
C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 1 of 18

Back-End Code Generation
• Given a list of itree fragments, how to generate the corresponding

assembly code ?

datatype frag
= PROC of {name : Tree.label, function name

body : Tree.stm, function body itree
 frame : Frame.frame} static frame layout

| DATA of string

• Main challenges: certain aspects of itree statements and expressions
do not correspond exactly with machine languages:

of temp. registers on real machines are limited

real machine’s conditional-JUMP statement takes only one label

high-level constructs ESEQ and CALL ---- side-effects

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 2 of 18

Itree Stmts and Exprs
• itree statements stm and itree expressions exp
datatype stm = SEQ of stm * stm
 | LABEL of label
 | JUMP of exp
 | CJUMP of test * label * label
 | MOVE of exp * exp
 | EXP of exp

and exp = BINOP of binop * exp * exp
 | CVTOP of cvtop * exp * size * size
 | MEM of exp * size
 | TEMP of temp

| NAME of label
 | CONST of int
 | CONSTF of real
 | ESEQ of stm * exp

| CALL of exp * exp list

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 3 of 18

Side-Effects
• Side-effects means updating the contents of a memory cell or a

temporary register. What are itree expressions that might cause side
effects ? ESEQ and CALL nodes

• ESEQ(s,e) where s is a list of statements that may contain MOVE

statement

The natural way to generate assembly code for BINOP(op,t1,t2)

instructions to compute t1 into ri ;
instructions to compute t2 into rj ;
rk <- ri op rj

But it won’t work for this:
BINOP(PLUS,TEMP a,ESEQ(MOVE(TEMP a,u),v))

• CALL(e,el) by default puts the result in the return-result register.

BINOP(PLUS, CALL(...), CALL(...))

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 4 of 18

Summary: IR -> Machine Code
• Step #1 : Transform the itree code into a list of canonical trees

a. eliminate SEQ and ESEQ nodes
b. the arguments of a CALL node should never be other CALL nodes

 ---- the parent of each CALL node should either be
EXP(...) or MOVE(TEMP t, ...)

• Step #2 : Perform various code optimizations on canonical trees

• Step #3 : Rearrange the canonical trees (into traces) so that every

CJUMP(cond,lt,lf) is immediately followed by LABEL(lf).

• Step #4 : Instruction Selection ---- generate the pseudo-assembly
code from the canonical trees in the step #3.

• Step #5 : Perform register allocations on pseudo-assembly code

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 5 of 18

Canonical Trees
• A canonical tree is a simple itree statement in the following form (it is

really a restricted-kind of itree statement):
datatype stm = LABEL of label
 | JUMP of exp
 | CJUMP of test * label * label
 | MOVE of exp * exp
 | EXP of exp

and exp = BINOP of binop * exp * exp
 | CVTOP of cvtop * exp * size * size
 | MEM of exp * size
 | TEMP of temp

| NAME of label
 | CONST of int
 | CONSTF of real

| CALL of exp * exp list

Restrictions:
no SEQ statements, no ESEQ expressions.
each CALL node doesn’t contain any other CALL nodes as subtrees

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 6 of 18

Canonicalizer
• The body of each PROC fragment is translated into an ordered list of

canonical trees

stms: Tree.stm list

• Step 1: transformation on CALL nodes.

CALL(...) =======>

ESEQ(MOVE(TEMP t,CALL(...)),TEMP t)

• Step 2: elimination of ESEQ nodes. (see Appel pp 174-179)

lift them higher and higher until they become SEQ nodes ...

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 7 of 18

Rearranging itree statements
• Goal: rearrange the list of canonical trees so that every

CJUMP(cond,lt,lf) is immediately followed by its false branch
LABEL(lf).

• Step #1: take a list of canonical trees and form them into basic blocks

A basic block is a sequence of statements that is always entered at
the beginning and exited at the end:

1. the first statement is a LABEL
2. the last statement is a JUMP or CJUMP
3. there are no other LABELs, JUMPs, or CJUMPs in between

basic blocks are often used to analyze a program’s control flow

• Step #2: re-order the list of basic blocks into traces

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 8 of 18

Canonical Trees => Basic Blocks
• Input: a sequence of statements (i.e., canonical trees --- the body of a

function); Output: a set of basic blocks

• Algorithm:

if a new LABEL is found, end the current block and start a new block;

if a JUMP or CJUMP is found, end the current block;

if it results a block not ending with a JUMP or CJUMP, then a JUMP to
the next block’s label is appended to the block;

if it results a block without a LABEL at the beginning, invent a new
LABEL and stuck it there;

invent a new label done for the beginning of the epilogue;

put JUMP(NAME done) at the end of the last basic block.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 9 of 18

Basic Blocks => Traces
• Control Flow Graph (CFG): basic blocks as the nodes, pairs (a,b) as

the edges if block a ends with a CJUMP or JUMP statement to block b .

• Basic blocks can be arranged in any order, but we want:

each CJUMP is followed by its false label
each JUMP should be followed by its target label whenever possible

• A trace is a path in the CFG --- it characterizes some fragment of a real

program execution.

• Algorithm for gathering traces: just do the depth-first traversal of the
CFG ------ (can also take advantage of branch prediction information)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 10 of 18

Traces => List of Statements
• Flatten the traces back to an ordered list of statements (canonical trees):

a) any CJUMP followed by its false label: do nothing ;

b) any CJUMP followed by its true label: switch its true and false
label, and negate the condition;

c) remove JUMP(l) if it is followed by its target l ;

d) any CJUMP(cond,lt,lf) followed by neither label: invent a new
false label ln , rewrite it into :

CJUMP(cond, lt, ln)
LABEL ln
JUMP(NAME lf)

• We are now ready to do instruction selection : generate assembly
code for your favourite target machine.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 11 of 18

Instruction Selection
• Input : an ordered list of canonical trees;

Output: the pseudo-assembly code (without register assignments)

• Algorithm: translating each canonical tree into an assembly code
sequence, and then concatenate all sequences together.

Main Problem: how to map the canonical tree to the assembly code ?

• Each machine instruction can be expressed as a tree pattern --- a

fragment of the canonical tree :

 MEM

 BINOP wordsz

PLUS e CONST

c

Load the value at addr e + c in the memory !

Each machine instruction may correspond to
several layer of itree expressions

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 12 of 18

Instruction Selection via Tiling
• Express each machine instruction as a tree pattern.

• Given a canonical tree, the instruction selection is just to tile the tree
using various tree patterns (for all possible machine instructions) ------
cover the canonical tree using nonoverlapping tiles.

• Optimum Tiling : ---- one whose tiles sum to the lowest possible value
(suppose we give each machine instruction a cost)

• Optimal Tiling : ---- one where no two adjacent tiles can be combined
into a single tile of lower cost

• Even optimum tiling is also optimal, but no vice versa.

• Algorithm: maximum munch finds the optimal tiling;
dynamic programming finds the optimum tiling.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 13 of 18

Maximal Munch
• Algorithm --- Maximal Munch:

Start at the root of a canonical tree, find the largest tile that fits; the
largest tile is the one with the most nodes (if tie, break arbitrarily)

Cover the root node and perhaps several other nodes near the root
with this tile, leaving several subtrees; the instruction corresponding to
the tile is generated.

Repeat the same algorithm for each subtreee.

• Maximal Munch generates the instructions in reverse order.

• Implementation: see Appel pp 190-191, 204-205.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 14 of 18

Dynamic Programming
• the dynamic programming algorithm is used to find the optimum tiling

Main Idea: assign a cost to every node in the tree (via bottom-up)

the algorithm works bottom-up: at each node, we calculate the cost of
the best instruction sequence that can tile the subtree rooted at that
node.

• after the cost of the root node (thus the entire tree) is found, we do the
instruction emission:

Emission(node n): for each leaves li of the tile selected at node n,
perform Emission(li). Then emit the instruction matched at node n.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 15 of 18

Code-Generator Generator
• Same as Lex and Yacc, the instruction selection phase can also be

automatically built, using a code-generator generator.

• The input specification is a set of grammar rules used to specify the
tree pattern for each machine instruction:

each grammar rule is associated with a cost and an action;
cost is for finding optimum tiling; action is for instruction emission.
Example: d -> MEM(+(a,CONST)) ...

d -> MEM(+(CONST,a)) ...
d -> MEM(CONST) ...
d -> MEM(a) ...

a : expressions for “addressing” d : expressions for “data”

• The code-generator generator computes the minimum-cost match at
each node for each nonterminal of the grammar using dynamic

programming (Appel pp 191-193)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 16 of 18

Instruction Selection for Tiger
• we will implement the maximal munch for instruction selection in the

Tiger compiler (using ML pattern matching)

• main problem: how to deal with registers ?

• solution: the register allocation will occur after instruction selection, the
instruction selection phase will generate instructions with simple register
templates.

first, generate the assembly tree --- the assembly language without
register assignments;

second, do the register allocation

third, emit the procedure entry exit sequence

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 17 of 18

Assembly Trees
• the assembly language without register assignments in ML datatype:

structure Assem : sig
 type reg = string

type temp = Temp.temp
type label = Temp.label

datatype instr
 = OPER of {assem: string, dst: temp list,

 src: temp list, jump: label list option}

 | LABEL of {assem: string, lab: label}

| MOVE of {assem: string, dst: temp, src: temp}

val format: (temp -> string) -> instr -> string

end

The format function will fill in the register information in the future.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University Machine Code Generation: Page 18 of 18

Tiger Assembly Trees (cont’d)
• A OPER node OPER{assem, dst, src, jump} holds an assembly-

language instruction assem . The source registers are src, the target
registers are dst; jump would be NONE if it is not a branch instruction.

• An MOVE node MOVE{assem, dst, srcs} holds an assembly-

language move instruction assem that moves from src to dst.

If later in register allocation, src and dst are assigned the same
register, then this instruction will be deleted.

a canonical tree exp

MEM

+

TEMP fp CONST 8

the assembly tree

a OPER node:

LOAD ‘d0 <- M[‘s0+8]

TEMP fp

after register
allocations

real assembly code:

LOAD r1 <- M[r27+8]

