,time:int) — string

Stored sorted lexicographically by key.

e Only simple queries and transactions:
— Lookup string using rowld and column.
— Transaction: Modify a single row.

S T University of Copenhagen Introduction to Database Design 13

More BigTable

e Many similar systems have followed
(distributed hash tables, Cassandra,
DynamoDB, Hbase...).

e The course page links to a nice
presentation by Jeff Dean, one the the
system’s main engineers.

— The first 17 minutes give a good overview.

— The rest is technical details outside the
scope of this class.

S T University of Copenhagen Introduction to Database Design 14

Data streams

e In some applications (networks,
sensors) data is produces so fast that

normal techniques cannot keep up.
e Data model: Stream of data items
- e.qg. tuples, numbers, graph edges,...

e Processing model:
— One pass over data (cannot go back).

- Memory only large enough to store tiny
part of data.

- Instead, we store a “"sketch” or “summary”
that encodes enough information.

S T University of Copenhagen Introduction to Database Design 15

Things easy on a stream

e Count the number of data items.

e Compute aggregates of numbers
- Sum
- Average
- Maximum, minimum, top-k
— Variance
e Select tuples satisfying a condition.
e Select sample with 1% of data items.

e Split into several streams.

e More?

S T University of Copenhagen Introduction to Database Design 16

Primitive: Heavy hitters

e Find frequency of each data item with
error at most f.
— Can say “‘frequency zero” if frequency < f.
— Space usage is around 1/f.
— Extension to allow a “weight” for each item.

e Example:

— Stream consists of (country,amount) pairs.

- Want to report the countries that account
for a fraction f of the total amount.

S T University of Copenhagen Introduction to Database Design 17

Primitive: Distinct elements

e Number of distinct elements in stream?

— Answer should be correct within k% error.

- Amazing: Space usage does not depend on
the length of the stream!

e Examples:
— Estimating result size in a DBMS.

—_ ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh
igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg
hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif
fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

FIGURE 1. The LoGLOG Algorithm with m = 256 condenses the
whole of Shakespeare’s works to a table of 256 “small bytes™ of 4
bits each. The estimate of the number of distinct words in this run
is n° = 30897 (the true answer is n = 28239), which represents a
relative error of +9.4%.

y
:_':;_) IT University of Copenhagen Introduction to Database Design 18

Primitive: Euclidian distance

e Given two data streams of humbers,
how similar are they?

- View each stream as a point in n-
dimensional space.

— Want to know the distance between points,
again with k% error allowed.

e Possible in space that depends only on
the precision k and log(n)
- For large n, log n is a constant in practice.

S T University of Copenhagen Introduction to Database Design 19

Data stream differences

e Many data stream algorithms lets you
look at the difference of two streams.

e Examples:

— Which items have significantly higher
frequency in s1 than in s27?

— If each item occurs only once in a stream:
How many items were in s1 but not in s2?

e Application: Anomaly detection.

S T University of Copenhagen Introduction to Database Design 20

Putting primitives together

e Can build data stream algorithms by
combining or pipelining primitives.

e Examples:

- Number of distinct customers per shop
(split stream, distinct elements).

- Average number of times an item occurs
(count total length, distinct elements).

— Countries where the sales have increased
by > 1 million compared to last month
(store last month’s sketch, take diff).

S T University of Copenhagen Introduction to Database Design 21

Where are the stream systems?

e Prototype systems such as Stanford
Stream Data Manager (CQL)

e Gigascope: System used at AT&T.

e "Real-time” databases may work on
data streams, but are typically update-
optimized DBMSs.

S 1T University of Copenhagen Introduction to Database Design 22

Course goals

o After the course the students should be
able to:

— formulate an analytics task as a sequence
of operations on a stream, or in the
MapReduce framework.

S 1T University of Copenhagen Introduction to Database Design 23

Next steps

e This afternoon: Last exercise session
- Exam-type exercise.

e Midnight: Deadline for hand-in 4, and
re-submission of hand-in 3.

e Next week:

— I encourage you to sit down and do
problems 1, 3, 4, and 5 of the exam from
January 2012. This should take (at most)
about 3 hours.

— At the lecture I will go through the exam
and how it is graded.

S T University of Copenhagen Introduction to Database Design 24

