
www.itu.dk

Introduction to Database Design

RG 1, 3.1, 3.2, 3.3, 3.4, 5.2
Carsten Schürmann

1

Some figures are taken from the ppt slides from the book
Database systems by Kiefer, Bernstein, Lewis
Copyright © 2006 Pearson, Addison-Wesley, all rights reserved.
Slides prepared by Rasmus Pagh

www.itu.dk

Today's lecture

•  Who are we?
•  Why are we here?
•  Overview of intended learning

outcomes.
–  Introduction to the relational model.
– Brief SQL primer.

2

www.itu.dk

Who am I?

•  Carsten Schürmann, associate professor.
– Office 4C13, e-mail: carsten@itu.dk

•  PhD from Carnegie Mellon University,
2013.

•  Office Hours: Monday 13:00-14:00 or by
appointment

•  Teaching Staff:
– Ninh Pham
–  Johan von Tangen Sivertsen
– …

3

www.itu.dk

Setup

•  Lectures, 8.00-9.50
–  No preparation expected
–  Problem sessions

•  Exercises, 10:00-11.50
–  Current week, no preparation
–  Previous week, homework (some weeks TA

presentation)
•  Project work – 4 mandatory hand-ins

(more info next week)
•  Schedule, materials: blog
•  News, hand-ins: LearnIT

(please subscribe, or check regularly).

4

www.itu.dk

Entropy

5

www.itu.dk

Entropy

•  How many bits do
we need to
encode these
dots?

6

0 1

www.itu.dk

Entropy

2 bit
[Shannon’s Theorem]

7

00

01

11

10

www.itu.dk

Entropy

8

000

011

110

101

111

001 010 100
Not used

www.itu.dk

What is Data?

•  Data •  Representation

as a number?
as a string?
as a set of bools?
bags, sets tables?

dealing with surplus?
dealing with absence?

9

www.itu.dk

Terminology 1: Database

 !
!
 “a usually large collection of
data organized especially for
rapid search and retrieval
(as by a computer)”

 from m-w.com

10

www.itu.dk

Terminology 2: DBMS

•  DataBase Management System
•  Software system used when

implementing databases.
•  Typical features:

– High-level programming language for
extracting information from data (SQL).

– No data loss under system crashes, power
failures, etc.

– Robust towards multiple users.
– Efficient even for large data sets.
– Supports easy migration to more powerful

hardware (databases run for many years).

11

We will be
using the
MySQL DBMS

www.itu.dk

Why are we here?
Capitalist’s motivation

12

www.itu.dk

Programmer’s motivation

13

•  First example of a “domain specific”
programming environment specialized to a
certain (broad) class of tasks.

•  Powerful tool for building software!
–  Allows you to build software in hours that

would take months to build using Java +
standard libraries.

–  Need to understand when a DBMS is a good
hammer for your nail, and how to hammer it!

–  Recently, many other tools have appeared to
help in various kinds of data management (we
cover some towards the end of the course).

www.itu.dk

Database design:
Levels of data independence

14

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

(or SSD, or RAM)

www.itu.dk

Data independence example

15

Idea: Use spreadsheet for course planning.

First try: One view.

www.itu.dk

Second try: Multiple views

16

www.itu.dk 17

Were are trying to use a data
model (spreadsheet) that does

not separate logical
organization from views on data

The result is a clash of

conflicting goals

www.itu.dk

Relational databases

•  In relational databases data is logically stored
in tables (aka. relations).

•  A table is a set of rows (aka. tuples).
•  Columns (aka. attributes) have a name and a

type.

18

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

E. F. Codd, 1970

www.itu.dk

Relational databases, cont.

•  Conceptual difference from tables in C, Java,
…: There is no order of tuples and attributes.
•  In a pure relational model, values are atomic
(think primitive type).
•  In modern relational DBMSs (object
relational): Values can be objects.

Terminology:
Relation schema: description of the columns
(names, types) of a relation
Relation instance: a relation with a specific set
of rows and named columns

19

www.itu.dk

Relation schema example

CREATE TABLE CAR (!
!Regnr VARCHAR(8),!
!Ownerid INTEGER,!
!Color VARCHAR(15))!

20

www.itu.dk

Course goal

 After the course the students should be
able to:

•  suggest a database design according to
the relational model, and present it as
an SQL schema, using the concepts
key, type, and constraint.

21

www.itu.dk

Problem session

 (In small groups, about 5 minutes)

 Discuss and suggest ways to represent a
teaching plan using one or more relations.

 As we saw, using a single relation is not a
good idea:

 Can you avoid (or reduce) duplication of
information?

22

www.itu.dk

Normalization

Redundant information is a problem:
•  Extra storage
•  Hard to update

Normalization theory helps to refine the
design to get a more efficient way to
organize data in relations.

23

www.itu.dk

Course goal

 After the course the students should be
able to:

•  find functional dependencies in a
relation and perform decomposition to
eliminate unwanted dependencies.

24

www.itu.dk

E-R Modeling

25

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

www.itu.dk

Course goal

 After the course the students should be
able to:

•  define and maintain database designs
by E-R modeling, using the concepts
entity, attribute, key, cardinality, and
relationship

26

www.itu.dk

SQL

•  The most important programming
language for databases

•  Structured Query Language (“sequel”)
•  Declarative: specify what you want,

not how to get it
•  SQL queries takes one or more tables

as arguments and produces a table as
a result

•  Not only queries, also updates and
schema definition

27

www.itu.dk

Course goal

 After the course the students should be
able to:

•  write SQL queries, involving multiple
relations, compound conditions,
grouping, aggregation, and subqueries.

28

www.itu.dk

SELECT statement

SELECT Id, Name
FROM STUDENT
WHERE Status=‘Senior’

29

Figures: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

www.itu.dk

SELECT statement

SELECT Name
FROM STUDENT
WHERE Id=987654321

returns a table with one row and one column

30

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

www.itu.dk

SELECT statement

SELECT *
FROM STUDENT
WHERE Id=987654321

returns a table with one row and all 4 columns

31

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

* means “all columns” - but is
not a “wildcard” character

www.itu.dk

SELECT statement
SELECT COUNT(*)
FROM STUDENT
WHERE Status=‘Senior’

returns a table with the value 2, i.e. #rows with ‘Senior’
COUNT is an aggregate function

32

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

www.itu.dk

SELECT statement

SELECT *
FROM STUDENT
WHERE Id<66666666 AND NOT (Status=’Senior’)

returns a table with three rows
A condition in WHERE can be any Boolean expression

33

Figure: Copyright © 2006 Pearson Addison-Wesley. All rights reserved.

www.itu.dk

More general form of SELECT

Suppose:
– A1, A2, … are column names,
– R1, R2, … are tables,
–  <condition> is a boolean expression

involving columns from R1, R2, …
Then:
 SELECT A1,A2,…!
!FROM R1,R2,…!
!WHERE <condition>!

returns the subset of the cartesian product of
R1, R2, … that satisfy <condition>.

34

www.itu.dk

Relational algebra

The mathematical foundation for SQL.

SQL expressions can be translated into
relational algebra expressions and vice
versa (well, roughly).

35

SELECT Lastname, Regnr, Color
FROM Car, Owner
WHERE Id=Ownerid AND Color=‘Pink’

www.itu.dk

Integrity constraint

•  An integrity constraint is a statement
about legal instances of a database

•  Examples:
– All students have unique ids (a key)
– A student can’t change status from senior

to freshman
– Enrolment date is before graduation date

36

www.itu.dk

Key constraints, definition

A key constraint key(K) associated with a
relational schema S, consists of a subset K of
attributes in S satisfying:

Uniqueness property:
No instance of S contains a pair of distinct tuples
whose values agree on all the attributes in K.

SQL allows specifiction of key constraints. One
key is declared to be primary key.

37

www.itu.dk

SQL key example

CREATE TABLE CAR (!
!Regnr VARCHAR(8) NOT NULL,!
!Ownerid INTEGER,!
!Color VARCHAR(15),!
!PRIMARY KEY (Regnr),!
!UNIQUE (Ownerid, Color))!

For sake of illustration we assume that one

person can only have one car of each color.

38

www.itu.dk

SQL: CHECK

CREATE TABLE CAR (!
!Regnr VARCHAR(8) NOT NULL,!
!Ownerid INTEGER,!
!Color VARCHAR(15),!
!PRIMARY KEY (Regnr),!
!CHECK (Ownerid>999 AND NOT Color=‘Lilac’))!

!

Two semantic constraints: Ownerids always
have at least 4 digits and cars cannot be lilac.

NB! MySQL 5.5 documentation says:

39

www.itu.dk

Referential integrity
Referential integrity:
“When a tuple has a reference to another
tuple, then the referenced tuple must exist.”
!
STUDENT(Id:INT, Name:STRING)!
Key:{Id}!

TRANSCRIPT(StudId:INT, CrsCode:STRING, Grade:STRING)!
Key:{StudId,CrsCode}!

Often the referenced value is the primary key (a
foreign key).

40

www.itu.dk

Foreign key constraint

All non-null values of a foreign key must
exist in the referenced table. SQL syntax:

FOREIGN KEY StudID references STUDENT(id)!

41

Figure: Copyright © 2006 Pearson
 Addison-Wesley. All rights
reserved.

www.itu.dk

Maintaining integrity

What happens when a referenced tuple in
STUDENT is changed or deleted?

!
Three options:
SET NULL: Set reference to NULL !
NO ACTION: Update or delete rejected!
CASCADE: Delete/update the reference!

42

www.itu.dk

Problem session

Consider the following relations:
•  PERSON(Cpr,Name,Birthday)!
•  ADDRESS (Id,Street,Number,Zip,City)!
•  LIVESAT(Cpr,AddressId)!
•  PHONE(SubCpr,Number,Type,AddressId)!

What are (probably) the keys?
What are suitable primary/foreign keys?
What should happen when an address is

deleted?

43

www.itu.dk

Course goals

 After the course the students should be
able to:

•  decide if a given index is likely to
improve performance for a given query.

44

www.itu.dk

Transaction

A transaction is a sequence of operations on a
database that belong together.
Useful when multiple users update the database
in parallel.

Example:
Two persons with a shared bank account try to
withdraw 100 kr at the same time.
Transaction:
1) read balance and store in variable B
2) if B>=100 then B:=B-100
3) write B to balance

45

www.itu.dk

ACID Properties

Atomicity: A transaction runs to
completion or has no effect at all

Consistency: After a transaction
completes, the integrity constraints are
satisfied

Isolation: Transactions executed in
parallel has the same effect as if they
were executed sequentially

Durability: The effect of a committed
transaction remains in the database
even if the computer crashes.

46

www.itu.dk

Course goals

 After the course the students should be
able to:

•  identify possible problems in
transaction handling, related to
consistency,
atomicity, and isolation.

•  use SQL in applications (Java).

47

www.itu.dk

New part of course: Analytics

After the course the students should be
able to:

•  suggest a conceptual and physical
design of an OLAP system.

•  suggest an abstract model suitable for
a given data mining task.

•  formulate an analytics task as a
sequence of operations on a stream, or
in the MapReduce framework.

48

www.itu.dk

Next steps…

•  Exercises today:
– Databases without a DBMS.
– Relational modeling exercise.

•  Lecture next week:
– E-R modeling.

49

