
C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 1 of 32

More on Runtime Environments
• How to efficiently implement procedure call and return in the presence

of higher-order functions ?

I what are higher-order functions ?

I how to extend stack frames to support higher-order functions ?

I efficiency issues (execution time, space usage) ?

• How to efficiently support memory allocation and de-allocation ?

I what are the data representations ?

I what are the memory layout ?

I explicit vs implicit memory de-allocation ?
(malloc-free vs. garbage collection)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 2 of 32

Procedure Parameters (in Pascal)
• Procedure parameters permit procedures to be invoked “out-of-scope”;

• Question: how to get the correct environment when calling h inside b ?

• Solution: must pass static link along with f as if it had been called at
the point it was passed (line 11).

1 program main(input, output);
2
3 procedure b(function h(n : integer): integer);
4 var m : integer;
5 begin m := 6; writeln(h(2)) end;
6
7 procedure c;
8 var m : integer;
9 function f(n: integer): integer;
10 begin f := m + n end;
11 begin m := 0; b(f) end;
12 begin c end.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 3 of 32

Restrictions in C & Pascal
• C does not allow nested procedures --- names in C are either local to

some procedure or are global and visible in all procedures. Procedures
in C can be passed as arguments or returned as results.

• Pascal (or Modula-2, Modula-3, Algol) allows procedure declarations
to be nested, but procedure parameters are of restricted use, and

procedures cannot be returned as result.

• Functional languages (e.g. ML, Haskell, Scheme, Lisp) support higher-
order functions --- supporting both nested procedures and procedures
passed as parameters or returned as results.

supporting it is a big challenge to the compiler writers !

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 4 of 32

Traditional Stack Scheme

program
counter

HEAP
(dynamic data)

STACK
(activation records)

STATIC
(code and globals)

Memory Layout

code

garbage
collector

parameters and
returned values

links and
saved status

temporaries
and local data

REGISTERS

Activation Record

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 5 of 32

Procedure Activations

Nested Functions in ML
val BIG = big(N)

fun P(v,w,x,y) =
let

fun Q() =
let val u = hd(v)

fun R() =
 ... P(v,u,u,y) ...

 in ... R() ...
end

in ... Q() ...
end

val result = P(BIG,0,0,0)

 Main

P
v=BIG
w=x=y=0

Q, u

R

ac
ce

ss
 li

nk
scontrol links

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 6 of 32

Procedure Activations (cont’d)

P
v=v,w=u
x=u,y=y

P
v=BIG
w=x=y=0

 Main

Q, u

R

ac
ce

ss
 li

nk
s

control links

Q, u

Nested Functions in ML

val BIG = big(N)

fun P(v,w,x,y) =
let

fun Q() =
let val u = hd(v)

fun R() =
 ... P(v,u,u,y) ...

 in ... R() ...
end

in ... Q() ...
end

val result = P(BIG,0,0,0)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 7 of 32

Higher-Order Functions

How to create a closure for Q ?

fun P(v,w,x,y) =
let

fun Q() =
let val u = hd(v)

fun R() =
 ...(u,w+x+y+3)...

 in ... R() ...
end

in Q
end

val S = P(BIG,0,0,0)
val result = S()

Q|
heap

stackMain

P
v=BIG

w=x=y=0

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 8 of 32

Higher-Order Functions (cont’d)

Q lost track of its environment

fun P(v,w,x,y) =
let

fun Q() =
let val u = hd(v)

fun R() =
 ...(u,w+x+y+3)...

 in ... R() ...
end

in Q
end

val S = P(BIG,0,0,0)
val result = S()

Q|
heap

stackMain

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 9 of 32

Higher-Order Functions (cont’d)

Q must copy the frame !

fun P(v,w,x,y) =
let

fun Q() =
let val u = hd(v)

fun R() =
 ...(u,w+x+y+3)...

 in ... R() ...
end

in Q
end

val S = P(BIG,0,0,0)
val result = S()

Q|v|w|x|y
heap

stackMain

P
v=BIG

w=x=y=0

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 10 of 32

Higher-Order Functions (cont’d)

Q’s environment is in the heap!

fun P(v,w,x,y) =
let

fun Q() =
let val u = hd(v)

fun R() =
 ...(u,w+x+y+3)...

 in ... R() ...
end

in Q
end

val S = P(BIG,0,0,0)
val result = S()

Q|v|w|x|y
heap

stackMain

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 11 of 32

Applying Higher-Order Functions

Accessing the Closure Q !

fun P(v,w,x,y) =
let

fun Q() =
let val u = hd(v)

fun R() =
 ...(u,w+x+y+3)...

 in ... R() ...
end

in Q
end

val S = P(BIG,0,0,0)
val result = S() Q|v|w|x|y

heap

stack
Main

Q or S
 u

R

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 12 of 32

Nested Higher-Order Functions

Q|v|w|x|y

heap

stack
Main

Q or S
 u

fun P(v,w,x,y) =
let

fun Q() =
let val u = hd(v)

fun R() =
 ...(u,w+x+y+3)...

 in R
end

in Q
end

val S = P(BIG,0,0,0)
val T = S()

val result = T()

R|u|

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 13 of 32

Linked Closures

Q|v|w|x|y

R or T

 Main

R|u

fun P(v,w,x,y) =
let

fun Q() =
let val u = hd(v)

fun R() =
 ...(u,w+x+y+3)...

 in R
end

in Q
end

val S = P(BIG,0,0,0)
val T = S()
val result = T()

Fast creation, Slow access !

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 14 of 32

Flat Closures
fun P(v,w,x,y) =

let
fun Q() =
let val u = hd(v)

fun R() =
 ...(u,w+x+y+3)...

 in R
end

in Q
end

val S = P(BIG,0,0,0)
val T = S()
val result = T()

Slow creation, Fast access ! Q|v|w|x|y

R or T

 Main

R|u|w|x|y

copying !!!

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 15 of 32

Better Representations ?
• Closures cannot point to stack frame

(different life time, so you must copy.)

• Linked closures --- fast creation, slow access
Flat closures --- slow creation, fast access

• Stack frames with access links are similar to linked
closures (accessing non-local variables is slow.)

GOAL : We need good closure representations that
have both fast access and fast creation !

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 16 of 32

Space Usage

R|u|w|x|y

Space Leaks for Linked Closures

fun P(v,w,x,y) =
let fun Q() =

let val u = hd(v)
fun R() = (u,w+x+y+3)

in R
end

in Q
end

fun loop (n,res) =
if n<1 then res
else (let val S = P(big(N),0,0,0)
 val T = S()

in loop(n-1,T::res)
end)

val result = loop(N,[])

Q|v|w|x|y

R|u|

N N-1

Linked Closures :
O(N2)

Flat Closures :
O(N)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 17 of 32

Space Usage (cont’d)

Space Leaks for
Stack Allocations

fun P(x) =

fun Q(n) = let
val u = big(n)
val v = P(u)
val w = hd(u)

in
if n > 0
then Q(n-1)+v(w)
else ...

end

val result = Q(N)

Q,v,w
n=N
u

Q,v,w
n=N-1
u

Q,v,w
n=N-2
u

N-2 N-3

“u” is dead after this call !

N-1 N-2

N N-1

Use O(N2) Space !

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 18 of 32

Better Space Usage ?

• The safe for space complexity rule :

Local variable must be assumed dead after its last use
within its scope !

• Stacks and linked closures are NOT safe for space

• Flat closures are safe for space

• SML/NJ : unsafe version = (2 to 80) x safe version

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 19 of 32

Drawbacks of Stack Allocation

• inefficient space usage

• slow access to non-local variables

• expensive copying between stack and heap
(activation records cannot be shared by closures)

• scanning roots is expensive in generational GC

• very slow first-class continuations (call/cc)

• correct implementation is complicated and messy

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 20 of 32

Efficient Heap-based Compilation

An efficient heap-based scheme has the following
advantages:

• very good space usage (safe for space complexity !)

• very fast closure creation and closure access

• closures can be shared with activation records

• fast call/cc and fast generational GC

• simple implementation

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 21 of 32

Pure Heap-based Scheme

program
counter

HEAP
(dynamic data)

(activation records)

STATIC
(code and globals)

Memory Layout

code

garbage
collector

REGISTERS

Main Ideas:

no runtime stack !

safely linked closures

good use of registers

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 22 of 32

Safely Linked Closures

Safe for Space : use O(N) space

fun P(v,w,x,y) =
let fun Q() =

let val u = hd(v)
fun R() = (u,w+x+y+3)

in R
end

in Q
end

fun loop (n,res) =
if n<1 then res
else (let val S = P(big(N),0,0,0)
 val T = S()

in loop(n-1,T::res)
end)

val result = loop(N,[])

Q|v|

R|u|

N N-1

THE TRICK:

Variables w,x,y have
same life time !

w|x|y

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 23 of 32

Safely Linked Closures (cont’d)

Shorter Access Path !

fun P(v,w,x,y) =
let fun Q() =

let val u = hd(v)
fun R() =
let fun S() = w+x+y+3
in (S,u)
end

in R
end

in Q
end

val T = P(big(N),0,0,0)

The number of links traversed is at most 1 .

Q|v|

R|u|

N N-1

w|x|y

S|

THE TRICK:

Variables w,x,y have
same life time !

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 24 of 32

Good Use of Registers
• To avoid memory traffic, modern compilers often pass arguments,

return results, and allocate local variables in machine registers.

• Typical parameter-passing convention on modern machines:

the first k arguments (k = 4 or 6) of a function are passed in registers
Rp, ..., Rp+k-1, the rest are passed on the stack.

• Problem : extra memory traffic caused by passing args. in registers

function g(x : int, y : int, z :int) : int = x*y*z

function f(x : int, y : int, z : int) =
let val a := g(z+3, y+3, x+4) in a*x+y+z end

Suppose function f and g pass their arguments in R1, R2, R3; then f
must save R1, R2, and R3 to the memory before calling g,

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 25 of 32

Good Use of Registers (cont’d)
how to avoid extra memory traffic?

• Leaf procedures (or functions) are procedures that do not call other
procedures; e.g, the function exchange . The parameters of leaf

procedures can be allocated in registers without causing any extra
memory traffic.

• Use global register allocation, different functions use different set of
registers to pass their arguments.

• Use register windows (as on SPARC) --- each function invocation can

allocate a fresh set of registers.

• Allocate closures in registers or use callee-save registers

• When all fails --- save to the stack frame or to the heap.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 26 of 32

Closures in Registers ? No !
Module FOO: (in file “foo.sml”)

fun pred(x) = ...v(w,x) ...
val result = BAR.filter(pred,...)

Module BAR : (in file “bar.sml”)

fun filter(p,l) =
let fun h(s,z) =

if (s=[]) then rev z
else
(let val a = car s

val r = cdr s
 in if p a then h(r,a::z)

else h(r,z)
end)

in h(l,[])
end

Escaping functions:

functions whose call
sites are not all
known at compile
time !

“pred” is an
escaping function !

Its closure must be
built on the heap !

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 27 of 32

Closures in Registers ? Yes !

fun filter(p,l) = let

fun h(s,z) =
if (s=[]) then rev z
else
(let val a = car s

val r = cdr s
 in if p a then h(r,a::z)

else h(r,z)
end)

in h(l,[])
end

“h” is a known function !

Its closure can be put in registers !
(e.g., {rev,p})

s=[]

NY

N

Known functions:

functions whose call
sites are all known at
compile time !

rev z

Y

p a

h

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 28 of 32

“Lambda Lifting”

fun filter(p,l) = let

fun h(s,z,rev,p) =
if (s=[]) then rev z
else
(let val a = car s

val r = cdr s
 in if p a then h(r,a::z,rev,p)

else h(r,z,rev,p)
end)

in h(l,[],rev,p)
end

known functions can be rewritten into
functions that are fully closed !

(i.e. with no free variables !)

s=[]

s|z|rev|p

NY

N

rev z

Y

p a

r0 r1 r2 r3

h

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 29 of 32

“Spilled Activation Records”

r0 r1 r2 r3 r4 r5

s=[]

s|z|rev|p| |

N

Y

N

rev z

Y

p a

r|z|rev|p|a|

r|z|rev|p|a|

r| |rev|p|a|

a::z

Must save and load
everything here !

We do not know how
 “p” treats the registers !

h
r0 r1 r2 r3 r4 r5

r0 r1 r2 r3 r4 r5

r0 r1 r2 r3 r4 r5

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 30 of 32

Callee-save Registers

g|u|v|w

Convention :

Reserve k special registers !

Every function promises
to always preserve these
registers !

Example : k=3 (r4,r5,r6)

fun f(g,u,v,w) =
let val x = g(u,v)

val y = g(x,w)
in x+y+w
end

f

g

f return

g

general
registers

callee-save
registers

g|u|v|

g|x|w|

y| | |

w|g|

w|x|

A|B|C

A|B|C

A|B|C

x| | |

r4 r5 r6r0 r1 r2 r3

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 31 of 32

Callee-save Registers (cont’d)

6 callee-save registers :
r4,r5,r6,r7,r8,r9

no need to save
and load anymore!

s=[]

s|z|rev|p| |

N

Y

N

rev z

Y

p a

r|z|rev|p|a|

r|z|rev|p|a|

r| |rev|p|a|

a::z

r4 r5 r6 r7 r8 r9

r4 r5 r6 r7 r8 r9

r4 r5 r6 r7 r8 r9

r4 r5 r6 r7 r8 r9

h

re
co

ve
r

ev
er

yt
h

in
g

!

A|B| C |D|E|F
r4 r5 r6 r7 r8 r9

s|z|rev|p

r0 r1 r2 r3

A|B|C|D|E|F

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2001 Carsten Schuermann, Zhong Shao, Yale University More on Runtime Environments: Page 32 of 32

Summary : A Uniform Solution

Take advantage of variable life time and compile-
time control flow information !

“Spilled activation records” are also thought as
closures !

• no runtime stack ---------- everything is sharable

• all use safely-linked closures ---------- to maximize sharing

• pass arguments and return results in registers

• allocating most closures in registers

• good use of callee-save registers

