
C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 1 of 28

Parser Generation
• Main Problem: given a grammar G, how to build a top-down parser or

a bottom-up parser for it ?

• parser : a program that, given a sentence, reconstructs a derivation for

that sentence ---- if done sucessfully, it “recognize” the sentence

• all parsers read their input left-to-right, but construct parse tree

differently.

• bottom-up parsers --- construct the tree from leaves to root

shift-reduce, LR, SLR, LALR, operator precedence

• top-down parsers --- construct the tree from root to leaves

recursive descent, predictive parsing, LL(1)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 2 of 28

Bottom-Up Parsing
• Construct parse tree “bottom-up” --- from leaves to the root

• Bottom-up parsing always constructs right-most derivation

• Important parsing algorithms: shift-reduce, LR parsing

• LR parser components: input, stack (strings of grammar symbols and
states), driver routine, parsing tables.

LR Parsing outputsm
Xm
....
s1
X1
s0

parsing

a1 a2 a3 a4 an $input:

stack

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 3 of 28

LR Parsing
• A sequence of new state symbols s0,s1,s2,..., sm ----- each state

sumarize the information contained in the stack below it.

• Parsing configurations: (stack, remaining input) written as

(s0X1s1X2s2...Xmsm , aiai+1ai+2...an$)

next “move” is determined by sm and ai

• Parsing tables: ACTION[s,a] and GOTO[s,X]

Table A ACTION[s,a] --- s : state, a : terminal

its entries (1) shift sk (2) reduce A -> ?
(3) accept (4) error

Table G GOTO[s,X] --- s : state, X : non-terminal
its entries are states

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 4 of 28

Constructing LR Parser
How to construct the parsing table ACTION and GOTO ?

• basic idea: first construct DFA to recognize handles, then use DFA to

construct the parsing tables ! different parsing table yield different LR
parsers SLR(1), LR(1), or LALR(1)

• augmented grammar for context-free grammar G = G(T,N,P,S) is

defined as G’ = G’(T, N ? ?{ S’}, P ? ?{ S’ -> S}, S’) ------ adding non-
terminal S’ and the production S’ -> S, and S’ is the new start symbol.
When S’ -> S is reduced, parser accepts.

• LR(0) item for productions of a context-free grammar G ----- is a
production with dot at some position in the r.h.s.

For A -> XYZ , its items are A -> .XYZ A -> X.YZ
A -> XY.Z A -> XYZ.

For A -> ? , its items are just A -> .

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 5 of 28

LR(0) items and LR(0) DFA
• Informally, item A -> X.YZ means a string derivable from X has been

seen, and one from YZ is expected. LR(0) items are used as state
names for LR(0) DFA or LR(0) NFA that recognizes viable prefixes.

• Viable prefixes of a CFG are prefixes of right-sentential forms with no
symbols to right of the handle; we can always add terminals on right to
form a right-sentential form.

• Two way to construct the LR(0) DFA:

1. first construct LR(0) NFA and then convert it to a DFA !

2. construct the LR(0) DFA directly !

• From LR(0) DFA to the Parsing Table -------- transition table for the
DFA is the GOTO table; the states of DFA are states of the parser.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 6 of 28

Example: LR(0) Items
CFG Grammar: E -> E + T | T

T -> T * F | F
F -> (E) | id

Augmented Grammar: E’ -> E
E -> E + T | T
T -> T * F | F
F -> (E) | id

LR(0) terms:

E’ -> . E T -> . T * F F -> (E .)
E’ -> E . T -> T . * F F -> (E) .
E -> . E + T T -> T * . F F -> . id
E -> E . + T T -> T * F . F -> id .
E -> E + . T T -> . F
E -> E + T . T -> F .
E -> . T F -> . (E)
E -> T . F -> (. E)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 7 of 28

From LR(0) NFA to LR(0) DFA
• Construct LR(0) NFA with all LR(0) items of G as states, connect states

by moving the dot; final states are those with dots at the end.

• Convert NFA to DFA using subset construction algorithm.

• The states of the resulting LR(0) DFA --- C = {I1,I2,..., In} are
called canonical LR(0) collection for grammar G’

• Disadvantage: the NFA is often huge, and converting from NFA to DFA
is tedious and time-consuming.

1. for each item A -> ? .X ?

2. for each pair A -> ? .B ? , B -> .?

(expect to see a string
derivable from ?)

A ->? .X? A ->? X.?
X

A ->? .B? B -> .?
?

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 8 of 28

Building LR(0) DFA Directly
• Instead of building DFA from NFA, we can build the LR(0) DFA

directly.

• Given a set of LR(0) items I , CLOSURE(I) is defined as

repeat
for each item A -> ? .B? in I and

each production B -> ?
 add B -> .? to I, if it’s not in I

until I does not change

• GOTO(I,X) is defined as
CLOSURE(all items A -> ? X.? for each A -> ? .X? in I)

• Canonical LR(0) collection is computed by the following procedure:

I0 = CLOSURE({S’ -> .S}) and C = {I0}
repeat
for each I?? ?C and grammar symbol X
T = GOTO(I,X); if T ? ?? and T ? C then C = C ? ? { T };

until C does not change

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 9 of 28

Resulting LR(0) DFA: C is the set of states; GOTO is the transition table

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 10 of 28

Constructing SLR(1) Parsing Table
• From the LR(0) DFA, we can construct the parsing table ----- SLR(1)

parsing table. The parser based on SLR(1) parsing table is called
SLR(1) parser. The SLR(1) grammars are those whose SLR(1) parsing

table does not contain any conflicts.

• Algorithm --- use C = {I0,...,In}, GOTO, FOLLOW:

1. If A -> ? .a? is in Ii and GOTO(Ii,a) = Ij where a is a terminal,
set ACTION[i,a] to “shift j”.

2. If A -> ? . is in Ii, set ACTION[i,a] to “reduce A -> ? ” for all
terminal a in FOLLOW(A).

3. If S’ -> S. is in Ii, set ACTION[i,$] to “accept”

4. If GOTO(Ii,A) = Ij, set GOTO[i,A] = j

5. set all other entries to “error”

6. set initial state to be Ii with S’ -> .S

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 11 of 28

Limitation of SLR(1) Parser
• Unfortunately, many unambiguous grammars are not SLR(1) gammars

S -> L = R | R L means “l-value”
L -> *R | id R means “r-value”
R -> L * means “contents of”

Canonical LR(0) collection ---

I0 : S’ -> .S I3: S -> R. I6: S -> L=.R
S -> .L=R R -> .L
S -> .R I4: L -> *.R L -> .*R
L -> .*R R -> .L L -> .id
L -> .id L -> .*R
R -> .L L -> .id I7: L -> *R.

I1 : S’ -> S. I5: L -> id. I8: R -> L.

I2 : S -> L.=R I9: S -> L=R.
R -> L. FOLLOW(R) = {=,...}

state 2 has a shift/reduce conflict on “=” : shift 6 or reduce R -

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 12 of 28

LR(1) Parsing
• Conflict arises because LR(0) states do not encode enough left context -

-- in the previous example, reduction R -> L is wrong upon input =
because “R = ...” never appears in right-sentential form.

• Solution: split LR(0) states by adding terminals to states, for example,

[A -> ? . , a] results in reduction only if next symbol is a .

• An LR(1) term is in the form of [A -> ? .? , a] where

A -> ? ? is a production and a is a terminal or $

• To build LR(1) parsing table --- we first build LR(1) DFA --- then
construct the parsing table using the same SLR(1) algorithm except

2. only if [A -> ? . , a] is in Ii ,
then set ACTION[i,a] to “reduce A-> ? ”

• To way to build LR(1) DFA ---- from NFA -> DFA or build DFA directly

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 13 of 28

Building LR(1) DFA
• Construct LR(1) NFA with all LR(1) items of G as states, connect states

by moving the dot; then convert the NFA to DFA.

• Construct the LR(1) DFA directly (see the Dragon book)

• Given a set of LR(1) items I , CLOSURE(I) is now defined as

repeat
for each item [A -> ? .B? , a] in I and

each production B -> ?? and each terminal b in FIRST(? a)
 add [B -> .???? a] to I, if it’s not in I

until I does not change

1. for each item [A -> ? .X ? ,a]

2. for each pair [A -> ? .B? , a] B -> .?
and b in FIRST(? ?a).

A ->? .X? ??a A ->? X.? ??a
X

A ->? .B? ??a B -> .????b
?

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 14 of 28

Constructing LR(1) Parser
• Canonical LR(1) collection is computed by the following procedure:

I0 = CLOSURE([S’ -> .S , $]) and C = {I0}
repeat
for each I?? ?C and grammar symbol X
T = GOTO(I,X); if T ? ?? and T ? C then C = C ? ? { T };

until C does not change

Resulting LR(1) DFA: C is the set of states; GOTO is the transition table

• From the LR(1) DFA, we can construct the parsing table ----- LR(1)

parsing table. The parser based on LR(1) parsing table is called LR(1)
parser. The LR(1) grammars are those whose LR(1) parsing table does
not contain any conflicts (no duplicate entries).

• Example:

S’ -> S
S -> C C
C -> c C | d

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 15 of 28

LALR(1) Parsing
• Bad News: LR(1) parsing tables are too big; for PASCAL, SLR tables

has about 100 states, LR table has about 1000 states.

• LALR (LookAhead-LR) parsing tables have same number of states as

SLR, but use lookahead for reductions. The LALR(1) DFA can be
constructed from the LR(1) DFA.

• LALR(1) states can be constructed from LR(1) states by merging states
with same core, or same LR(0) items, and union their lookahead sets.

Merging I8: C -> cC., c/d I9: C -> cC., $
into a new state I89: C -> cC., c/d/$

Merging I3: C -> c.C, c/d I6: C -> c.C, $
 C -> .cC, c/d C -> .cC, $
C -> .d, c/d C -> .d, $

into a new state I36: C -> c.C, c/d/$
C -> .cC, c/d/$
C -> .d, c/d/$I

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 16 of 28

LALR(1) Parsing (cont’d)
• From the LALR(1) DFA, we can construct the parsing table -----

LALR(1) parsing table. The parser based on LALR(1) parsing table is

called LALR(1) parser. The LALR(1) grammars are those whose
LALR(1) parsing table does not contain any conflicts (no duplicate
entries).

• LALR(1) DFA and LALR(1) parsing table can be constructed without
creating LR(1) DFA --- see Dragon book for detailed algorithm.

• LALR parser makes same number of moves as LR parser on correct
input.

• On incorrect input, LALR parser may make erroneous reductions, but

will signal “error” before shifting input, i.e., merging states makes reduce
determination “less accurate”, but has no effect on shift actions.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 17 of 28

Summary: LR Parser

• Relation of three LR parsers: LR(1) > LALR(1) > SLR(1)

• Most programming language constructs are LALR(1). The LR(1) is
unnecessary in practice, but the SLR(1) is not enough.

• YACC is an LALR(1) Parser Generator.

• When parsing ambiguious grammars using LR parsers, the parsing table
will contain multiple entries. We can specify the precedence and
associativity for terminals and productions to resolve the conflicts.

YACC uses this trick.

• Other Issues in parser implementation: 1. compact representation of

parsing table 2. error recovery and diagnosis.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 18 of 28

Top-Down Parsing
• Starting from the start symbol and “guessing” which production to use

next step. It often uses next input token to guide “guessing”.
example: S -> c A d

A -> ab | a

S

A dc

S

ba

S

A dc

S

A dc

a

input symbols: cad
we are looking ahead
only one at a time !

try to decide which rule
of A to use here?

“c” matches

decide to use 1st
alternative of A

guessed wrong,
backtrack and
try another one !

backtrack!

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 19 of 28

Top-Down Parsing (cont’d)
• Typical implementation is to write a recursive procedure for

each non-terminal (according to the r.h.s. of each grammar rule)
advance sets c to next input token
err reports error message

fun e() = (t(); eprime())

and eprime() = if (c = “+”)
then (advance(); t(); eprime())

and t() = (f(); tprime())

and tprime() = if (c = “*”)
then (advance(); f(); tprime())

and f() =
(if (c = id) then advance()
else if (c = “(”) then
(advance(); e();
if (c=“)”) then advance() else err())

else err()

Grammar:

E -> T E’

E’ -> + T E’
| ?

T -> F T’

T’ -> * F T’
| ?

F -> id
 | (E)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 20 of 28

Recursive Descent Parsing
• The previously referred top-down parsing method is often called

recursive descent parsing !

• Main challenges:

1. back-tracking is messy, difficult and inefficient
(solution: use input “lookahead” to help make the right choice)

2. more alternatives --- even if we use one lookahead input char,
there are still > 1 rules to choose --- A -> ab | a

(solution: rewrite the grammar by left-factoring)

3. left-recursion might cause infinite loop
what is the procedure for E -> E + E ?
(solution: rewrite the grammar by eliminating left-recursions)

4. error handling --- errors detected “far away” from actual source.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 21 of 28

Algorithm: Recursive Descent
• Parsing Algorithm (using 1-symbol lookahead in the input)

1. Given a set of grammar rules for a non-terminal A

A -> ? 1 | ? 2 | ... | ? n

we choose proper alternative by looking at first symbol it derives ----
the next input symbol decides which ? i we use

2. for A -> ? , it is taken when none of the others are selected

• Algorithm: constructing a recursive descent parser for grammar G

1. transform grammer G to G’ by removing left-recursions and do the
left-factoring.

2. write a (recursive) procedure for each non-terminal in G’

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 22 of 28

Left Recursion Elimination
• Elimination of Left Recursion (useful for top-down parsing only)

replace productions of the form A -> A ? | ?
with A -> ? ?A’

A’ -> ? A’ | ?

(yields different parse trees but same language)

Important: read Appel pp 51 - 53 for details

A A

A ? ? A’

A ? ? A’

? ? ? A’

? ?

example:
E -> E + T | T
T -> T * F | F
F -> (E) | id

become

E -> T E’
E’ -> + T E’ | ?
T -> F T’
T’ -> * F T’ | ?
F -> (E) | id

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 23 of 28

Left Factoring
• Some grammars are unsuitable for recursive descent, even if there is no

left recursion

“dangling-else” stmt -> if expr then stmt
| if expr then stmt else stmt
|

input symbol if does not uniquely determine alternative.

• Left Factoring --- factor out the common prefixes (see AHU pp 178)

change the production A -> x y | x z

to A -> x A’
A’ -> y | z

thus stmt -> if expr then stmt S’
S’ -> else stmt | ?

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 24 of 28

Predictive Parsing
• Predictive parsing is just table-driven recursive descent; it contains:

A parsing stack --- contains terminals and non-terminals
A parsing table : a 2-dimensional table M[X,a] where X is non-
terminal, a is terminal, and table entries are grammar productions or
error indicators .

algorithm $ is end-of-file, S is start symbol

push($); push(S);

while top <> $ do (
a <- the input char
if top is a terminal or $ then

(if top == a then
pop(); advance()

 else err())
else if M[top,a] is X->Y1Y2...Yk then

(pop();
push(Yk); ...; push(Y1))

else err()
)

Predictive
Parser

a1 a2 a3 a4 an $input:

X
...
Y
Z
$

stack
Parsing
Table M

ou
tp

ut

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 25 of 28

Constructing Predictive Parser
• The key is to build the parse table M[A,a]

for each production A -> ? do
for each a? ?? ?FIRST(?) do

add A -> ? to M[A,a]
if ? ? FIRST(?) then

 for each b?? ?FOLLOW(A) do
add A -> ? to M[A,b]

rest of M is error

• FIRST(?) is a set of terminals (plus ?) that begin strings derived from
? , where ? is any string of non-terminals and terminals.

• FOLLOW(A) is a set of terminals that can follow A in a sentential form,

where A is any non-terminal

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 26 of 28

First & Follow
• To compute FIRST(X) for any grammar symbol X :

FIRST(X) = {X}, if X is a terminal;
FIRST(X) = FIRST(X)?? ?{a}, if X -> a? ?;
FIRST(X) = FIRST(X)?? ?{? }, if X -> ? ; and
FIRST(X) = FIRST(X)?? ?FIRST(Y1Y2...Yk),

if X -> Y1Y2...Yk .

repeat until nothing new is added to any FIRST

• FIRST(Y1Y2...Yk) = FIRST(Y1)-{?}
? FIRST(Y2)-{? } if ? ?? ?FIRST(Y1)
? FIRST(Y3)-{? } if ? ?? ?FIRST(Y1Y2)
...................

? FIRST(Yk)-{? } if ? ?? ?FIRST(Y1...Yk-1)
? {? } if all FIRST(Yi)(i=1,...,k) contain ?

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 27 of 28

First & Follow (cont’d)
• To compute FOLLOW(X) for any non-terminal X :

FOLLOW(S) = FOLLOW(S) ? ?{$}, if S is start symbol;

FOLLOW(B) = FOLLOW(B)?? ?(FIRST(?) - {? }),
if A -> ? ?B?? ? and ? ?? ?? ?

FOLLOW(B) = FOLLOW(B)?? ?FOLLOW(A)
if A -> ? ?B or ?A -> ? ?B?? ? and ? ?? ?FIRST(?)

• Example:

reason
FOLLOW(E) = {$}, E is start symbol

= {$)}, F -> (E)
FOLLOW(E’)= FOLLOW(E) E -> T E’

= {$)},

(Read Appel pp 47 - 53 for detailed examples)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Carsten Schürmann, Zhong Shao, Yale University Parser Generation: Page 28 of 28

Summary: LL(1) Grammars
• A grammar is LL(1) if parsing table M[A,a] has no duplicate entries,

which is equivalent to specifying that for each production

A -> ? 1 | ? 2 | ... | ? n

1. All FIRST(? i) are disjoint.

2. At most one ? i can derive ? ; in that case, FOLLOW(A) must be
disjoint from FIRST(? 1)?? ?FIRST(? 2)?? ????????? ?FIRST(? n)?

• Left-recursion and ambiguity grammar lead to multiple entries in the
parsing table. (try the dangling-else example)

• The main difficulty in using (top-down) predicative parsing is in
rewriting a grammar into an LL(1) grammar. There is no general rule on
how to resolve multiple entries in the parsing table.

