CS421 COMPILERS AND INTERPRETERS

More on Runtime Environments

« How to efficiently implement procedure call and return in the presence
of higher-order functions ?

| what are higher-order functions ?
| how to extend stack frames to support higher-order functions ?

| efficiency issues (execution time, space usage) ?

« How to efficiently support memory allocation and de-allocation ?
| what are the data representations ?
| what are the memory layout ?

| explicit vs implicit memory de-allocation ?
(malloc-free vs. garbage collection)

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 1.of 32

CS421 COMPILERS AND INTERPRETERS

Procedure Parameters (in Pascal)

« Procedure parameters permit procedures to be invoked “out-of-scope”;

1 programmain(input, output);

2

3 procedure b(function h(n : integer): integer);
4 var m: integer;

5 begin m:= 6; witeln(h(2)) end;
6

7 procedure c;

8 var m: integer;

9 function f(n: integer): integer;
10 beginf := m+ n end;

11 begin m:= 0; b(f) end;

12 begin c end.

« Question: how to get the correct environment when calling h inside b ?

« Solution: must pass static link along with f as if it had been called at
the point it was passed (line 11).

Restrictions in C & Pascal

¢ C does not allow nested procedures --- names in C are either local to
some procedure or are global and visible in all procedures. Procedures
in C can be passed as arguments or returned as results.

« Pascal (or Modula-2, Modula-3, Algol ) allows procedure declarations
to be nested, but procedure parameters are of restricted use, and
procedures cannot be returned as result.

« Functional languages (e.g. ML, Haskell, Scheme, Lisp) support higher-
order functions --- supporting both nested procedures and procedures
passed as parameters or returned as results.

supporting it is a big challenge to the compiler writers !

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 2 of 32

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 3 of 32

Traditional Stack Scheme

STACK
activation records parameters and
program ( ) returned values
counter
o links and

saved status

code

i temporaries
and local data

Activation Record

: — (d ynt;'\rﬁéiata) @

REGISTERS STATIC garbage
(code and globals) collector

Memory Layout

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 4 of 32




CS421 COMPILERS AND INTERPRET

ERS

Procedure Activations

Nested Functions in ML
val BI G = bi g(N)

fun P(v,w, x,y) =
t

8
_ri %
fun Q) = S
Tet val u = hd(v) 5
fun R() = ’

T ... P(v,u,u,y)

in... R)
end
in... Q)

end

val result = P(BIG 0,0,0)

access links

S A A

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University

CS421 COMPILERS AND INTERPRET

More on Runtine Environments: Page 5 of 32

ERS

Procedure Activations (cont’'d)

Nested Functions in ML

access links

val BIG = big(N) [ Main
— P
fun P(v, wx,y) = " v=BIG
T ffun ) = o w=x=y=0
“Tet val u = hd(v) 8 5 o
fun R() = S ¥y =
... P(v,u,u,y) ... 5
. 0 P
in... R()
end V=V, W=U
— X=u, y=y
in... Q)
val result = P(BIG0,0,0) +

Higher-Order Functions

How to create a closure for Q ?

T Main N stack
fun P(v,w, x,y) = P
T Tet
T ffun Q) = v=BIS
Tet val u = hd(v) w=x=y=0
un R() = \J
(U, wEXHY+3). L
in R()
end
in Q
end \ A
val S"= P(BIG,0,0,0) ﬂ
val result = §() heap

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University

CS421 COMPILERS AND INTERPRETERS

More on Runtine Environments: Page 6 of 32

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University

More on Runtie Environments: Page 7 of 32

Higher-Order Functions (cont’d)

Q lost track of its environment

Main stack
fun P(v,w x,y) = \
I et
- fun ) =
let val u = hd(v)
fun R() =
(U, whx+y+3)
in... R)
end
inQ
end \ A
val result = §() heap

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University

More on Runtie Environments: Page 8 of 32




CS421 COMPILERS AND INTERPRETERS

CS421 COMPILERS AND INTERPRETERS

Higher-Order Functions (cont’d)
Q must copy the frame ! L stack
fun P(v,w x,y) = = >
I et
— an q) = v=BIG +
let val u = hd(v) w=x=y=0
fun R() = v
(U, wEX+Y+3). ..
in R()
end
end \ A

val w—

val result = S()

heap

Higher-Order Functions (cont’d)

Q’s environment is in the heap! — stack
fun P(v,w x,y) = V
et
fun Q) =
et val u = hd(v)
fun R() =
(u, wx+y+3) ...
in... R0
end

inQ \
end A
val m_

val result = S() heap

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University

CsS421 COMPILERS AND INTERPRETER

More on Runtine Environments: Page 9 of 32

s

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 10 of 22

CS421 COMPILERS AND INTERPRETERS

Applying Higher-Order Functions

Accessing the Closure Q! stack
Main
fun P(v,w x,y) =
I et Il QorS
T fun Q) = u
let val u = hd(v) ‘3
fun R() = RO
. (u, wx+y+3) ¥
n R()
end
inQ
end A
val m
val result = §() Qviw x|y
heap

Nested Higher-Order Functions

fun P(v,w, x,y) = stack
~Tet -
T fun Q) = Main
let val u = hd(v) L Qors
fun R() = u
. (u, wx+y+3) ¥
inR
end
inQ
end
- A

P(BI G, 0, 0, 0)
S()

val result = T()

heap

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University

More on Runtine Environments: Page 11 of 22

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 12 of 22




CS421 COMPILERS AND INTERPRETERS

Linked Closures

fun P(v,w x,y) =
I et

= Main

Fast creation, Slow access !

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtinme Environments: Page 13 of 22

CS421 COMPILERS AND INTERPRETERS

Flat Closures

fun P(v, wx,y) =

let
fun Q) = Main
et val u = hd(v) =
fun R() = RorT
. (u, wx+y+3) ¢
inR
end
inQ
end
val S = P(BIG, 0,0, 0)
val TM
val result = T() fcopying "
Slow creation, Fast access ! TWXTY]

Better Representations ?

 Closures cannot point to stack frame

(different life time, so you must copy.)

 Linked closures --- fast creation, slow access
Flat closures --- slow creation, fast access

» Stack frames with access links are similar to linked

closures (accessing non-local variables is slow.)

GOAL : We need good closure representations that
have both fast access and fast creation !

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 14 of 22

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 15 of 22

Space Usage

Space Leaks for Linked Closures | |inked Closures :

O(N?)
fun P(v, wx,y) =
let fun () =
~ Tet val u = hd(v
fun R() = (u, wkx+y+3)

inR

end
in Q
end

fun loop (n,res) = |N |—1’1N'1|—1’|:

if n<l then res
else (let val S = P(big(N),0,0,0)
=S

val T = Flat Closures :
in Toop(n-1,T::res) O(N)
end)

val result =loop(N[])

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 16 of 22




CS421 COMPILERS AND INTERPRETERS

Space Usage (cont’d)

Space Leaks for

Stack Allocations

fun P(x) = ......
un Qn) = let
“val u = big(n)
val v = P(u)
val w = hd(u)
in
ifn>0
then Q(n-1)+v(w)
else ...
end

val result = QN)

o T

L g Ll

L L g L o

Use O(N?) Space !

[Sa s dead after this call 1

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University

More on Runtine Environments: Page 17 of 22

CS421 COMPILERS AND INTERPRETERS

Better Space Usage ?

» The safe for space complexity rule :

Local variable must be assumed dead after its last use
within its scope !
 Stacks and linked closures are NOT safe for space
« Flat closures are safe for space

* SML/NJ : unsafe version = (2 to 80) x safe version

Drawbacks of Stack Allocation

« inefficient space usage

» slow access to non-local variables

» expensive copying between stack and heap

(activation records cannot be shared by closures)

 scanning roots is expensive in generational GC

* very slow first-class continuations (cal | / cc)

correct implementation is complicated and messy

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtime Environments: Page 18 of 22

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University

More on Runtine Environments: Page 19 of 22

Efficient Heap-based Compilation

An efficient heap-based scheme has the following
advantages:

e very good Space usage (safe for space complexity !)
« very fast closure creation and closure access

« closures can be shared with activation records

fast cal | / cc and fast generational GC

simple implementation

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtime Environments: Page 20 of 22




CS421 COMPILERS AND INTERPRETERS

CS421 COMPILERS AND INTERPRETERS

Pure Heap-based Scheme

Main Ideas:
program no runtime stack !
counter
— safely linked closures

code

good use of registers

HEAP

(dynamic data)

(activation records) @
| -

E STATIC garbage
(code and globals) collector

REGISTERS

Memory Layout

Safely Linked Closures
Safe for Space : use O(N) space | THE TRICK:

fun P(v,w, x,y) = Variables w,x,y have
“Tet fun Q) = same life time !
~ Tet val u = hd(v)
fun R() = (u,wrx+y+3)
in R
end
inQ
end

fun loop (n,res) =
if n<l then res
else (lef val S = P(big(N),0,0,0)
val T = S
in Toop(n-1,T::res)
end)

val result = loop(N[]) |N |ﬂNl|ﬂ

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 21 of 22

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 22 of 22

CS421 COMPILERS AND INTERPRETERS

Safely Linked Closures (cont'd)

Shorter Access Path ! THE TRICK:
fun P(v,w,x,y) = Variables w,x,y have
let fun Q) = same life time !
et val u = hd(v)
un R() =
“Tet fun S() = wx+y+3
in (S u
end
in R i
en
inQ WXTY]
end
val T = P(big(N),0,0,0
The number of links traversed is at most 1. | N | _1,1 N1 | ,I:

Good Use of Registers

« To avoid memory traffic, modern compilers often pass arguments,
return results, and allocate local variables in machine registers.

« Typical parameter-passing convention on modern machines:

the first k arguments ( k = 4 or 6) of a function are passed in registers

Rps -+ Rp+k-1, the rest are passed on the stack.

« Problem : extra memory traffic caused by passing args. in registers

function g(x : int, y : int, z :int) : int = x*y*z
function f(x : int, y : int, z : int) =
let val a := g(z+3, y+3, x+4) in a*x+y+z end

Suppose function f and g pass their arguments in Ry, Ry, R3; then f
must save R4, Ry, and R3 to the memory before calling g,

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 23 of 22

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 24 of 22




CS421 COMPILERS AND INTERPRETERS

Good Use of Registers (cont’'d)

how to avoid extra memory traffic?

« Leaf procedures (or functions) are procedures that do not call other
procedures; e.g, the function exchange . The parameters of leaf
procedures can be allocated in registers without causing any extra
memory traffic.

« Use global register allocation, different functions use different set of
registers to pass their arguments.

« Use register windows (as on SPARC) --- each function invocation can
allocate a fresh set of registers.

Allocate closures in registers or use callee-save registers

« When all fails --- save to the stack frame or to the heap.

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 25 of 22

CS421 COMPILERS AND INTERPRETERS

Closures in Registers ? No !

Module FOO: (in file “foo.sml")/ “pred” is an

escaping function !
fun pr(ﬁj(x) = ...v(w,Xx) .
val result = BAR filter(qredy.. Its closure must be
built on the heap !
Module BAR : (in file “bar.sml”)
fun filter(p, 1) =
let fun h(s,z) =
if (s=[]) then rev z
el se Escaping functions:
(Tet val a = car s
val r = cdr s functions whose call
inif p athen h(r,a::z)| sijtesarenotall
else h(r,z) known at compile
) end) time !
inh(l,[]
end

Closures in Registers ? Yes !

fun filter(p,l) =1le /Known functions:
fun (s, z) = functions whose call
if (s=[]) then rev z sites are all known at
else

compile time!

“h” is a known function !

Its closure can be put in registers !
(e.9.{rev,p})

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 26 of 22

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 27 of 22

“Lambda Lifting”

fun filter(p,1) =let
fun h(s,z,rev,p) =
T if (s= []) then rev z
else
(Tet val a = car s
val r = cdr s
inif p athenchir,a::zrev,p)
el seChir, z,rev, p)

in ol [1,rev, p)
end

rev z

known functions can be rewritten into
functions that are fully closed !
(i.e. with no free variables !)

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 28 of 22




CS421 COMPILERS AND INTERPRETERS

CS421 COMPILERS AND INTERPRETERS

‘Spilled Activation Records”

We do not know how

“p” treats the registers !
rog rp rp r3ryfrs

S[Z[TEV] P

g Iy fp I3r,tg

TTZ[Tev] pl a

ToN\'1 2 g rafls
A Must save and Ioad’ fo 1 Ty T3fgfs v
everything here ! rfzfrevipla
rev z

Callee-save Registers

Convention : general callee-save
registers registers

Reserve k special registers !
rO ryrpra rgrs re

. . [oTuTvIw]

Every function promises

to always preserve these

registers !
erufvi | fiaflt]

fun f(g,u,v, |g|XIW1 | [MXTY]

g(u, v)
g(x, w

enc return [(ATEC

1 II\E/

i

Example : k=3  (r4rg rg) Ql
gl

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 29 of 22

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 30 of 22

CS421 COMPILERS AND INTERPRETERS

Callee-save Registers (cont’d)

6 I ist g fy T f3 fy4 Fg g T7 Tgrlg
callee-save registers :

9 [S[ZITevlp] [ALBL_C IO E[F]

gy, e, 7, gy g

ry fs fg T Tgrlg
STZ[Tevlp
Y
ry fg fg 7 TIgrg
TTZz[rev]pla
ry re 7 rgrg
T revipla ’
A no need to save o s Te T7 Tgrg f v
and load anymore! z[revipla
rev z

recover everything !

Summary : A Uniform Solution

Take advantage of variable life time and compile-
time control flow information !

“ Spilled activation records” are also thought as

closures !
¢ no runtime stack ---------- everything is sharable
« all use safely-linked closures ---------- to maximize sharing

« pass arguments and return results in registers
« allocating most closures in registers

« good use of callee-save registers

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtime Environments: Page 3L of 22

Copyright 1994 - 2001 Carsten Schuermenn, Zhong Shao, Yale University More on Runtine Environments: Page 32 of 22




