
C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 1 of 24

Tiger Runtime Environments
• Compile-time environments are just symbol tables; they are used to

assist static semantic analysis, code generation and code optimization.

• Run-time environments are about how to map each runtime value into

the memory? more specifically, here are the main issues

H how to implement procedure (or function) call ? --- stack frames
(activation records, access to non-local variables, parameter passing,...)

I what are the data representations ?
(primitive data type, records, arrays, dynamic data structure, ...)

I what are the memory layout (i.e., storage organization) ?
(where to put the static data, code segments, stack, heap?)

I how to do the memory allocation and de-allocation ?
(malloc-free package, garbage collection, ...)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 2 of 24

Typical Runtime Layout

program
counter

HEAP
(dynamic data)

STACK
(activation records)

STATIC
(code and globals)

Memory Layout

code

garbage
collector

parameters and
returned values

links and
saved status

temporaries
and local data

REGISTERS

Activation Record

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 3 of 24

Example: Nested Functions
let type intArray = array of int

var a := intArray [9] of 0
function readarray () = ...
function writearray () = ...
function exchange(x : int, y : int) =
 let var z := a[x] in a[x] := a[y]; a[y] := z end

function quicksort(m : int, n : int) =
let function partition(y : int, z : int) : int =

let var i := y var j := z + 1
in (while (i < j) do

(i := i+1; while a[i] < a[y] do i := i+1;
j := j-1; while a[j] > a[y] do j := j-1;
if i < j then exchange(i,j));

exchange(y,j); j)
end

in if n > m then (let var i := partition(m,n)
in quicksort(m, i-1);

quicksort(i+1, n)
end)

end
in readarray(); quicksort(0,8); writearray()

end

input: 10, 32,
567, -1, 789,
3, 18, 0, -51

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 4 of 24

Activation Trees
 main

readarray q(0,8) writearray

p(0,8) q(0,3) q(5,8)

e(1,8) e(2,7) e(4,5) e(0,4)

p(0,3) q(0,2) q(4,3) p(5,8) q(5,7) q(9,8)

e(0,3) p(0,2) q(0,0) q(2,2) e(6,9)

p(5,7) q(5,5) q(8,8)
e(0,1)

p -> partition
q -> quicksort e(5,6)
e -> exchange

input: 10, 32,
567, -1, 789,
3, 18, 0, -51

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 5 of 24

Activations
• Each function (or procedure) declaration associates a name with a

function body --------- this binding is done at compile time.

• An activation is created during runtime execution when the function (or

procedure) is invoked. The lifetime of an activation is the time between
execution of the 1st operation of the body and through the last operation.

• Activations are either nested or non-overlapping. If two activations are
nested, then one must be the descendant of another. If two activations
are non-overlapping, then they must be the siblings.

• A function f is recursive if more than 2 activations of f is nested.

• Program execution is just depth-first traversal of activation tree !

How to implement depth-first traversal ?

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 6 of 24

Activation Record
• An activation record is constructed when a function (or a procedure) is

called (activated); it is destroyed when the function returns; the interim
is the lifetime of the activation.

• The activation record often contains the following:

relevant machine state (saved registers, return address)

space for local data, including temporaries

space for return value

space for outgoing arguments

control link: pointer to caller’s activation record (optional)

static link: pointer to activation for accessing non-local data

• Main problem: how to layout the activation record so that the caller and
callee can communicate properly ?

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 7 of 24

Stack Frames
• The most common (and standard) way is to allocate activation records

on a sequential stack --- using the following standard frame layout.

argument an
...

argument a2
argument a1
static link

local variables

return address
 temporaries
saved registers

argument bm
...

argument b2
argument b1
static link

current
frame g

previous
frame f

next frame h

incoming
paramete

outgoing
paramete

function f (..)=
...g(a1,...,an)...

frame pointer FP for

function g(..)=
...h(b1,...,bm)...

stack pointer SP for

callee

caller

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 8 of 24

Stack Frames (cont’d)
• Frame Pointer (FP) is a pointer that points to the start of the current

frame; Stack Pointer (SP) --- referring to the top of the stack ---- points
to the end of the current frame.
 offset
-4n-4 argument an
... ...
-12 argument a2
-8 argument a1
-4 static link

0
4 local variables
....

return address
 temporaries
saved registers

.........................

All g’s arguments and local variables are accessed through FP !

current
frame g

previous
frame f

frame pointer FP for

stack pointer SP for

callee

caller

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 9 of 24

Typical Calling Sequence
• Question: Suppose function f calls function g(a1,...,an), what will

happen at runtime ? how f and g communicate ? Assuming FP and
SP are in two registers.

• 1. Call sequence (done by the caller f before entering g)

f puts arguments a1,...,an onto the stack (or in registers)

f puts function g’s static link onto the stack (or in a register)

f puts the return address of this call to g onto the stack (or in a register)

f puts current FP onto the stack (i.e., control link, optional)
Jump to g’s code

• 2. Entry sequence (the first thing done after entring the callee g)

move SP to FP
decrement SP by the frame size of g (stack grows downwards!!!)

(optional: save callee-save registers if any)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 10 of 24

Typical Calling Sequence (cont’d)
• 3. Return sequence (the callee g exits and returns back to f)

put the return result into a designated register
(optional: restore calleesave registers if any)

fetch the return address to a register (if in register, do nothing)
fetch the saved FP of f back to the FP register
increment SP by the frame size of g (pop off the activation of g)
Return back to f

• Tiger Specifics (also true for many other modern compilers)

return address is put in a designated register

only maintain SP at runtime (FP is a “virtual” reg. = SP - framesize)
(when implementing Tiger, frame-size of each function is a compile-time constant)

• Must maintain a separate FP and SP if (1) the frame size of a function
may vary (2) the frames are not always contiguous (e.g., linked list)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 11 of 24

A Snapshot of Running Quicksort
• Remaining questions: how to find

the value of local variables and non-

local variables ?

• Local variables are allocated in the
current stack frame --- we can access

them through the Frame Pointer
(notice, the actual value of FP is
unknown until runtime, but the each

local-variable’s offset to FP is known
at compile time)

• Non-local variables must be
accessed through the static link, or
by using some other tricks

main()
a

m=0,n=8

q(0,8)
i=4

m=0,n=3

q(0,3)
i=3

y=0,z=3

p(0,3)
i=4,j=3
x=0,y=3

FP
e(0,3)

z

SP

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 12 of 24

Non-Local Variables
let type intArray = array of int

var a := intArray [9] of 0
function readarray () = ...
function writearray () = ...
function exchange(x : int, y : int) =
 let var z := a[x] in a[x] := a[y]; a[y] := z end

function quicksort(m : int, n : int) =
let function partition(y : int, z : int) : int =

let var i := y var j := z + 1
in (while (i < j) do

(i := i+1; while a[i] < a[y] do i := i+1;
j := j-1; while a[j] > a[y] do j := j-1;
if i < j then exchange(i,j));

exchange(y,j); j)
end

in if n > m then (let var i := partition(m,n)
in quicksort(m, i-1);

quicksort(i+1, n)
end)

end
in readarray(); quicksort(0,8); writearray()
end

input: 10, 32,
567, -1, 789,
3, 18, 0, -51

2
2

2

2

3

nestin
g

1

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 13 of 24

Static Link
• Static link (also called access link) is

used to implement lexical scoping.

• If function p is nested immediately
within q in the source code, then the

static link in activation of p is a point to
the most recent activation of q.

• Non-local variable v is found by
following static links to an activation
(i.e, frame) that contains v

• If v is declared at depth nv and
accessed in p declared at depth np,
then we need follow np-nv static links

main()
a

m=0,n=8

q(0,8)
i=4

m=0,n=3

q(0,3)
i=3

y=0,z=3

p(0,3)
i=4,j=3
x=0,y=3

FP
e(0,3)

z

SP

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 14 of 24

Static Link (cont’d)
• Suppose function q at depth nq calls function p at depth np . The

question is how to access non-local variables once we are inside p ? or
what is the static link inside p’s activation.

• If nq < np , then nq = np -1, p is nested within q; the static link in p’s
activation = q’s activation; e.g., quicksort (2) calls partition (3).

• If nq >= np , p and q must have common calling “prefix” of functions at
depths 1, ..., np-1; the static link in p’s activation is the activation found
by following nq - np + 1 access links in caller q; e.g., partition(3) calls

exchange(2) --- follow 3-2+1=2 links inside partition’s activation.

• Two alternatives to the static link method for accessing non-local
variables: 1. Display 2. Lambda-Lifting

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 15 of 24

Display
• One alternative to static link is to

maintain pointers to the current

activation at depth k using a display
array d[1...].

• Upon entry to p at depth k : save d[k]

in p’s activation; d[k] = p’s activation

• Upon exit from p at depth k: d[k] =

saved “d[k]” inside p’s activation

• display ---- pros: faster access,
constant call/return cost; cons: uses

up registers, awkward when functions
being passed as arguments.

main()

q(0,8)

q(0,3)

p(0,3)

FP
e(0,3)

SP

d[1]
d[2]
d[3]

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 16 of 24

Lambda-Lifting
let type intArray = array of int

var a := intArray [9] of 0
function readarray (a : intArray) = ...
function writearray (a : intArray) = ...
function exchange(a : intArray, x : int, y : int) =
 let var z := a[x] in a[x] := a[y]; a[y] := z end

function quicksort(a: intArray, m : int, n : int) =
let function partition(a: intArray, y : int, z : int) : int =

let var i := y var j := z + 1
in (while (i < j) do

(i := i+1; while a[i] < a[y] do i := i+1;
j := j-1; while a[j] > a[y] do j := j-1;
if i < j then exchange(i,j));

exchange(y,j); j)
end

in if n > m then (let var i := partition(a,m,n)
in quicksort(a, m, i-1);

quicksort(a, i+1, n)
end)

end
in readarray(a); quicksort(a,0,8); writearray(a)
end

Rewriting the program by treating non-local variables as formal

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 17 of 24

Parameter Passing
how to map actual parameters to formal parameters?

• call-by-value: values of the actual arguments are passed and
established as values of formal parameters. Modification to formals have

no effect on actuals. Tiger, ML, C always use call-by-value.

function swap(x : int, y : int) =
 let var t : int := x in x := y; y := t end

• call-by-reference: locations of the actuals are passed; references to the
formals include implicit indirection to access values of the actuals.
Modifications to formals do change actuals. (supported in PASCAL, but
not in Tiger)

function swap(var x : int, var y : int) =
 let var t : int := x in x := y; y := t end

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 18 of 24

Use of Registers
• To avoid memory traffic, modern compilers often pass arguments,

return results, and allocate local variables in machine registers.

• Typical parameter-passing convention on modern machines:

the first k arguments (k = 4 or 6) of a function are passed in registers
Rp, ..., Rp+k-1, the rest are passed on the stack.

• Problem : extra memory traffic caused by passing args. in registers

function g(x : int, y : int, z :int) : int = x*y*z

function f(x : int, y : int, z : int) =
let val a := g(z+3, y+3, x+4) in a*x+y+z end

Suppose function f and g pass their arguments in R1, R2, R3; then f
must save R1, R2, and R3 to the stack frame before calling g,

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 19 of 24

Use of Registers (cont’d)
how to avoid extra memory traffic?

• Leaf procedures (or functions) are procedures that do not call other
procedures; e.g, the function exchange . The parameters of leaf
procedures can be allocated in registers without causing any extra

memory traffic.

• Use global register allocation, different functions use different set of

registers to pass their arguments.

• Use register windows (as on SPARC) --- each function invocation can
allocate a fresh set of registers.

• Use callee-save registers

• When all fails --- save to the corresponding slots in the stack frame.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 20 of 24

Callee-save Registers

g|u|v|w

Convention :

Reserve k special registers !

Every function promises
to always preserve these
registers !

Example : k=3 (r4,r5,r6)

fun f(u,v,w) =
let val x = g(u,v)

val y = g(x,w)
in x+y+w
end

f

g

f return

g

general
registers

callee-save
registers

g|u|v|

g|x|w|

y| | |

w|g|

w|x|

A|B|C

A|B|C

A|B|C

x| | |

r4 r5 r6r0 r1 r2 r3

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 21 of 24

Frame Resident Variables
Certain values must be allocated in stack frames because

• the value is too big to fit in a single register

• the variable is passed by reference --- must have a memory address

• the variable is an array -- need address arithmetic to extract components

• the register that the variable stays needs to be used for other purpose!

• just too many local variables and arguments --- there are not enough

registers !!! -------------- SPILLING

Open research problem: When to allocate local
variables or passing arguments in registers ?

Needs good heauristics !

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 22 of 24

Stack Frames in Tiger
• Using abstraction to avoid the machine-level details

• What do we need to know about each stack frame at compile time ?

1. offsets of incoming arguments and the static links
2. offsets of all local variables 3. the frame size

signature FRAME =
sig type frame

val newFrame : int -> frame * int list
val allocLocal : frame -> int
(* other stuff, eventually ... *)

end

structure PowerPCFrame : FRAME =
struct
type frame = {formals: int, offlst: int list,

locals: int ref, maxargs: int ref}
......

end

structure SparcFrame : FRAME =

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 23 of 24

Stack Frames in Tiger (cont’d)
• In the static environment (i.e., the symbol table), associate each

variable with the access information; associate each function with the
layout information of its activation record (i.e, frame), a static link, and
the caller’s frame.

type offset = int

datatype level
= LEVEL of {frame: Frame.frame,

slink_offset: offset,
 parent: level} * unit ref

| TOP

type access = level * offset

• When converting the absyn into intemediate code --- generate
accessing code for each local or non-local variable, plus calling

sequences for each function call.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Runtime Environments: Page 24 of 24

Limitation of Stack Frames
• It does not support higher-order functions ---- it cannot support

“nested functions” and “procedure passed as arguments and
results” at the same time.

C --- functions passed as args and results, but no nested functions;
PASCAL --- nested functions, but cannot be passed as args or res.

• Alternative to the standard stack allocation scheme ----

1. use a linked list of chunks to represent the stack

2. allocate the activation record on the heap --- no stack frame pop !

advantages: support higher-order functions and parallel
programming well

(will be discussed several weeks later !)

