
Introduction to Database Design 2

Introduction to database design

RG 19.1, 19.2, 19.4, 19.5, 19.6, 19.7, 19.9

Rasmus Pagh

Introduction to Database Design

Today’s lecture

• Anomalies in relations.

• Functional dependencies.

• Normal forms:
– Boyce-Codd normal form,
– 3rd normal form, and
– a little bit on higher normal forms.

3

Introduction to Database Design

Redundancy in a relation

• Redundant (“unnecessary”) information:
Same fact is repeated in several tuples.

• Example: Instance of
Movies(title,year,length,filmType,studioName,starName)

where the length of a movie is repeated
several times (once for each starName).

• Obvious problem:
Uses more memory than is necessary.

4

Introduction to Database Design

“Anomalies” caused by redundancy

• Update anomaly. It is possible to
change a fact in one tuple but leave the
same fact unchanged in another.
(E.g., the length of Star Wars in the Movies relation.)

• Deletion anomaly. Deleting a tuple
(recording some fact) may delete
another fact from the database.
(E.g., information on a movie in the Movies relation.)

• Insertion anomaly. The “dual” of
deletion anomalies.

5

Introduction to Database Design

Normalization theory

• Principled approach to avoiding (or at
least being aware of) anomalies in a
database design.

• Captures situations where unrelated
facts are placed in a single relation.

• Decompose (split) to avoid anomalies:
Movies(title,year,length,filmType,studioName,starName)

becomes
Movies1(title,year,length,filmType,studioName)

Movies2(title,year,starName)

6

Introduction to Database Design

Problem session

• We have a running database with table

Movies(title,year,length,filmType,studioName,starName)

and want to change the schema to

Movies1(title,year,length,filmType,studioName)
Movies2(title,year,starName)

• What are the keys of the different tables?
• How should we fill the tables Movies1

and Movies2?

7

Introduction to Database Design

Recombining relations

• Decomposed relations must contain the
same information as the original
relation.

• Idea: Compute original relation by a
”join” query that combines tuples
where foreign key value = key value.

• Example: In SQL, compute Movies as:
SELECT * FROM Movies1, Movies2
WHERE (Movies1.title,Movies1.year) =
 (Movies2.title,Movies2.year)

8

Introduction to Database Design

A “key” concept

•  A candidate key for a relation is a set K of
its attributes that satisfy:
– Uniqueness: The values of the attribute(s) in

K uniquely identify a tuple.
– Minimality: The uniqueness property goes

away if we remove any attribute from K.

•  If uniqueness is satisfied the attributes are
said to form a superkey.

•  Example: For Movies,
– {Title,year,starName} is a candidate key.
– {Title,year,starName,length} is a superkey.
– {Title, year} is not a key.

9

Introduction to Database Design

Candidate vs primary key

•  Important: Candidate key is defined
with respect to what data can possibly
occur, and not with respect to any
particular instance of the relation.

• The primary key of a relation in a
DBMS should be a candidate key.
– There could be several candidate keys to

choose from.
– For normalization, it is irrelevant which key

is chosen as primary key.

10

Introduction to Database Design

Example

• Person(id,cpr,name,address)
• Candidate keys: {id},{cpr}
• Superkeys: {id},{cpr},{id,cpr},
{id,name},{id,address},
{cpr,name},{cpr,address},
{id,name,address},
{cpr,name,address},{id,cpr,name},
{id,cpr,address},
{id,cpr,name,address}.

• Not superkey:
{name},{address},{name,address}

11

Introduction to Database Design

Functional dependency game

• Consider this game:
– I look at some tuple in a relation R, and tell

you the value of attribute A.
– You look at R and win if you can guess the

value of attribute B.
• Consider playing on these relations:

12

a b
4 2
9 3
4 -2
1 -1

a b
4 16
9 81
2 4
1 1

R1 R2

Introduction to Database Design

Functional dependency (FD)

• We say that A (functionally) determines
B, written A→B, if the value of B is
always determined by the value(s) of
A (for any possible relation).

• Examples:
– cpr → name in Person(cpr,name)
– title year → length in Movie

• Non-example:
– title year → starName does not hold for
Movie

13

Introduction to Database Design

What FDs to expect?

•  If A is a candidate key for a relation
then clearly A→B for any attribute B.

• Similarly if {A1,A2} forms a superkey
we have A1A2→B for any B, etc.

• FDs with a (super)key on the left, and
FDs such as B→B are unavoidable.

14

Introduction to Database Design

Boyce-Codd Normal Form (BCNF)

• A relation is in BCNF if all functional
dependencies among its attributes are
unavoidable.

• Example: Movies has the FD
 title year → length
where {title,year} is not a superkey.
– This means that Movies is not in BCNF.

• The anomalies we saw in Movies are in
fact caused by the above FD!
– requires us to store the same movie length

again and again.

15

Introduction to Database Design

Decomposing into BCNF

• Suppose relation R is not in BCNF.
Then there is an FD A1A2…An → B1B2…Bm
that is not unavoidable.

• To eliminate the FD we split R into two
relations:
– R1 with all attributes of R except B1B2…Bm.
– R2 with attributes A1A2…An → B1B2…Bm. Note

that A1A2…An is a superkey of R2, so a join
recovers the original relation R.

• This process is repeated until all
relations are in BCNF.

16

Introduction to Database Design

BNCF decomposition example

•  The relation

Movies(title,year,length,filmType,studioName,starName)

has the FD title year → length, so we
decompose it into

Movies1(title,year,length,filmType,studioName)
Movies2(title,year,starName)

• Claim: The relations Movies1 and
Movies2 are in BCNF, so this finishes
the BCNF decomposition.

17

Introduction to Database Design

Arguing that a relation is in BCNF

• Requires domain knowledge about the
possible data:
– What are the candidate keys?
– What are the FDs?

• Systematic approach:
– Consider every maximal set of attributes K

that leaves out at least one attribute from
each candidate key.

– For each attribute B in K, consider whether
the following FD holds: K\{B} → B.

• No such FD found ⇒ relation is in BCNF.

18

Introduction to Database Design

Arguing that a relation is in BCNF

• Example relation:
Movies1(title,year,length,filmType,studioName)
The only candidate key is {title,year}.

• Case 1.
–  K={year,length,filmType,studioName}.
– FD length filmType studioName → year?
– FD year filmType studioName → length?
– …

• Case 2.
–  K={title,length,filmType,studioName}
–  FD length filmType studioName → title?
–  FD title filmType studioName → length?
–  …

19

Introduction to Database Design

Problem session

• Consider a relation containing an
inventory record:
Inventory(part,WareHouse,quantity,WHaddress)

• Consider the following (you will need to
make assumptions to answer):
– What are the candidate keys of the

relation?
– What are the avoidable functional

dependencies?
– Perform a decomposition into BCNF.

20

Introduction to Database Design

Interrelation dependencies

• Consider Bookings(title,theater,city):
– theater → city (theater is not key)
– title city → theater (city is not key)

• BCNF decomposition:
Bookings1(theater,city)
Bookings2(theater,title).

• Relation instances separately legal:

21

Introduction to Database Design

Interrelation dependencies

• Consider Bookings(title,theater,city):
– theater → city (theater is not key)
– title city → theater (city is not key)

• BCNF decomposition:
Bookings1(theater,city)
Bookings2(theater,title).

• Relation instances separately legal:

22

Dependencies between allowed tuples
in the two relations.
No key constraint can ensure that the
FD title city → theater holds.

Introduction to Database Design

Third normal form

• The problem arose because we split the
attributes of a candidate key among
several relations.

• Third normal form: Eliminate avoidable
FDs, except those that would result in a
candidate key being split.

•  In other words, it allows any FD
A1A2…An → B1B2…Bm
where at least one of B1B2…Bm is part
of a candidate key.

23

Introduction to Database Design

Second 3NF example

•  HasAccount(AccountNumber,ClientId,OfficeId)
• Functional dependencies:

–  ClientId OfficeId → AccountNumber
–  AccountNumber → OfficeId

• Claim: Is in 3NF, but not BCNF (why?).
• Can be decomposed losslessly:

–  AcctOffice(AccountNumber,OfficeId)
–  AcctClient(AccountNumber,ClientId)

24

Introduction to Database Design

Other normal forms

• First and second normal forms:
Historical importance only, see book.

• Fourth normal form:
– Eliminates certain “blatant” anomalies that

are not caught by FDs.
– For any sane schema same as BCNF.

• Fifth normal form:
– Performs decomposition into 3 or more

relations, even when decomposition into 2
relations is not possible without information
loss.

• 5NF ⇒ 4NF ⇒ BCNF ⇒ 3NF ⇒ 2NF
25

Introduction to Database Design

How to use normal forms

• May be seen as guidelines for designing
a good relation schema.

•  In some cases there is a trade-off, e.g.
between avoiding anomalies and:
– Being able to check constraints
– Efficiency of query evaluation (more on this

later in course).

26

Introduction to Database Design

Course goal

 After the course the students should
be able to:

•  find functional dependencies in a
relation and perform decomposition to
eliminate unwanted dependencies.

27

Introduction to Database Design

Next steps…

• Exercises from 12.30 as usual.
• Will start by a TA presentation of some

exercises from last week (<15 min.)
• Several problems from past exams on

normalization
– practice makes the master!

• Next week: Large case study including
E-R modeling, relational modeling, and
normalization.

28

